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Li-Yau Type Gradient Estimates and Harnack

Inequalities by Stochastic Analysis

Marc Arnaudon and Anton Thalmaier

Abstract.

In this paper we use methods from Stochastic Analysis to establish
Li-Yau type estimates for positive solutions of the heat equation. In
particular, we want to emphasize that Stochastic Analysis provides nat-
ural tools to derive local estimates in the sense that the gradient bound
at given point depends only on universal constants and the geometry
of the Riemannian manifold locally about this point.

§1. Introduction

The effect of curvature on the behaviour of the heat flow on a Rie-
mannian manifold is a classical problem. Ricci curvature manifests itself
most directly in gradient formulas for solutions of heat equation.

Gradient estimates for positive solutions of the heat equation serve
as infinitesimal versions of Harnack inequalities: by integrating along
curves on the manifold local gradient estimates may be turned into local
Harnack type inequalities.

Solutions to the heat equation

(1.1)
∂

∂t
u =

1

2
∆u

on a Riemannian manifold M are well understood in probabilistic terms.
For instance, if u = u(x, t) denotes the minimal solution to (1.1), then
a straightforward calculation using Itô’s calculus leads to the stochastic
representation of u as

(1.2) u(x, t) = E
[

1{t<ζ(x)} f(Xt(x))
]
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where f = u(·, 0) is the initial condition in (1.1), X.(x) denotes a Brow-
nian motion on M , starting from x at time 0, and ζ(x) its lifetime.

It is a remarkable fact that exact stochastic representation formu-
las for the derivative of solutions to the heat equation can be given,
expressing the gradient ∇u of u in terms of Ricci curvature.

The following typical example for such a Bismut type derivative
formula is taken from [11].

Theorem 1.1 (Stochastic representation of the gradient). Let D
be a relatively compact open domain in a complete Riemannian mani-
fold M , and let u = u(x, t) be a solution of the heat equation (1.1) on
D × [0, T ] which is continuous on D̄ × [0, T ]. Then, for any v ∈ TxM
and x ∈ D,

(1.3) 〈∇u(·, T )x, v〉 = −E

[

u(Xτ (x), T − τ)

∫ τ

0

〈

Qs ℓ̇s, dBs

〉

]

,

where:

(1) X ≡ X.(x) is a Brownian motion on M , starting at x, and
τ = τ(x) ∧ T where

τ(x) = inf{t > 0 : Xt(x) 6∈ D}

is the first exit time from D; the stochastic integral is taken
with respect to the Brownian motion B in TxM , related to X by
the Stratonovich equation dBt = //−1

t δXt, where //t : TxM →
TXt

M denotes the stochastic parallel transport along X.
(2) The process Q takes values in the group of linear automor-

phisms of TxM and is defined by the pathwise covariant ordi-
nary differential equation,

dQt = − 1
2 Ric//

t
(Qt) dt, Q0 = idTxM ,

where Ric//
t

= //−1
t ◦ Ric♯

Xt
◦ //t (a linear transformation of

TxM), and 〈Ric♯
z u, w〉 = Ricz(u, w) for any u, w ∈ TzM , z ∈

M .
(3) Finally, ℓt may be any adapted finite energy process taking val-

ues in TxM such that ℓ0 = v, ℓτ = 0 and

(

∫ τ

0

|ℓ̇t|2 dt
)

1/2 ∈ L1+ε for some ε > 0.

Formula (1.3) is valid for any solution u of the heat equation and
does not require positivity of u.
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Remark 1.2. Formula (1.3) is easily adapted to more specific sit-
uations, for instance:

(i) Let u = u(x, t) be a solution of the heat equation (1.1) on D ×
[0, T ] such that u|t=0 = f and u(·, t)|∂D = f |∂D. Then

〈∇u(·, T )x, v〉 = −E

[

f(Xτ (x))

∫ τ

0

〈

Qs ℓ̇s, dBs

〉

]

, τ = τ(x) ∧ T .

(ii) Let u = u(x, t) be a solution of the heat equation (1.1) on
D × [0, T ] such that u|t=0 = f and u(·, t)|∂D = 0. Then

〈∇u(·, T )x, v〉 = −E

[

f(XT (x)) 1{T<τ(x)}

∫ τ(x)∧T

0

〈

Qs ℓ̇s, dBs

〉

]

.

Such formulas are interesting by several means. For instance, on a
complete Riemannian manifold M , starting from the minimal solution
to the heat equation

(1.4) u(x, T ) = E
[

1{T<ζ(x)} f(XT (x))
]

with bounded initial conditions u(·, 0) = f , since for arbitrarily small
T > 0 Brownian motion explores the whole manifold M , we observe that
the global structure of M enters in formula (1.4); lower Ricci bounds may
fail and thus “Brownian motion may travel arbitrarily fast”. Neverthe-
less, looking at the formula for the gradient ∇u(·, T )x and taking into
account that

u(Xτ (x), T − τ) = E
Fτ

[

1{T<ζ(x)} f(XT (x))
]

,

we see that Eq. (1.3) reads as

〈∇u(·, T )x, v〉 = −E

[

1{T<ζ(x)} f(XT (x))

∫ τ

0

〈

Qs ℓ̇s, dBs

〉

]

where τ = τ(x) ∧ T and τ(x) the first exit time of X.(x) from an ar-
bitrarily small chosen neighbourhood of x. In other words, as far as
the gradient at (x, T ) is concerned, Ricci curvature of M matters only
locally about the point x.

No derivative of the heat equation appears in the right-hand side of
Eq. (1.4), thus gradient formulas are well suitable for estimates, see [11].
Such inequalities easily allow to bound ∇u in terms of some uniform
norm of u.

For positive solutions of the heat equation however one wants to do
better: typically one seeks for pointwise estimates which allow (modulo
additional terms if necessary) to control ∇u(·, T )x by u(x, T ).
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Theorem 1.3 (Classical Li-Yau estimate [8]). Let M be complete
Riemannian manifold and assume that Ric ≥ −k where k ≥ 0. Let u be
a strictly positive solution of

∂

∂t
u =

1

2
∆u on M × R+

and let a > 1. Then

(1.5)

( |∇u|
u

)2

(x, T ) − a
∆u

u
(x, T ) ≤ c(n, a)

[

k +
1

T

]

.

If Ric ≥ 0, i.e. k = 0, then the choice a = 1 is possible.

It is a surprising fact which has been noticed by many people that
no straightforward way to pass from Bismut type derivative formulas to
Li-Yau type gradient estimates seems to exist.

Li-Yau type inequalities for positive solutions u of the heat equa-
tion aim at estimating ∇ log u rather than ∇u. This adds an interesting
non-linearity to the problem which is better to deal with in terms of
submartingales and Bismut type inequalities than in terms of martin-
gales which are the underlying concept for Bismut formulas. This point
of view has been worked out in [1] for local estimates in the elliptic case
of positive harmonic functions. Such estimates in global form, i.e., for
positive harmonic functions on Riemannian manifolds, are due to S.T.
Yau [12]; local versions have been established by Cheng and Yau [6].

In this paper we pursue the approach via submartingales to study
the parabolic case. Even if it is meanwhile quite standard to obtain Li-
Yau type estimates in global form via analytic methods, local versions
require often completely new arguments [5, 9, 10, 13].

In this paper we derive various submartingales which lead to the
wanted estimates in a surprisingly simple way.

§2. Basic formulas related to positive solutions of the heat

equation and some elementary submartingales

The following formulas for solutions of the heat equation on a Rie-
mannian manifold depend on the fact that the solutions are strictly
positive.

Lemma 2.1. Let M be a Riemannian manifold (not necessarily
complete) and let u = u(x, t) be a positive solution of the heat equation

(2.1)
∂

∂t
u =

1

2
∆u
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on M × [0, T ]. Then the following equalities hold:

(

1

2
∆ − ∂t

)

(log u) = −1

2

|∇u|2
u2

,(2.2)

(

1

2
∆ − ∂t

)

(u log u) =
1

2

|∇u|2
u

,(2.3)

(

1

2
∆ − ∂t

) |∇u|2
u

=
1

u

∣

∣

∣

∣

Hessu − ∇u ⊗∇u

u

∣

∣

∣

∣

2

+
Ric(∇u,∇u)

u
.(2.4)

Proof. All three equalities are easily checked by direct calculation.
Q.E.D.

Eq. (2.4) in Lemma 2.1 gives raise to some inequalities frequently
used in the sequel and crucial for our approach. Most of our results are
based on the following observation.

Corollary 2.2. Let M be a Riemannian manifold of dimension n
(not necessarily complete) and let u = u(x, t) be a positive solution of
the heat equation (2.1). Then we have:

(2.5)

(

1

2
∆ − ∂t

) |∇u|2
u

≥ 1

nu

(

∆u − |∇u|2
u

)2

+
Ric(∇u,∇u)

u
.

If Ric ≥ −k on M for some k ≥ 0, then

(2.6)

(

1

2
∆ − ∂t

) |∇u|2
u

≥ 1

nu

(

∆u − |∇u|2
u

)2

− k
|∇u|2

u
,

and in particular,

(2.7)

(

1

2
∆ − ∂t

) |∇u|2
u

≥ −k
|∇u|2

u
.

Proof. This is a direct consequence of Eq. (2.4). Q.E.D.

Lemma 2.3. Let M be a Riemannian manifold (not necessarily
complete) and let u(x, t) = Ptf(x) be a positive solution of the heat
equation

(2.8)
∂

∂t
u =

1

2
∆u

on M × [0, T ]. For any Brownian motion X on M , the process

m1
t :=

|∇PT−tf |2
PT−tf

(Xt) exp

{

−
∫ t

0

Ric(Xr) dr

}

,(2.9)
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where Ric(x) denotes the smallest eigenvalue of the Ricci curvature at the
point x, is a local submartingale (up to its natural lifetime). Furthermore

m2
t :=

(

log PT−tf
)

(Xt) +
1

2

∫ t

0

∣

∣

∣

∣

∇PT−sf

PT−sf

∣

∣

∣

∣

2

(Xs) ds(2.10)

m3
t :=

(

PT−tf log PT−tf
)

(Xt) −
1

2

∫ t

0

|∇PT−sf |2
PT−sf

(Xs) ds(2.11)

are local martingales (up to their respective lifetimes).

Proof. The first claim is a consequence of (2.5); the second part
comes from Eqs. (2.2) and (2.3). Q.E.D.

Lemma 2.4. Let M be a Riemannian manifold and u(x, t) = Ptf(x)
be a positive solution of the heat equation (2.8) on M × [0, T ]. If Ric ≥
−k for some k ≥ 0, then for any Brownian motion X on M , the process

(2.12) Nt :=
T − t

2(1 + k(T − t))

|∇PT−tf |2
PT−tf

(Xt)+
(

PT−tf log PT−tf
)

(Xt)

is a local submartingale (up to its lifetime).

Proof. The proof follows from Itô’s formula using inequality (2.7),
along with Eq. (2.3). Q.E.D.

§3. Global gradient estimates

In this section we explain how submartingales related to positive
solutions of the heat equation can be turned into gradient estimates.
The resulting estimates of this section are classical inequalities; our focus
lies on the stochastic approach.

The main problem in the subsequent sections will then be to use
methods of Stochastic Analysis to derive localized versions of the bounds.
The following gradient estimates follow immediately from Lemma 2.4.

Theorem 3.1 (Entropy estimate). Let u(x, t) = Ptf(x) be a pos-
itive solution of the heat equation on a compact manifold M . Assume
that Ric ≥ −k for some k ≥ 0. Then

(3.1)

∣

∣

∣

∣

∇PT f

PT f

∣

∣

∣

∣

2

(x) ≤ 2

(

1

T
+ k

)

PT

(

f

PT f(x)
log

f

PT f(x)

)

(x).

Proof. Indeed if M is compact, then the local submartingale Nt in
(2.12) is a true submartingale. Let

h(t) =
T − t

2(1 + k(T − t))
.
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Then, evaluating E[N0] ≤ E[NT ], we obtain

h(0)
|∇PT f |2

PT f
(x) + PT f(x) log PT f(x) ≤ PT (f log f)(x),

or in other words,

|∇PT f |2
PT f

(x) ≤ 1

h(0)
PT

(

f log
f

PT f(x)

)

(x).

Dividing through PT f(x) completes the proof. Q.E.D.

Corollary 3.2. Keeping notation and assumptions of Theorem 3.1
we observe that, for any δ > 0,

|∇PT f(x)| ≤ 1

2δ

(

1

T
+ k

)

PT f(x)

+ δ
[

PT (f log f) (x) − PT f(x) log PT f(x)
]

.(3.2)

Proof. Indeed with h(0) = T/(2 + 2kT ), we conclude from (3.1)
that

|∇PT f |
PT f

(x) ≤
√

1

2δ h(0)

√

2δ PT

(

f

PT f(x)
log

f

PT f(x)

)

(x)

≤ 1

2δ

(

1

T
+ k

)

+ δ PT

(

f

PT f(x)
log

f

PT f(x)

)

(x).

Q.E.D.

Corollary 3.3 (Hamilton [7]). Let M be a compact Riemannian
manifold such that Ric ≥ −k throughout M for some k ≥ 0. Suppose
that u(x, t) is a positive solution of the heat equation (2.8) on M× [0, T ],
and let A := supM×[0,T ] u. Then

(3.3)
|∇u|2

u2
(x, T ) ≤ 2

(

1

T
+ k

)

log
A

u(x, T )
.

In particular, if Ric ≥ 0 then

(3.4)
|∇u|

u
(x, T ) ≤ 1

T 1/2

√

2 log
A

u(x, T )
.

Proof. The proof of (3.3) is an application of Theorem 3.1, along
with the observation that PT f∗(x) = 1 when f is normalized as f∗ :=
f/PT f(x) for fixed x. Q.E.D.
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Remark 3.4. In the proofs above compactness of the manifold has
only been used to assure that the local submartingale (2.12) is a true
submartingale. The results extend to bounded positive solution of the
heat equation on complete manifolds with lower Ricci bounds. Indeed,
u(x, t) = Ptf(x) may be assumed to be bounded away from 0 (otherwise
one may first pass to u∗ := u + ε and let ε > 0 tend to 0 in the obtained
estimate). The term (T − t) |∇PT−tf |2 may be bounded by Bismut’s
formula, see [11].

We now turn to the classical Li-Yau estimate (1.5). Let M be a given
complete Riemannian manifold of dimension n such that Ric ≥ −k for
some k ≥ 0. Suppose that u is a positive solution to the heat equation
(2.8) on M × [0, T ]. Starting from (2.6) in Corollary 2.2 we have

(3.5)

(

1

2
∆ − ∂t

) |∇u|2
u

≥ 1

nu

(

∆u − |∇u|2
u

)2

− k
|∇u|2

u
,

and thus

(3.6)

(

1

2
∆ − ∂t

) |∇u|2
u

≥ 1

nu
q2 − k q − k ∆u,

where

q :=
|∇u|2

u
− ∆u =

|∇u|2
u

− 2 ∂tu.

Fixing x ∈ M , let X = X(x) be a Brownian motion on M starting at x.
Our first goal is to investigate the process

(

ht
|∇u|2

u
(Xt, T − t)

)

t≥0

where ht = ℓ2
t for some adapted continuous real-valued process ℓt with

absolutely continuous paths such that ℓ0 = 1 and ℓT = 0.
Let qt = q(Xt, T − t), ut = u(Xt, T − t) and (∆u)t = ∆u(Xt, T − t).

Using (3.6) we find (modulo differentials of local martingales)

d

(

ht
|∇u|2

u
(Xt, T − t)

)

(3.7)

≥
[

ḣtqt +
ht

nut
q2
t − k qtht +

(

ḣt − k ht

)

(∆u)t

]

dt.(3.8)

Minimizing the term

ht

nut
q2
t + (ḣt − k ht)qt
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as a quadratic function of qt, we find

ht

nut
q2
t + (ḣt − k ht)qt ≥ − (ḣt − k ht)

2

4ht
nut.

Thus, integrating (3.7) from 0 to T and taking expectations, we obtain
(3.9)

|∇u|2
u

(x, T ) ≤ E

[

∫ T

0

(

n
(ḣt − k ht)

2

4ht
ut + (kht − ḣt)(∆u)t

)

dt

]

Theorem 3.5 (Li-Yau inequality for Ric ≥ 0). Let M be a complete
Riemannian manifold of dimension n such that Ric ≥ 0. Let u = u(x, t)
be a positive bounded solution of the heat equation (2.8) on M × [0, T ].
Then, for each x ∈ D,

(3.10)
|∇u|2

u2
(x, T ) − ∆u

u
(x, T ) ≤ n E

[

∫ T

0

|ℓ̇t|2
u(Xt(x), T − t)

u(x, T )
dt

]

where (ℓt) is an adapted continuous real-valued process ℓt with absolutely
continuous paths such that ℓ0 = 1 and ℓT = 0.

In particular, with the choice ℓt := (T − t)/T , we obtain

|∇u|2
u2

(x, T ) − ∆u

u
(x, T ) ≤ n

T
.

which is the classical estimate of Li-Yau.

Proof. By (3.7) we have

(3.11)
|∇u|2

u
(x, T ) ≤ E

[

∫ T

0

(

n
|ḣt|2
4ht

ut − ḣt (∆u)t

)

dt.

]

First note that ∆u is a solution of the heat equation as well, hence (∆u)t

a local martingale. In particular,

d
(

ht (∆u)t

) m
= ḣt (∆u)t dt,

where m
= stands for equality modulo differentials of local martingales,

and hence

E

[

∫ T

0

ḣt (∆u)t dt

]

= −h0 (∆u)0 = −∆u(x, T ).
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Thus (3.11) shows that

|∇u|2
u2

(x, T ) − ∆u

u
(x, T ) ≤ n E

[

∫ T

0

ℓ̇2
t

ut

u0
dt

]

= n E

[

∫ T

0

ℓ̇2
t dt · uT

u0

]

.

Q.E.D.

Remarks 3.6. (i) Using (3.9), Theorem 3.5 is easily extended to
the case of a lower Ricci bound. For local versions of the Li-Yau’s esti-
mate one could try to modify the process ℓt in such a way that ℓt already
vanishes as soon as the Brownian motion Xt reaches the boundary of D.
We shall not pursue this approach here, but rather adopt an even simpler
argument in the next section which leads to the local estimate.

(ii) Of particular interest are localized versions of the entropy esti-
mates (3.1) and (3.2). Such estimates lead to Harnack inequalities and
heat kernel bounds, valid on arbitrary manifolds without bounded geom-
etry, see [2, 3]. Results in this direction will be worked out elsewhere [4].

§4. Local Li-Yau type inequalities

Our main task of the remaining sections will be to localize the ar-
guments of Section 3 to cover local solutions of the heat equation on
bounded domains. We start with the Li-Yau estimate.

Assumption 1. Let M be a complete Riemannian manifold of di-
mension n, and let u = u(x, t) be a solution of the heat equation (2.8)
on D×[0, T ] where D ⊂ M is a relatively compact open subset of M with
nonempty smooth boundary. Assume that u is positive and continuous
on D̄ × [0, T ]. Furthermore let

(4.1) k := inf
{

Ricx(v, v) : v ∈ TxM, |v| = 1, x ∈ D
}

be a lower bound for the Ricci curvature on the domain D. Finally let
ϕ ∈ C2(D̄) with ϕ > 0 in D and ϕ|∂D = 0.

Assumption 2. Let x ∈ D and X(x) be a Brownian motion on M
starting at x at time 0. Denote by τ(x) its first exit time of D.

Now, for t ∈ [0, T ∧ τ(x)[, consider the process

(4.2) Yt = C1 (T − t)−1 + C2 ϕ−2(Xt(x)) + αk,

where C1, C2 > 0 are constants which will be specified later.
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Let ht be the solution of

(4.3) ḣt = −htYt, h0 = 1;

in other words,

ht = exp

{

−
∫ t

0

(

C1

T − r
+

C2

ϕ2(Xr(x))
+ αk

)

dt

}

.

Then, letting

qt =

( |∇u|2
u

− ∆u

)

(Xt, T − t),

we find (modulo differentials of local martingales)

(4.4) d(htqt) ≥
[

ht
q2
t

nut
+
(

ḣt − kht

)

qt − kht(∆u)t

]

dt.

Thus letting

(4.5) St := htqt + nutḣt ≡ ht (qt − nutYt), t ∈ [0, T ∧ τ(x)[,

we get (modulo differentials of local martingales)

dSt = d(htqt) − nut d(htYt) + n d[u, ḣ]t

≥
[

ht
q2
t

nut
+
(

ḣt − kht

)

qt − kht(∆u)t

]

dt

+ nut htY
2
t dt

− nutht

[

C1 (T − t)−2 + C2 cϕ(Xt)ϕ−4(Xt)
]

dt

− nC2 ht d[u, ϕ−2(X(x))]t

where the bracket [·, ·] stands for quadratic covariation on the space of
continuous semimartingales and where

(4.6) cϕ(x) =
(

3|∇ϕ|2 − ϕ∆ϕ
)

(x).

On the other hand, denoting again

ut = u(T − t, ·)(Xt),

∇ut = ∇u(T − t, ·)(Xt)
(4.7)

and

∆ut = ∆u(T − t, ·)(Xt),(4.8)
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we have for any α > 0,

−nC2 ht d[u, ϕ−2(Xt)]t

= nC2 ht2ϕ−3(Xt)〈∇ut,∇ϕ(Xt)〉 dt

≥ −2nC2 htϕ
−3(Xt)|∇ut| |∇ϕ(Xt)| dt

= −2nC2 ht

(

ϕ−1(Xt) (αnut)
−1/2 |∇ut|

)

×
(

(αnut)
1/2(ϕ−2|∇ϕ|)(Xt)

)

dt

≥
(

−α−1C2 htϕ
−2(Xt)(qt + ∆ut) − C2 αn2uthtϕ

−4|∇ϕ|2(Xt)
)

dt

≥
(

−α−1ht(Yt − αk)(qt + ∆ut) − C2 αn2uthtϕ
−4|∇ϕ|2(Xt)

)

dt

=
((

α−1ḣt + kht

)

(qt + ∆ut) − C2 αn2uthtϕ
−4|∇ϕ|2(Xt)

)

dt.

Hence letting, for α > 0,

(4.9) Sα,t = ht

(

qt − α−1∆ut

)

+ nutḣt

we get

dSα,t ≥
[

ht
q2
t

nut
+
(

1 + α−1
)

ḣt qt

]

dt

+ htY
2
t nut dt

− nutht

[

C1(T − t)−2 + C2 Cϕ,α,n ϕ−4(Xt)
]

dt

where

(4.10) Cϕ,α,n = sup
D

{

cϕ + αn|∇ϕ|2
}

= sup
D

{

(3 + αn)|∇ϕ|2 − ϕ∆ϕ
}

.

Minimizing the first line on the right hand side, we find

dSα,t ≥ ht Y 2
t nut

(

4 − (1 + α−1)2

4

)

dt

− nut ht

[

C1 (T − t)−2 + C2 Cϕ,α,n ϕ−4(Xt)
]

dt.

Putting things together, we arrive at the following result.

Lemma 4.1. We keep notation and assumptions from above. As-
sume that α > 1 and let

(4.11) C1 ≥ C1(α) :=
4

4 − (1 + α−1)2
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and

C2 ≥ C2(ϕ, α, n)

:=
4

4 − (1 + α−1)2
sup
D

{

(3 + αn)|∇ϕ|2 − ϕ∆ϕ
}

.
(4.12)

Then Sα,t is a local submartingale on [0, T ∧ τ(x)[.

Proof. Using

(4.13) Y 2
t ≥ C2

1 (T − t)−2 + C2
2 ϕ−4(Xt),

we get

dSα,t ≥ htnut C1

(

4 − (1 + α−1)2

4
C1 − 1

)

(T − t)−2 dt

+ htnut C2

(

4 − (1 + α−1)2

4
C2 − Cϕ,α,n

)

ϕ−4(Xt) dt.

Thus, under condition (4.11) and (4.12), the right-hand side is nonneg-
ative. Q.E.D.

Theorem 4.2 (Li-Yau inequality; local version). We keep the as-
sumptions from above. Let u = u(x, t) be a solution of the heat equation
on D × [0, T ] which is positive and continuous on D̄ × [0, T ].

For any α ∈ ]1,∞[, we have

(4.14)
|∇u0|2

u2
0

− (1 + α−1)
∆u0

u0
≤ n C1(α)

T
+

n C2(ϕ, α, n)

ϕ2(x)
+ nαk,

where k is a lower Ricci bound on the domain D, and where C1(α) and
C2(ϕ, α, n) are specified in (4.11), resp. (4.12). The function ϕ is as in
Assumption 1.

Recall that u0 = u(·, T ) and ∆u0 = ∆u(·, T ) according to (4.7),
resp. (4.8)

Proof. Let

C1 = C1(α) and C2 = C2(ϕ, α, n).

Consider
Sα,t = ht

(

qt − α−1∆ut − nutYt

)

.

We assume that Sα,0 > 0 and let τα be the first hitting time of 0 by Sα,t.
Then clearly τα < T ∧ τ(x), since

qt − α−1∆ut − nutYt
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converges to −∞ as t tends to T ∧ τ(x).
Let

K := max
D̄×[0,T ]

(q − α−1∆u) and m = min
D̄×[0,T ]

u.

Then, for t ∈ [0, τα], we have St ≥ 0, which implies Yt ≤ K/nm. From
this we easily prove that on [0, τα], the process Sα,t is a submartingale
with bounded local characteristics. As a consequence, we have

Sα,0 ≤ E[Sα,τα
].

Since Sα,τα
≡ 0, this contradicts the assumption Sα,0 > 0. Hence we

must have Sα,0 ≤ 0, which is the desired inequality. Q.E.D.

Remark 4.3. In the case of a global solution of the heat equation on
a compact manifold, we can take ϕ as a constant and then C2(α, ϕ, n) =
0. If moreover k = 0, then one can take C2 = 0 and C1 = 1, and St

is a local submartingale. This recovers one more time the usual Li-Yau
estimate

(4.15)
|∇u0|2

u2
0

− ∆u0

u0
≤ n

T
.

A similar reasoning applies for global solutions on complete Riemannian
manifolds with a lower Ricci curvature bound.

§5. Li-Yau inequality with lower order term

We keep Assumption 1 and 2 of Section 4 as standing assumptions
for the rest of the paper and study now the process

(5.1) S′
t = qt − nutZt

where

Zt = C1 (T − t)−1 + C2 ϕ−2(Xt) + C3

with constants C1, C2, C3 > 0 to be specified later.
Let

(5.2) Cϕ = sup
D

{

3|∇ϕ|2 − ϕ∆ϕ
}

.
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Then we have

dS′
t ≥

[

q2
t

nut
− k

|∇ut|2
ut

− nut

(

C1(T − t)−2 + C2 Cϕ ϕ−4(Xt)
)

]

dt

− C2 nd [ϕ−2(X), u]t

≥
[

q2
t

nut
− nut

(

C1

(T − t)2
+

C2 Cϕ

ϕ4(Xt)
+

k

n

∥

∥

∥

∥

|∇u|
u

∥

∥

∥

∥

2

D̄×[0,T ]

)]

dt

− 2C2 nut

∥

∥

∥

∥

|∇u|
u

∥

∥

∥

∥

D̄×[0,T ]

‖ϕ∇ϕ‖2
D ϕ−4(Xt) dt

≥
[

q2
t

nut
− nut

(

C1

(T − t)2
+

C2

ϕ4(Xt)

×
(

Cϕ + 2

∥

∥

∥

∥

|∇u|
u

∥

∥

∥

∥

D̄×[0,T ]

‖ϕ∇ϕ‖D

))]

dt

− nut
k

n

∥

∥

∥

∥

|∇u|
u

∥

∥

∥

∥

2

D̄×[0,T ]

dt.

Lemma 5.1. Let

C1 = 1, C2 = Cϕ + 2

∥

∥

∥

∥

|∇u|
u

∥

∥

∥

∥

D̄×[0,T ]

‖ϕ∇ϕ‖∞ and

C3 =

√

k

n

∥

∥

∥

∥

|∇u|
u

∥

∥

∥

∥

D̄×[0,T ]

.

(5.3)

Then on {S′
t ≥ 0}, the process S′

t has nonnegative drift.

Proof. We have

Z2
t ≥ C2

1 (T − t)−2 + C2
2ϕ−4(Xt) + C2

3 .

Consequently, under condition (5.3),

dS′
t ≥

1

nut

(

q2
t − (nutZt)

2
)

dt =
S′

t

nut
(qt + nutZt) dt

and the right-hand side is nonnegative on {S′
t ≥ 0}. Q.E.D.

Similarly to Theorem 4.2, we obtain the following result.
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Theorem 5.2 (Local Li-Yau inequality with lower order term).
We keep the notation from above, as well as Assumption 1 and 2 from
Section 4. Let u = u(x, t) be a solution of the heat equation on D× [0, T ]
which is positive and continuous on D̄ × [0, T ]. Then

|∇u0|2
u2

0

− ∆u0

u0
≤ n

T
+

nCϕ

ϕ2(x)
+

(√
nk +

2n ‖ϕ∇ϕ‖D

ϕ2(x)

)∥

∥

∥

∥

|∇u|
u

∥

∥

∥

∥

D̄×[0,T ]

.

§6. Local gradient estimates of Hamilton type

We keep Assumptions 1 and 2 of Section 4 and study now the process

(6.1) St =
|∇ut|
2ut

− ut(1 − log ut)
2Zt,

where

Zt =
C1

(T − t)
+

C2

ϕ2(Xt)
+ C3

for some constants C1, C2, C3 > 0.
Assume that 0 < u ≤ e−3 (this assumption will be removed in

Theorem 6.1 through replacing u by e−3 u/‖u‖D̄×[0,T ]). Let cϕ(x) again

be given by (4.6). Then, denoting

g(t, x) =
|∇u|2

u
(t, x) and gt = g(T − t, Xt),

and using the fact that

∇
(

u(1 − log u)2
)

= (log2 u − 1)∇u

and

d
(

ut(1 − log ut)
2
) m

= gt log ut dt,

we get

dSt ≥ −k
1

2
gt dt

− ut(1 − log ut)
2
(

C1 (T − t)2 + C2 cϕ(Xt)ϕ
−4(Xt)

)

dt

− 2 log ut
1

2
gtZt dt

− 2C2(1 − log ut)(1 + log ut)ϕ
−3(Xt) 〈∇ut,∇ϕ(Xt)〉 dt.
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Now from u ≤ e−3 we get

−2 logut ≥ 3(1 − log ut)/2.

This together with |1 + log ut| ≤ 1 − log ut yields (modulo differentials
of local martingales)

dSt ≥ (1 − log ut)

{

[(

3

2
Zt − k

)

1

2
gt

− ut(1 − log ut)
(

C1(T − t)2 + C2cϕ(Xt)ϕ
−4(Xt)

)

]

dt

− C2

[

(1 − log ut) 2
√

2ϕ−2(Xt) |∇ϕ(Xt)|
√

ut ϕ−1(Xt)

√

gt

2

]

dt

}

≥ (1 − log ut)

{

[(

3

2
Zt − k

)

1

2
gt

− ut(1 − log ut)
(

C1(T − t)2 + C2cϕ(Xt)ϕ
−4(Xt)

)

]

dt

−
[

(1 − log ut)
2ut 4C2ϕ

−4(Xt) |∇ϕ(Xt)|2 +
1

4
gtC2ϕ

−2(Xt)

]

dt

}

≥ (1 − log ut)

[

(Zt − k)
1

2
gt − ut(1 − log ut)

2

×
(

C1(T − t)2 + C2

(

cϕ(Xt) + 4|∇ϕ(Xt)|2
)

ϕ−4(Xt)
)

]

dt.

Letting

(6.2) C1 = 1, C2 = sup
D

{

cϕ + 4|∇ϕ|2
}

and C3 = k,

we get

dSt ≥ (1 − log ut)

[

(Zt − k)
1

2
gt − ut(1 − log ut)

2(Zt − k)2
]

dt

≥ (1 − log ut)(Zt − k)

[

1

2
gt − ut(1 − log ut)

2Zt

]

dt.

This proves that St has nonnegative drift on {St ≥ 0}. On the other
hand, St converges to −∞ as t → T ∧ τ(x).

Similarly to Theorem 4.2, we obtain the following result.
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Theorem 6.1 (Local Li-Yau inequality of Hamilton type). We keep
the assumptions as above. Assume that u is a solution of the heat equa-
tion on D × [0, T ] which is positive and continuous on D̄ × [0, T ]. Then

∣

∣

∣

∣

∇u0

u0

∣

∣

∣

∣

2

≤ 2

(

1

T
+

supD

{

7|∇ϕ|2 − ϕ∆ϕ
}

ϕ2(x)
+ k

)

(

4 + log
‖u‖D̄×[0,T ]

u0

)2

where ϕ is as above.

§7. Explicit upper bounds

The estimates in Theorems 4.2, 5.2 and 6.1 have been given in terms
of a function ϕ ∈ C2(D̄) such that ϕ > 0 in D and ϕ|∂D = 0. To specify
the constants an explicit choice for ϕ has to be done.

We fix x ∈ D and let δx = ρ(x, ∂D) where ρ denotes the Riemannian
distance. We replace D by the ball B = B(x, δx) and consider on B

(7.1) ϕ(y) = cos
πρ(x, y)

2δx
.

Clearly ϕ(x) = 1, ϕ is nonnegative and bounded by 1, and ϕ vanishes
on ∂B.

It is proven in [11] that

(7.2) dϕ−2(Xt) ≤
1

2
∆(ϕ−2)(Xt) dt

where by convention ∆ϕ−2 = 0 at points where ϕ−2 is not differen-
tiable. Moreover, since the time spent by Xt on the cut-locus of x is
a.s. zero, the differential of the brackets [ϕ(Xt), ut] may be taken as 0 at
points where ϕ−2 is not differentiable. As a consequence, all estimates
in Theorems 4.2, 5.2 and 6.1 remain valid with ϕ defined by (7.1).

We are now going to derive explicit expressions for the constants.
To this end we observe that

‖∇ϕ‖B ≤ π

2δx
.

From [11], we get

−∆ϕ ≤ π
√

k(n − 1)

2δx
+

π2n

4δ2
x

which gives for any β > 0,

−∆ϕ ≤ π2(1 + β)n

4δ2
x

+
k

4β
.
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This yields

Cϕ ≤ π2 [(1 + β)n + 3]

4δ2
x

+
k

4β
,

Cϕ,α,n ≤ π2 [(1 + β + α)n + 3]

4δ2
x

+
k

4β
,

sup
D

{

7|∇ϕ|2 − ϕ∆ϕ
}

≤ π2 [(1 + β)n + 7]

4δ2
x

+
k

4β
.

Finally we replace α by a = 1 + α−1 to obtain from Theorems 4.2, 5.2
and 6.1 the following explicit upper bounds.

Theorem 7.1 (Local Li-Yau inequalities with explicit constants).
Let u be a solution of the heat equation on D × [0, T ] where D is a
relatively compact open subset of a Riemannian manifold M . Assume
that u is positive and continuous on D̄ × [0, T ]. Furthermore let k be a
lower bound for the Ricci curvature on the domain D.

Fix x ∈ D and let a ∈ ]1, 2[. For any β > 0 we have

∣

∣

∣

∣

∇u0

u0

∣

∣

∣

∣

2

− a
∆u0

u0
≤ 4n

(4 − a2)T
+

π2n
[(

1 + β + 1
a−1

)

n + 3
]

(4 − a2)δ2
x

+

(

1

(4 − a2)β
+

1

a − 1

)

nk,

∣

∣

∣

∣

∇u0

u0

∣

∣

∣

∣

2

− ∆u0

u0
≤ n

T
+

nπ2 [(1 + β)n + 3]

4δ2
x

+
nk

4β

+
√

nk

∥

∥

∥

∥

|∇u|
u

∥

∥

∥

∥

D̄×[0,T ]

+
nπ

δx

∥

∥

∥

∥

|∇u|
u

∥

∥

∥

∥

D̄×[0,T ]

and

∣

∣

∣

∣

∇u0

u0

∣

∣

∣

∣

2

≤ 2

(

1

T
+

π2 [(1 + β)n + 7]

4δ2
x

+

(

1

4β
+ 1

)

k

)

×
(

4 + log
‖u‖D̄×[0,T ]

u0

)2

where n denotes the dimension of M and δx the Riemannian distance of
x to the boundary of D. Recall that u0 = u(·, T ) and ∆u0 = ∆u(·, T ).
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