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In this paper we use methods from Stochastic Analysis to establish Li-Yau type estimates for positive solutions of the heat equation. In particular, we want to emphasize that Stochastic Analysis provides natural tools to derive local estimates in the sense that the gradient bound at given point depends only on universal constants and the geometry of the Riemannian manifold locally about this point.

§1. Introduction

The effect of curvature on the behaviour of the heat flow on a Riemannian manifold is a classical problem. Ricci curvature manifests itself most directly in gradient formulas for solutions of heat equation.

Gradient estimates for positive solutions of the heat equation serve as infinitesimal versions of Harnack inequalities: by integrating along curves on the manifold local gradient estimates may be turned into local Harnack type inequalities.

Solutions to the heat equation

(1.1) ∂ ∂t u = 1 2 ∆u
on a Riemannian manifold M are well understood in probabilistic terms. For instance, if u = u(x, t) denotes the minimal solution to (1.1), then a straightforward calculation using Itô's calculus leads to the stochastic representation of u as

(1.2) u(x, t) = E 1 {t<ζ(x)} f (X t (x))
where f = u(•, 0) is the initial condition in (1.1), X . (x) denotes a Brownian motion on M , starting from x at time 0, and ζ(x) its lifetime.

It is a remarkable fact that exact stochastic representation formulas for the derivative of solutions to the heat equation can be given, expressing the gradient ∇u of u in terms of Ricci curvature.

The following typical example for such a Bismut type derivative formula is taken from [START_REF] Thalmaier | Gradient estimates for harmonic functions on regular domains in Riemannian manifolds[END_REF]. 

(1.3) ∇u(•, T ) x , v = -E u(X τ (x), T -τ ) τ 0 Q s ls , dB s ,
where:

(1) X ≡ X . (x) is a Brownian motion on M , starting at x, and τ = τ (x) ∧ T where

τ (x) = inf{t > 0 : X t (x) ∈ D}
is the first exit time from D; the stochastic integral is taken with respect to the Brownian motion B in T x M , related to X by the Stratonovich equation dB t = // -1 t δX t , where // t : T x M → T Xt M denotes the stochastic parallel transport along X.

(2) The process Q takes values in the group of linear automorphisms of T x M and is defined by the pathwise covariant ordinary differential equation,

dQ t = -1 2 Ric // t (Q t ) dt, Q 0 = id TxM ,
where

Ric // t = // -1 t • Ric ♯ Xt • // t (a linear transformation of T x M ), and Ric ♯ z u, w = Ric z (u, w) for any u, w ∈ T z M , z ∈ M .
(3) Finally, ℓ t may be any adapted finite energy process taking values in

T x M such that ℓ 0 = v, ℓ τ = 0 and τ 0 | lt | 2 dt 1/2 ∈ L 1+ε for some ε > 0.
Formula (1.3) is valid for any solution u of the heat equation and does not require positivity of u.

Remark 1.2. Formula (1.3) is easily adapted to more specific situations, for instance:

(i) Let u = u(x, t) be a solution of the heat equation

(1.1) on D × [0, T ] such that u| t=0 = f and u(•, t)|∂D = f |∂D. Then ∇u(•, T ) x , v = -E f (X τ (x)) τ 0 Q s ls , dB s , τ = τ (x) ∧ T . (ii) Let u = u(x, t) be a solution of the heat equation (1.1) on D × [0, T ] such that u| t=0 = f and u(•, t)|∂D = 0. Then ∇u(•, T ) x , v = -E f (X T (x)) 1 {T <τ (x)} τ (x)∧T 0 Q s ls , dB s .
Such formulas are interesting by several means. For instance, on a complete Riemannian manifold M , starting from the minimal solution to the heat equation

(1.4) u(x, T ) = E 1 {T <ζ(x)} f (X T (x))
with bounded initial conditions u(•, 0) = f , since for arbitrarily small T > 0 Brownian motion explores the whole manifold M , we observe that the global structure of M enters in formula (1.4); lower Ricci bounds may fail and thus "Brownian motion may travel arbitrarily fast". Nevertheless, looking at the formula for the gradient ∇u(•, T ) x and taking into account that

u(X τ (x), T -τ ) = E Fτ 1 {T <ζ(x)} f (X T (x)) ,
we see that Eq. (1.3) reads as

∇u(•, T ) x , v = -E 1 {T <ζ(x)} f (X T (x)) τ 0 Q s ls , dB s
where τ = τ (x) ∧ T and τ (x) the first exit time of X . (x) from an arbitrarily small chosen neighbourhood of x. In other words, as far as the gradient at (x, T ) is concerned, Ricci curvature of M matters only locally about the point x.

No derivative of the heat equation appears in the right-hand side of Eq. (1.4), thus gradient formulas are well suitable for estimates, see [START_REF] Thalmaier | Gradient estimates for harmonic functions on regular domains in Riemannian manifolds[END_REF]. Such inequalities easily allow to bound ∇u in terms of some uniform norm of u.

For positive solutions of the heat equation however one wants to do better: typically one seeks for pointwise estimates which allow (modulo additional terms if necessary) to control ∇u(•, T ) x by u(x, T ).

Theorem 1.3 (Classical Li-Yau estimate [START_REF] Li | On the parabolic kernel of the Schrödinger operator[END_REF]). Let M be complete Riemannian manifold and assume that Ric ≥ -k where k ≥ 0. Let u be a strictly positive solution of

∂ ∂t u = 1 2 ∆u on M × R + and let a > 1. Then (1.5) |∇u| u 2 (x, T ) -a ∆u u (x, T ) ≤ c(n, a) k + 1 T .
If Ric ≥ 0, i.e. k = 0, then the choice a = 1 is possible.

It is a surprising fact which has been noticed by many people that no straightforward way to pass from Bismut type derivative formulas to Li-Yau type gradient estimates seems to exist.

Li-Yau type inequalities for positive solutions u of the heat equation aim at estimating ∇ log u rather than ∇u. This adds an interesting non-linearity to the problem which is better to deal with in terms of submartingales and Bismut type inequalities than in terms of martingales which are the underlying concept for Bismut formulas. This point of view has been worked out in [START_REF] Arnaudon | Gradient estimates for positive harmonic functions by stochastic analysis[END_REF] for local estimates in the elliptic case of positive harmonic functions. Such estimates in global form, i.e., for positive harmonic functions on Riemannian manifolds, are due to S.T. Yau [START_REF] Yau | Harmonic functions on complete Riemannian manifolds[END_REF]; local versions have been established by Cheng and Yau [START_REF] Cheng | Differential equations on Riemannian manifolds and their geometric applications[END_REF].

In this paper we pursue the approach via submartingales to study the parabolic case. Even if it is meanwhile quite standard to obtain Li-Yau type estimates in global form via analytic methods, local versions require often completely new arguments [START_REF] Bakry | A logarithmic Sobolev form of the Li-Yau parabolic inequality[END_REF][START_REF] Ni | The entropy formula for linear heat equation[END_REF][START_REF] Souplet | Sharp gradient estimate and Yau's Liouville theorem for the heat equation on noncompact manifolds[END_REF][START_REF] Qi | Some gradient estimates for the heat equation on domains and for an equation by Perelman[END_REF].

In this paper we derive various submartingales which lead to the wanted estimates in a surprisingly simple way. §2. Basic formulas related to positive solutions of the heat equation and some elementary submartingales

The following formulas for solutions of the heat equation on a Riemannian manifold depend on the fact that the solutions are strictly positive.

Lemma 2.1. Let M be a Riemannian manifold (not necessarily complete) and let u = u(x, t) be a positive solution of the heat equation

(2.1) ∂ ∂t u = 1 2 ∆u on M × [0, T ].
Then the following equalities hold:

1 2 ∆ -∂ t (log u) = - 1 2 |∇u| 2 u 2 , (2.2) 1 2 ∆ -∂ t (u log u) = 1 2 |∇u| 2 u , (2.3) 1 2 ∆ -∂ t |∇u| 2 u = 1 u Hess u - ∇u ⊗ ∇u u 2 + Ric(∇u, ∇u) u . (2.4)
Proof. All three equalities are easily checked by direct calculation.

Q.E.D.

Eq. (2.4) in Lemma 2.1 gives raise to some inequalities frequently used in the sequel and crucial for our approach. Most of our results are based on the following observation.

Corollary 2.2. Let M be a Riemannian manifold of dimension n (not necessarily complete) and let u = u(x, t) be a positive solution of the heat equation (2.1). Then we have:

(2.5) 1 2 ∆ -∂ t |∇u| 2 u ≥ 1 nu ∆u - |∇u| 2 u 2 + Ric(∇u, ∇u) u .
If Ric ≥ -k on M for some k ≥ 0, then

(2.6) 1 2 ∆ -∂ t |∇u| 2 u ≥ 1 nu ∆u - |∇u| 2 u 2 -k |∇u| 2 u ,
and in particular,

(2.7) 1 2 ∆ -∂ t |∇u| 2 u ≥ -k |∇u| 2 u .
Proof. This is a direct consequence of Eq. (2.4). Q.E.D.

Lemma 2.3. Let M be a Riemannian manifold (not necessarily complete) and let u(x, t) = P t f (x) be a positive solution of the heat equation

(2.8) ∂ ∂t u = 1 2 ∆u on M × [0, T ].
For any Brownian motion X on M , the process

m 1 t := |∇P T -t f | 2 P T -t f (X t ) exp - t 0 Ric(X r ) dr , (2.9)
where Ric(x) denotes the smallest eigenvalue of the Ricci curvature at the point x, is a local submartingale (up to its natural lifetime). Furthermore

m 2 t := log P T -t f (X t ) + 1 2 t 0 ∇P T -s f P T -s f 2 (X s ) ds (2.10)
m 3 t := P T -t f log P T -t f (X t ) - 1 2 t 0 |∇P T -s f | 2 P T -s f (X s ) ds (2.11)

are local martingales (up to their respective lifetimes).

Proof. The first claim is a consequence of (2.5); the second part comes from Eqs. (2.2) and (2.3).

Q.E.D.

Lemma 2.4. Let M be a Riemannian manifold and u(x, t) = P t f (x) be a positive solution of the heat equation (2.8) on M × [0, T ]. If Ric ≥ -k for some k ≥ 0, then for any Brownian motion X on M , the process

(2.12) N t := T -t 2(1 + k(T -t)) |∇P T -t f | 2 P T -t f (X t )+ P T -t f log P T -t f (X t )
is a local submartingale (up to its lifetime).

Proof. The proof follows from Itô's formula using inequality (2.7), along with Eq. (2.3).

Q.E.D. §3. Global gradient estimates

In this section we explain how submartingales related to positive solutions of the heat equation can be turned into gradient estimates. The resulting estimates of this section are classical inequalities; our focus lies on the stochastic approach.

The main problem in the subsequent sections will then be to use methods of Stochastic Analysis to derive localized versions of the bounds. The following gradient estimates follow immediately from Lemma 2.4. Theorem 3.1 (Entropy estimate). Let u(x, t) = P t f (x) be a positive solution of the heat equation on a compact manifold M . Assume that Ric ≥ -k for some k ≥ 0. Then

(3.1) ∇P T f P T f 2 (x) ≤ 2 1 T + k P T f P T f (x) log f P T f (x) (x).
Proof. Indeed if M is compact, then the local submartingale N t in (2.12) is a true submartingale. Let

h(t) = T -t 2(1 + k(T -t))
.

Then, evaluating E[N 0 ] ≤ E[N T ], we obtain h(0) |∇P T f | 2 P T f (x) + P T f (x) log P T f (x) ≤ P T (f log f )(x),
or in other words,

|∇P T f | 2 P T f (x) ≤ 1 h(0) P T f log f P T f (x) (x).
Dividing through P T f (x) completes the proof. Q.E.D.

Corollary 3.2. Keeping notation and assumptions of Theorem 3.1 we observe that, for any δ > 0,

|∇P T f (x)| ≤ 1 2δ 1 T + k P T f (x) + δ P T (f log f ) (x) -P T f (x) log P T f (x) . (3.2)
Proof. Indeed with h(0) = T /(2 + 2kT ), we conclude from (3.1) that

|∇P T f | P T f (x) ≤ 1 2δ h(0) 2δ P T f P T f (x) log f P T f (x) (x) ≤ 1 2δ 1 T + k + δ P T f P T f (x) log f P T f (x) (x).
Q.E.D.

Corollary 3.3 (Hamilton [START_REF] Hamilton | A matrix Harnack estimate for the heat equation[END_REF]). Let M be a compact Riemannian manifold such that Ric ≥ -k throughout M for some k ≥ 0. Suppose that u(x, t) is a positive solution of the heat equation (2.8) on M × [0, T ], and let A := sup M×[0,T ] u. Then

(3.3) |∇u| 2 u 2 (x, T ) ≤ 2 1 T + k log A u(x, T ) .
In particular, if Ric ≥ 0 then

(3.4) |∇u| u (x, T ) ≤ 1 T 1/2 2 log A u(x, T ) .
Proof. The proof of (3.3) is an application of Theorem 3.1, along with the observation that P T f * (x) = 1 when f is normalized as f * := f /P T f (x) for fixed x.

Q.E.D.

Remark 3.4. In the proofs above compactness of the manifold has only been used to assure that the local submartingale (2.12) is a true submartingale. The results extend to bounded positive solution of the heat equation on complete manifolds with lower Ricci bounds. Indeed, u(x, t) = P t f (x) may be assumed to be bounded away from 0 (otherwise one may first pass to u * := u + ε and let ε > 0 tend to 0 in the obtained estimate). The term (T -t) |∇P T -t f | 2 may be bounded by Bismut's formula, see [START_REF] Thalmaier | Gradient estimates for harmonic functions on regular domains in Riemannian manifolds[END_REF].

We now turn to the classical Li-Yau estimate (1.5). Let M be a given complete Riemannian manifold of dimension n such that Ric ≥ -k for some k ≥ 0. Suppose that u is a positive solution to the heat equation (2.8) on M × [0, T ]. Starting from (2.6) in Corollary 2.2 we have

(3.5) 1 2 ∆ -∂ t |∇u| 2 u ≥ 1 nu ∆u - |∇u| 2 u 2 -k |∇u| 2 u ,
and thus

(3.6) 1 2 ∆ -∂ t |∇u| 2 u ≥ 1 nu q 2 -k q -k ∆u,
where

q := |∇u| 2 u -∆u = |∇u| 2 u -2 ∂ t u.
Fixing x ∈ M , let X = X(x) be a Brownian motion on M starting at x. Our first goal is to investigate the process

h t |∇u| 2 u (X t , T -t) t≥0
where h t = ℓ 2 t for some adapted continuous real-valued process ℓ t with absolutely continuous paths such that ℓ 0 = 1 and ℓ T = 0.

Let q t = q(X t , T -t), u t = u(X t , T -t) and (∆u) t = ∆u(X t , T -t). Using (3.6) we find (modulo differentials of local martingales)

d h t |∇u| 2 u (X t , T -t) (3.7) ≥ ḣt q t + h t nu t q 2 t -k q t h t + ḣt -k h t (∆u) t dt. (3.8)
Minimizing the term

h t nu t q 2 t + ( ḣt -k h t )q t
as a quadratic function of q t , we find

h t nu t q 2 t + ( ḣt -k h t )q t ≥ - ( ḣt -k h t ) 2 4h t nu t .
Thus, integrating (3.7) from 0 to T and taking expectations, we obtain (3.9)

|∇u| 2 u (x, T ) ≤ E T 0 n ( ḣt -k h t ) 2 4h t u t + (kh t -ḣt )(∆u) t dt
Theorem 3.5 (Li-Yau inequality for Ric ≥ 0). Let M be a complete Riemannian manifold of dimension n such that Ric ≥ 0. Let u = u(x, t) be a positive bounded solution of the heat equation

(2.8) on M × [0, T ]. Then, for each x ∈ D, (3.10) |∇u| 2 u 2 (x, T ) - ∆u u (x, T ) ≤ n E T 0 | lt | 2 u(X t (x), T -t) u(x, T ) dt
where (ℓ t ) is an adapted continuous real-valued process ℓ t with absolutely continuous paths such that ℓ 0 = 1 and ℓ T = 0.

In particular, with the choice ℓ t := (T -t)/T , we obtain

|∇u| 2 u 2 (x, T ) - ∆u u (x, T ) ≤ n T .
which is the classical estimate of Li-Yau.

Proof. By (3.7) we have

(3.11) |∇u| 2 u (x, T ) ≤ E T 0 n | ḣt | 2 4h t u t -ḣt (∆u) t dt.
First note that ∆u is a solution of the heat equation as well, hence (∆u) t a local martingale. In particular,

d h t (∆u) t m = ḣt (∆u) t dt,
where m = stands for equality modulo differentials of local martingales, and hence

E T 0 ḣt (∆u) t dt = -h 0 (∆u) 0 = -∆u(x, T ).
Thus (3.11) shows that

|∇u| 2 u 2 (x, T ) - ∆u u (x, T ) ≤ n E T 0 l2 t u t u 0 dt = n E T 0 l2 t dt • u T u 0 .
Q.E.D.

Remarks 3.6. (i) Using (3.9), Theorem 3.5 is easily extended to the case of a lower Ricci bound. For local versions of the Li-Yau's estimate one could try to modify the process ℓ t in such a way that ℓ t already vanishes as soon as the Brownian motion X t reaches the boundary of D. We shall not pursue this approach here, but rather adopt an even simpler argument in the next section which leads to the local estimate.

(ii) Of particular interest are localized versions of the entropy estimates (3.1) and (3.2). Such estimates lead to Harnack inequalities and heat kernel bounds, valid on arbitrary manifolds without bounded geometry, see [START_REF] Arnaudon | Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below[END_REF][START_REF] Arnaudon | Gradient estimate and Harnack inequality on non-compact Riemannian manifolds[END_REF]. Results in this direction will be worked out elsewhere [START_REF] Arnaudon | Gradient-entropy estimates on Riemannian manifolds[END_REF]. §4. Local Li-Yau type inequalities Our main task of the remaining sections will be to localize the arguments of Section 3 to cover local solutions of the heat equation on bounded domains. We start with the Li-Yau estimate. 

Y t = C 1 (T -t) -1 + C 2 ϕ -2 (X t (x)) + αk,
where C 1 , C 2 > 0 are constants which will be specified later.

Let h t be the solution of

(4.3) ḣt = -h t Y t , h 0 = 1;
in other words,

h t = exp - t 0 C 1 T -r + C 2 ϕ 2 (X r (x))
+ αk dt .

Then, letting

q t = |∇u| 2 u -∆u (X t , T -t),
we find (modulo differentials of local martingales)

(4.4) d(h t q t ) ≥ h t q 2 t nu t + ḣt -kh t q t -kh t (∆u) t dt.
Thus letting (4.5)

S t := h t q t + nu t ḣt ≡ h t (q t -nu t Y t ), t ∈ [0, T ∧ τ (x)[,
we get (modulo differentials of local martingales)

dS t = d(h t q t ) -nu t d(h t Y t ) + n d[u, ḣ] t ≥ h t q 2 t nu t + ḣt -kh t q t -kh t (∆u) t dt + nu t h t Y 2 t dt -nu t h t C 1 (T -t) -2 + C 2 c ϕ (X t ) ϕ -4 (X t ) dt -nC 2 h t d[u, ϕ -2 (X(x))] t
where the bracket [•, •] stands for quadratic covariation on the space of continuous semimartingales and where

(4.6) c ϕ (x) = 3|∇ϕ| 2 -ϕ∆ϕ (x).
On the other hand, denoting again

u t = u(T -t, •)(X t ), ∇u t = ∇u(T -t, •)(X t ) (4.7) and ∆u t = ∆u(T -t, •)(X t ), (4.8)
we have for any α > 0,

-nC 2 h t d[u, ϕ -2 (X t )] t = nC 2 h t 2ϕ -3 (X t ) ∇u t , ∇ϕ(X t ) dt ≥ -2nC 2 h t ϕ -3 (X t )|∇u t | |∇ϕ(X t )| dt = -2nC 2 h t ϕ -1 (X t ) (αnu t ) -1/2 |∇u t | × (αnu t ) 1/2 (ϕ -2 |∇ϕ|)(X t ) dt ≥ -α -1 C 2 h t ϕ -2 (X t )(q t + ∆u t ) -C 2 αn 2 u t h t ϕ -4 |∇ϕ| 2 (X t ) dt ≥ -α -1 h t (Y t -αk)(q t + ∆u t ) -C 2 αn 2 u t h t ϕ -4 |∇ϕ| 2 (X t ) dt = α -1 ḣt + kh t (q t + ∆u t ) -C 2 αn 2 u t h t ϕ -4 |∇ϕ| 2 (X t ) dt.
Hence letting, for α > 0, (4.9) S α,t = h t q t -α -1 ∆u t + nu t ḣt we get Minimizing the first line on the right hand side, we find

dS α,t ≥ h t q 2 t nu t + 1 + α -1 ḣt q t dt + h t Y 2 t nu t dt -nu t h t C 1 (T -t) -2 + C 2 C ϕ,α,n ϕ -4 (X t ) dt
dS α,t ≥ h t Y 2 t nu t 4 -(1 + α -1 ) 2 4 dt -nu t h t C 1 (T -t) -2 + C 2 C ϕ,α,n ϕ -4 (X t ) dt.
Putting things together, we arrive at the following result.

Lemma 4.1. We keep notation and assumptions from above. Assume that α > 1 and let

(4.11) C 1 ≥ C 1 (α) := 4 4 -(1 + α -1 ) 2 and C 2 ≥ C 2 (ϕ, α, n) := 4 4 -(1 + α -1 ) 2 sup D (3 + αn)|∇ϕ| 2 -ϕ∆ϕ . (4.12) Then S α,t is a local submartingale on [0, T ∧ τ (x)[. Proof. Using (4.13) Y 2 t ≥ C 2 1 (T -t) -2 + C 2 2 ϕ -4 (X t ),
we get

dS α,t ≥ h t nu t C 1 4 -(1 + α -1 ) 2 4 C 1 -1 (T -t) -2 dt + h t nu t C 2 4 -(1 + α -1 ) 2 4 C 2 -C ϕ,α,n ϕ -4 (X t ) dt.
Thus, under condition (4.11) and (4.12), the right-hand side is nonnegative.

Q.E.D. For any α ∈ ]1, ∞[, we have

(4.14) |∇u 0 | 2 u 2 0 -(1 + α -1 ) ∆u 0 u 0 ≤ n C 1 (α) T + n C 2 (ϕ, α, n) ϕ 2 (x) + nαk,
where k is a lower Ricci bound on the domain D, and where C 1 (α) and C 2 (ϕ, α, n) are specified in (4.11), resp. (4.12). The function ϕ is as in Assumption 1.

Recall that u 0 = u(•, T ) and ∆u 0 = ∆u(•, T ) according to (4.7), resp. (4.8)

Proof. Let C 1 = C 1 (α) and C 2 = C 2 (ϕ, α, n). Consider S α,t = h t q t -α -1 ∆u t -nu t Y t .
We assume that S α,0 > 0 and let τ α be the first hitting time of 0 by S α,t . Then clearly τ α < T ∧ τ (x), since

q t -α -1 ∆u t -nu t Y t converges to -∞ as t tends to T ∧ τ (x). Let K := max D×[0,T ]
(q -α -1 ∆u) and m = min

D×[0,T ] u.
Then, for t ∈ [0, τ α ], we have S t ≥ 0, which implies Y t ≤ K/nm. From this we easily prove that on [0, τ α ], the process S α,t is a submartingale with bounded local characteristics. As a consequence, we have

S α,0 ≤ E[S α,τα ].
Since S α,τα ≡ 0, this contradicts the assumption S α,0 > 0. Hence we must have S α,0 ≤ 0, which is the desired inequality. Q.E.D.

Remark 4.3. In the case of a global solution of the heat equation on a compact manifold, we can take ϕ as a constant and then C 2 (α, ϕ, n) = 0. If moreover k = 0, then one can take C 2 = 0 and C 1 = 1, and S t is a local submartingale. This recovers one more time the usual Li-Yau estimate

(4.15) |∇u 0 | 2 u 2 0 - ∆u 0 u 0 ≤ n T .
A similar reasoning applies for global solutions on complete Riemannian manifolds with a lower Ricci curvature bound. §5. Li-Yau inequality with lower order term

We keep Assumption 1 and 2 of Section 4 as standing assumptions for the rest of the paper and study now the process (5.1)

S ′ t = q t -nu t Z t
where

Z t = C 1 (T -t) -1 + C 2 ϕ -2 (X t ) + C 3 with constants C 1 , C 2 , C 3 > 0 to be specified later. Let (5.2) C ϕ = sup D 3|∇ϕ| 2 -ϕ∆ϕ .
Then we have

dS ′ t ≥ q 2 t nu t -k |∇u t | 2 u t -nu t C 1 (T -t) -2 + C 2 C ϕ ϕ -4 (X t ) dt -C 2 nd [ϕ -2 (X), u] t ≥ q 2 t nu t -nu t C 1 (T -t) 2 + C 2 C ϕ ϕ 4 (X t ) + k n |∇u| u 2 D×[0,T ] dt -2C 2 nu t |∇u| u D×[0,T ] ϕ∇ϕ 2 D ϕ -4 (X t ) dt ≥ q 2 t nu t -nu t C 1 (T -t) 2 + C 2 ϕ 4 (X t ) × C ϕ + 2 |∇u| u D×[0,T ] ϕ∇ϕ D dt -nu t k n |∇u| u 2 D×[0,T ]
dt.

Lemma 5.1. Let

C 1 = 1, C 2 = C ϕ + 2 |∇u| u D×[0,T ]
ϕ∇ϕ ∞ and

C 3 = k n |∇u| u D×[0,T ]
.

(5.3)

Then on {S ′ t ≥ 0}, the process S ′ t has nonnegative drift.

Proof. We have

Z 2 t ≥ C 2 1 (T -t) -2 + C 2 2 ϕ -4 (X t ) + C 2 3 .
Consequently, under condition (5.3),

dS ′ t ≥ 1 nu t q 2 t -(nu t Z t ) 2 dt = S ′ t nu t (q t + nu t Z t ) dt
and the right-hand side is nonnegative on

{S ′ t ≥ 0}. Q.E.D.
Similarly to Theorem 4.2, we obtain the following result. 

|∇u 0 | 2 u 2 0 - ∆u 0 u 0 ≤ n T + nC ϕ ϕ 2 (x) + √ nk + 2n ϕ∇ϕ D ϕ 2 (x) |∇u| u D×[0,T ]
.

§6. Local gradient estimates of Hamilton type

We keep Assumptions 1 and 2 of Section 4 and study now the process (6.1)

S t = |∇u t | 2u t -u t (1 -log u t ) 2 Z t ,
where

Z t = C 1 (T -t) + C 2 ϕ 2 (X t ) + C 3 for some constants C 1 , C 2 , C 3 > 0.
Assume that 0 < u ≤ e -3 (this assumption will be removed in Theorem 6.1 through replacing u by e -3 u/ u D×[0,T ] ). Let c ϕ (x) again be given by (4.6). Then, denoting g(t, x) = |∇u| 2 u (t, x) and g t = g(T -t, X t ), and using the fact that ∇ u(1log u) 2 = (log 2 u -1)∇u and

d u t (1 -log u t ) 2 m = g t log u t dt,
we get

dS t ≥ -k 1 2 g t dt -u t (1 -log u t ) 2 C 1 (T -t) 2 + C 2 c ϕ (X t )ϕ -4 (X t ) dt -2 log u t 1 2 g t Z t dt -2C 2 (1 -log u t )(1 + log u t )ϕ -3 (X t ) ∇u t , ∇ϕ(X t ) dt. Now from u ≤ e -3 we get -2 log u t ≥ 3(1 -log u t )/2.
This together with |1 + log u t | ≤ 1log u t yields (modulo differentials of local martingales)

dS t ≥ (1 -log u t ) 3 2 Z t -k 1 2 g t -u t (1 -log u t ) C 1 (T -t) 2 + C 2 c ϕ (X t )ϕ -4 (X t ) dt -C 2 (1 -log u t ) 2 √ 2 ϕ -2 (X t ) |∇ϕ(X t )| √ u t ϕ -1 (X t ) g t 2 dt ≥ (1 -log u t ) 3 2 Z t -k 1 2 g t -u t (1 -log u t ) C 1 (T -t) 2 + C 2 c ϕ (X t )ϕ -4 (X t ) dt -(1 -log u t ) 2 u t 4C 2 ϕ -4 (X t ) |∇ϕ(X t )| 2 + 1 4 g t C 2 ϕ -2 (X t ) dt ≥ (1 -log u t ) (Z t -k) 1 2 g t -u t (1 -log u t ) 2 × C 1 (T -t) 2 + C 2 c ϕ (X t ) + 4|∇ϕ(X t )| 2 ϕ -4 (X t ) dt. Letting (6.2) C 1 = 1, C 2 = sup D c ϕ + 4|∇ϕ| 2 and C 3 = k, we get dS t ≥ (1 -log u t ) (Z t -k) 1 2 g t -u t (1 -log u t ) 2 (Z t -k) 2 dt ≥ (1 -log u t )(Z t -k) 1 2 g t -u t (1 -log u t ) 2 Z t dt.
This proves that S t has nonnegative drift on {S t ≥ 0}. On the other hand, S t converges to -∞ as t → T ∧ τ (x).

Similarly to Theorem 4.2, we obtain the following result. 

∇u 0 u 0 2 ≤ 2 1 T + sup D 7|∇ϕ| 2 -ϕ∆ϕ ϕ 2 (x) + k 4 + log u D×[0,T ] u 0 2
where ϕ is as above. §7. Explicit upper bounds

The estimates in Theorems 4.2, 5.2 and 6.1 have been given in terms of a function ϕ ∈ C 2 ( D) such that ϕ > 0 in D and ϕ|∂D = 0. To specify the constants an explicit choice for ϕ has to be done.

We fix x ∈ D and let δ x = ρ(x, ∂D) where ρ denotes the Riemannian distance. We replace D by the ball B = B(x, δ x ) and consider on B (7.1) ϕ(y) = cos πρ(x, y) 2δ x .

Clearly ϕ(x) = 1, ϕ is nonnegative and bounded by 1, and ϕ vanishes on ∂B.

It is proven in [START_REF] Thalmaier | Gradient estimates for harmonic functions on regular domains in Riemannian manifolds[END_REF] that

(7.2) dϕ -2 (X t ) ≤ 1 2 ∆(ϕ -2 )(X t ) dt
where by convention ∆ϕ -2 = 0 at points where ϕ -2 is not differentiable. Moreover, since the time spent by X t on the cut-locus of x is a.s. zero, the differential of the brackets [ϕ(X t ), u t ] may be taken as 0 at points where ϕ -2 is not differentiable. As a consequence, all estimates in Theorems 4.2, 5.2 and 6.1 remain valid with ϕ defined by (7.1).

We are now going to derive explicit expressions for the constants. To this end we observe that ∇ϕ B ≤ π 2δ x .

From [START_REF] Thalmaier | Gradient estimates for harmonic functions on regular domains in Riemannian manifolds[END_REF], we get

-∆ϕ ≤ π k(n -1) 2δ x + π 2 n 4δ 2 
x which gives for any β > 0,

-∆ϕ ≤ π 2 (1 + β)n 4δ 2 x + k 4β .
This yields

C ϕ ≤ π 2 [(1 + β)n + 3] 4δ 2 x + k 4β , C ϕ,α,n ≤ π 2 [(1 + β + α)n + 3] 4δ 2 x + k 4β , sup D 7|∇ϕ| 2 -ϕ∆ϕ ≤ π 2 [(1 + β)n + 7] 4δ 2 x + k 4β .
Finally we replace α by a = 1 + α -1 to obtain from Theorems 4.2, 5.2 and 6.1 the following explicit upper bounds. 

Theorem 1 . 1 (

 11 Stochastic representation of the gradient). Let D be a relatively compact open domain in a complete Riemannian manifold M , and let u = u(x, t) be a solution of the heat equation (1.1) on D × [0, T ] which is continuous on D × [0, T ]. Then, for any v ∈ T x M and x ∈ D,

Assumption 1 .Assumption 2 .

 12 Let M be a complete Riemannian manifold of dimension n, and let u = u(x, t) be a solution of the heat equation (2.8) on D×[0, T ] where D ⊂ M is a relatively compact open subset of M with nonempty smooth boundary. Assume that u is positive and continuous on D × [0, T ]. Furthermore let (4.1) k := inf Ric x (v, v) : v ∈ T x M, |v| = 1, x ∈ D be a lower bound for the Ricci curvature on the domain D. Finally let ϕ ∈ C 2 ( D) with ϕ > 0 in D and ϕ|∂D = 0. Let x ∈ D and X(x) be a Brownian motion on M starting at x at time 0. Denote by τ (x) its first exit time of D. Now, for t ∈ [0, T ∧ τ (x)[, consider the process (4.2)

where ( 4 . 10 )( 3 +

 4103 C ϕ,α,n = sup D c ϕ + αn|∇ϕ| 2 = sup D αn)|∇ϕ| 2 -ϕ∆ϕ .

Theorem 4 . 2 (

 42 Li-Yau inequality; local version). We keep the assumptions from above. Let u = u(x, t) be a solution of the heat equation on D × [0, T ] which is positive and continuous on D × [0, T ].

Theorem 5 . 2 (

 52 Local Li-Yau inequality with lower order term). We keep the notation from above, as well as Assumption 1 and 2 from Section 4. Let u = u(x, t) be a solution of the heat equation on D × [0, T ] which is positive and continuous on D × [0, T ]. Then

Theorem 6 . 1 (

 61 Local Li-Yau inequality of Hamilton type). We keep the assumptions as above. Assume that u is a solution of the heat equation on D × [0, T ] which is positive and continuous on D × [0, T ]. Then

Theorem 7 . 1 (where

 71 Local Li-Yau inequalities with explicit constants). Let u be a solution of the heat equation on D × [0, T ] where D is a relatively compact open subset of a Riemannian manifold M . Assume that u is positive and continuous on D × [0, T ]. Furthermore let k be a lower bound for the Ricci curvature on the domain D. Fix x ∈ D and let a ∈ ]1, 2[. For any β > 0 we have n denotes the dimension of M and δ x the Riemannian distance of x to the boundary of D. Recall that u 0 = u(•, T ) and ∆u 0 = ∆u(•, T ).