
HAL Id: hal-00361637
https://hal.science/hal-00361637

Submitted on 16 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards IEC 61499 Function Blocks Diagrams
Verification

Camille Schnakenbourg, Jean-Marc Faure, Jean-Jacques Lesage

To cite this version:
Camille Schnakenbourg, Jean-Marc Faure, Jean-Jacques Lesage. Towards IEC 61499 Function Blocks
Diagrams Verification. IEEE International Conference on Systems Man and Cybernetics, SMC’2002,
Oct 2002, Hammamet, Tunisia. CDRom paper N°TA1C2. �hal-00361637�

https://hal.science/hal-00361637
https://hal.archives-ouvertes.fr

Towards IEC 61499 Function Blocks Diagrams Verification

C. Schnakenbourg*,***, J.-M. Faure**,***, J.-J. Lesage***
*CNAM 21 rue Pinel F75013 Paris, France

**ISMCM-CESTI, 3 rue Fernand Hainaut, F93407 Saint-Ouen Cedex, France
***LURPA, ENS de Cachan, 61 avenue du Président Wilson, F94235 Cachan Cedex, France

[schnakenbourg, faure, lesage]@lurpa.ens-cachan.fr

Abstract -- After having sketched the different techniques enabling
to check properties of Discrete Event Systems control software, we
present in this article a formal method for IEC 61499 function
blocks diagrams verification. This method is based on a formal
representation of the behaviour of function blocks diagrams and
takes benefit of verification tools developed from the SIGNAL
synchronous language.

Keywords: Properties Verification, Function Blocks
Diagram, IEC 61499 Standard, Synchronous Languages,
Control Systems Safety

I. INTRODUCTION

Since numerous years safety is a major industrial issue. If it
is true that industries like transport, critical industries (energy or
chemical processes for instance) must, more than others, be
concerned by safety objectives, in fact all the industries must
consider this subject. So, in order to handle safety, each
industrial field has developed some particular standards. The
growing demand for automated systems has led to take into
account control systems safety too. Nowadays industry needs not
only safe processes but also safe control systems.

 To federate safe control systems development, the recent
IEC 61508 standard [1] proposes a generic model that can be
applied to all the Electrical /Electronic/ Programmable
Electronic (E/E/PE) safety-related systems. This standard
provides a generic framework within which accurate methods
can be applied, whatever the application domain should be, and
shows moreover that safety must be an everyday preoccupation
during all the life of a system.

Considering the great amount of methods developed in order

to design and implement safe control systems, classification
criteria have to be defined to organise these methods. We will
focus only on two classifications based on complementary points
of view: the control system life cycle and the expected
objectives.

With a life cycle point of view, [2] introduces the On-line
and Off-line safety notions based on the classical “square root”
life cycle (Figure 1). This cycle is composed of two different
phases: the conception phase and the exploitation phase. To
these two phases are linked two kinds of safety: Off-line safety
for the first phase, On-line safety for the second one.

Figure 1 Life cycle and safety [2]

The purpose of the Off-line safety methods is to minimise the
fault risk during conception, i.e. before the system is used. On
the opposite side, the objective of the On-line safety methods is
to ensure safety in an already implemented and running system.
This article deals only with Off-line safety methods.

On another hand, Laprie [3] proposes a classification based

on the expected objective of the method. The safety-related
works are arranged in four categories: fault prevention methods,
fault forecasting methods, fault tolerance methods and fault
removal methods.

Fault prevention methods aim at organising development
process and are rather related to system engineering. Functional
analysis, project organisation and management methods,
business process engineering are examples of such methods.

Fault forecasting methods can be split in two categories:
ordinal assessment methods, like FMECA, and probabilistic
assessment methods, that provide numerical values of safety
attributes (reliability, availability). These last ones use models
such as fault trees, Markov chains, stochastic Petri nets.

Fault tolerance methods are based on the assumption that the
occurrence of a failure shall not stop the system operation. These
methods fit well with systems owning some flexibility degrees
and/or redundancies.

Fault removal when designing and implementing a system
consists in verifying the results of the different activities
(models, drawings, schemata, programs, sub-systems), by tests,
simulation techniques or formal verification methods. During the

Design

Implementation

Testing

Validation Operation

OFF-LINE SAFETY ON-LINE SAFETY

Requirements

operation of the system, fault removal is performed by corrective
and preventive maintenance.

This article will focus on the off-line fault removal methods

for control software. In the first part, simulation and verification
methods are shortly described. This enables to point out the
advantages and the drawbacks of these two kinds of methods and
leads to strongly advocate verification for safety-related systems.
The second part is dedicated to the presentation of a formal
method developed in our laboratory in order to verify programs
developed in the IEC 61499 function blocks language.

II. CONTROL SOFTWARE SIMULATION AND VERIFICATION

Industrial control programs are developed by using standard
languages described in the IEC 61131-3 or IEC 611499 [4]
standards in order to be adapted to the industrial needs.
Whatever the chosen language could be (Sequential Function
Chart, Ladder Diagram, or another standard language), a control
program behaves as a Discrete Event System and hence can be
represented by a state automaton. It is the reason why software
simulation and verification methods will be explained thanks to
this suitable representation of the behaviour of the control
software.

A. Simulation

This method consists in stimulating the program by inputs
sequences representing the behaviour of the controlled process
and in checking whether the outputs sequences generated by the
program are compliant to the application requirements or not.
Simulation techniques are very popular in industry. They take
benefit of specialised software providing process simulation with
user-friendly interfaces. These software tools facilitate the
generation of input sequences and the interpretation of the
results. Nevertheless the main drawback of simulation is not to
enable a complete verification of the program behaviour within a
reasonable time. This comes from the huge amount of input
sequences that should be generated to test the entire program.

Figure 2 Simulation drawback

A simple explanation can be given thanks to the state
automaton depicted in Figure 2 and assumed to represent part of
the equivalent automaton of a control software. In this state

space, simulation is aimed at generating a set of paths and at
verifying if properties are satisfied along these paths.

Unfortunately the huge size of state automata representing
industrial control software does not enable to go along all
possible paths during a simulation session. In the example of the
state automaton depicted in Figure 2, simulation allows to check
properties related to the path in bold but does not give any
information on properties related to the other paths.

So, simulation is not an exhaustive method and the quality of

a simulation session is up to the skill and the experience of the
automation engineer who has to choose relevant inputs
sequences corresponding to usual and hazardous situations of
the controlled process. Formal verification methods have been
developed to tackle this problem by providing means allowing to
verify the totality of a program.

B. Formal verification methods

Three kinds of formal verification methods are usually
defined :

• theorem-proving or algebraic methods
• model-checking
• methods based on the translation of the model or

the software to be verified into a formal language,
e.g. a Petri Net or a synchronous language.

The last one is merely aimed to take benefit of formal
analysis tools developed from the target language. Hence only
theorem-proving and model-checking are really basic
verification methods that enable an exhaustive analysis.

Whatever the verification method could be, formal

expression of the software behaviour and of the properties is
required. Properties can be grouped into three categories [5]:
vivacity and safety (something must or must not happen) and
celerity (time related properties). A priori, those properties are
defined in the requirements. All the verification methods need
that the properties are written in a formal way. With this goal,
[6] introduces a formalism to express dynamic properties: the
temporal logic. This logic enables to write formulas describing
in a formal way expressions including words like “until”,
“always”. CTL* [7] is an example of such a logic.

The algebraic methods’goal (a.k.a. theorem-proving) is to do
or to verify proofs, manipulating only the syntax as it can be
done in a mathematics’ demonstration. A prover takes a
hypothesis (H) as data or definitions and a formula or a property
to be proved φ and search if φ can be obtained from H using the
deduction rules of the used logic. One of the interests of such a
method is that no hypothesis on the model to analyse is to be
made. More particularly infinite state automata can be
proceeded. The main drawback is indecidability, which means
that no solution is found in some cases. An example of theorem-
proving can be found in [8].

Model-checking operates on state automata. The basis

principle of this method is the marking process explained
hereafter.

1

4

6

5

7

2

3

a

b

c d

e.a

a

c+a

d+/e
e

/a
f

e./f

f

f+e

On the considered automata, for a property φ, composed of
sub-properties ψi, each state q verifying ψi will be marked
thanks to a variable q.ψi, true when ψi is verified on q. Thus, q.φ,
which indicates whether the property is verified or not, can be
obtained from the q.ψi. More precisions on model checkers for
the temporal logic CTL can be found in [9].

All the model-checking algorithms, and more generally all

the algorithms using explicitly given state automata share the
same problem: they hugely depend on the size of the automata.
Thus, the marking time is a function of the number of states and
transitions of the automata. Even if it is possible to reduce a state
automaton, the combinatory explosion makes classical model-
checking methods unusable for the verification of huge
industrial systems.

In order to overcome this problem, a new kind of model-
checker named symbolic model-checker has been created.
Symbolic model-checkers use a symbolic representation of the
automata (for example equations or BDD [10] [11]). This kind
of formal method can handle the equivalent of a 1022 state
automata.

Another drawback of model-checking methods is that the
languages used by model-checkers are not industrial languages
(there is no IEC 61131-3 model-checker for example).

So, the last solution consists in the translation of the model

or software to verify into a language from which formal
verification tools (theorem-prover or model-checker) have been
developed. Synchronous languages offer this possibility.

Our laboratory has several results for each verification

method: theorem-proving and model-checking (for example
[12], [13], [14]). In the following, an example of properties
verification on an industrial standard language using the
synchronous language SIGNAL will be presented.

III. IEC 61499 FUNCTION BLOCKS DIAGRAMS VERIFICATION

This work is an abstract of the work presented in [14]. Its
goal is to verify properties on IEC 61499 function blocks
models. This objective can only be achieved through a formally
defined syntax and semantics for this function block language.

As proposed in [15], this formalisation problem can be

solved thanks to a new class of Petri Net named Signal/Net
Systems. The main drawback of such a method is that the
verification tools don’t exist and must be developed too. So we
decided to use results on synchronous languages. More
precisely, some similarities between IEC 61499 function blocks
diagrams and SIGNAL process diagrams having been remarked,
the development of a verification method based on the
synchronous language SIGNAL [16] and on the (Z/3Z, +, *)
algebra [17] was undertaken.

This method consists mainly in (Figure 3) :
• translating the function blocks diagram into a SIGNAL

model ;

• expressing the properties that must be verified into a
SIGNAL syntax ;

• exploiting the existing proof tools that use the
automaton equivalent to the SIGNAL model.

Figure 3 Verification method

Such a method has already been used to prove properties for
models described in Statecharts or in GRAFCET [18]. Though
the final objective would be formal verification, the translation
of function blocks diagrams into SIGNAL processes allows, in a
first step, the simulation of their behaviour thanks to SIGNAL
models simulators, like SILDEX from the TNI society. This
feature can enable a better understanding of negative verification
results.

A. A brief description of the IEC 61499 standard [4]

The IEC 61499 standard draft focuses on industrial-process
measurement and control systems and proposes, to that purpose,
several concepts including the function block1 (Figure 4 a)).

A function block is built using two parts: the ECC
(“Execution Control Chart”) part shown in Figure 4 b) which
receives and sends events, and an algorithmic part which
receives and sends data. The ECC, which is a state automaton
included in the ECC part, is described in an IEC 61131-3 SFC
like language [19], for the construction rules (excluding
parallelism) as for the behaviour rules. This behaviour model,
composed by a succession of EC-states and EC-transitions, can
control the algorithm part using the input events (the variables
Ev1 to Ev4 in our figure, named Event Input variables or EI-
variables). The ECC can, eventually, send some output events
using event output variables, or EO-Variables (EvO2 in the
example) or modify some internal variables. Those internal
variables as the output events can be used in the receptivities
associated with the ECC transitions. The algorithm part
describes the relations between the input data (Da and Db in our
example) and the output data (Dc in the example). Those
algorithms are expressed using the IEC 61131-3 languages (IL,
SFC, Ladder diagram…). In the example, the two algorithms A1
(Dc = Da + Db) and A2 (Dc = Da – Db) are used when the EC-
states E1 and E2 are activated respectively. An output event is
sent when E2 is activated.

1 The IEC 61499 function blocks must be distinguished from the

IEC 61131-3 function blocks. The first one is a structure entity using a
state automaton to describe only a part of its behaviour. For the second
standard, a function blocks diagram can be linked to a step of a SFC.

Properties
P1 : X and Y
cannot be
true
simultaneous
ly
P2 : X …

IEC 61499
FBD

SIGNAL
translation

SIGNAL
translation

SIGNAL process

Properties in
SIGNAL
(| VERIF := true
when (Z = true)
and (Y = true)
 | VERIF2 := …

Properties
verification

Verified
properties :

P1 true

P2 false if X
= true and …

Figure 4 a) block example b) ECC of this function block2

The blocks can be linked to build nets named function
blocks diagrams (Figure 5). The main building rules are:

• The block outputs are linked to the inputs of another
block.

• An event type output can only be linked to an input of
the same type (this rules also applies to the data).

• An input (event or data) can only be linked to one and
only one output of the same type.

Figure 5 A simple function blocks diagram

The syntactic formalisation of those rules can be made
thanks to a static metamodel. This metamodel will not be
presented in this article.

The standard introduces several other concepts (scheduling
function, communication blocks, …) whose aim is to implement
the diagram in a distributed real time system. Those concepts,
mandatory when implementing a control system, will not be
used in this paper, for only control design will be considered.

B. Function Blocks Diagram translation

Figure 6 depicts the chosen methodology. The analysis of
the standard enables to define two evolution algorithms: one for
the function block (FB) and one for the function blocks diagram
(FBD). These algorithms explain formally the generic behaviour
of a block or a diagram. Then it is possible to translate any block
or block diagram into a SIGNAL model thanks to these formal
behaviours definitions.

2 In the case where no output event is associated to a state, an empty

rectangle is left where normally the name of an output event should take
place (see the E1 EC-state).

Figure 6 Translation method

Figure 7 sketches the function block evolution algorithm that
includes two loops. The first one models input events reading,
the second one the ECC evolution. It matters to highlight that
several evolutions of this last loop (numbered 2 in figure 7) can
happen before two successive inputs reading. This feature,
defined in the standard in order to ensure a deterministic
behaviour, means merely that an ECC stable state must be
reached before reading the inputs. So this FB evolution
algorithm can be called “Stability-driven”.

Figure 7 Behaviour of a block

From this algorithmic representation, a global translation
method from a FB into its SIGNAL equivalent model has been
developed. The main phase of the algorithm is the ECC
evolution phase, expressed below in a SIGNAL syntax:

Xi = true when (((Xi$=true) and (Ri$=false)) or
 ((X(i-1)$=true) and (R(i-1)$=true))) default false
Where Xi is a state variable true when the EC-state is active,

Ri is the receptivity of the downstream transition of the state i.
This equation is nothing else than the translation into SIGNAL
of the behaviour of a finite state automaton evolving according
to IEC 61499 rules.

However, these signals have only a sense if they are linked

to a given clock. That’s why a clock, named Block Clock (Cbl),
synchronised with the loop number 2 and with which are
associated all the variables of the here-above equation, is to be
defined. However this clock addresses only internal variables of
FB. To translate an entire FBD into SIGNAL, an other clock
related to FB input and output events must be defined. The
definition of this clock as well as the relation between block
clock and event clock is presented below.

E0

Ev3

Ev1.Ev2
Ev4

Ev5

E2 A2 EvO2

E1 A1

ECC
Part

Algorithms
part

+ / -

Ev1
to

Ev4

Da

Db

Dc

EvO2

a)

b)

IEC 61499
Dynamic

formalisation

FB
behaviour

FBD
behaviour

Translation
into SIGNAL

Translation
into SIGNAL

FB
translated

FBD
translated

Scrutation phase

Evolution of the ECC

The block can
evoluate

No

Yes

Initialisation

1

2
B

a

b

e

f
B

g

Event and block clocks
No assumption is made on FB input events clocks: they can

be different. In order to simplify the SIGNAL model, a clock
named event union clock and noted Cunion, equal to the union
of the different clocks of the input events, has been defined.
Figure 8 depicts the construction of Cunion.

Figure 8 Cunion clock definition

To synchronise an input event with this clock is equivalent to
create a Boolean signal, whose clock is Cunion, true when the
event is present, false otherwise.

The IEC standard indicates also that any occurrence of an

output event brought about by an occurrence of an input event
must be sent before the next occurrence of an input event. This
imposes to overclock Cunion. For that purpose, a clock named
event clock and noted Ceve has been defined from Cunion. That
clock has a period equal to a fraction of the lowest interval
between two dates of Cunion. Figure 9 shows an instance of
Ceve built from the Cunion clock of figure 8 with a period twice
smaller than the lowest time interval of Cunion.

Figure 9 Event clock Ceve

At last, the standard indicates that:
• all the occurrences of input events are to be taken into

account (no occurrence is missed), and that
• all the evolutions of a FB coming from a given input

event occurrence should be ended before an other
input event occurs.

This reactivity property leads to consider that the block
clock is faster than the event clock so that no input event occurs
during a FB evolution (loop number 2 in figure 7).

More precisely, the ratio between the event clock period and

the block clock period shall be greater than or equal to the
maximum number of evolutions of the block coming from any
input event occurrence. This number can be easily determined by
analysing the evolutions of the ECC with regards to the
algorithm of figure 7. Such a method has already been used in
[18].

Figure 10 Block and event clocks

Function blocks diagrams modelling
The function blocks diagram evolution algorithm is based on

several assumptions:
• All the blocks can evolve in parallel.
• There is no priority of a block on another.
• There is no priority of an algorithm on another.

With these assumptions, it is possible to derive from a FBD a

SIGNAL model including as much processes as FB in the initial
FBD. Each process encloses a SIGNAL code describing the
behaviour of the FB from which it is derived. Each process
receives the same input signals and emits the same output signals
as the corresponding FB. All the events share the same clock:
Ceve, built as explained previously. The block clock is common
to all the blocks. As initially the FB can have different clocks (a
FB clock can be twice faster than Ceve whereas another one is
four times faster), the faster clock is chosen, in order to ensure
reactivity for all the FB. Hence, only two clocks are used within
the model.

In order to ensure clocks consistency, two processes must

been added for the inputs and for the outputs of each process.
The aim of these processes is to convert signals with the event
clock to signals with the block clock (for the inputs) and vice
versa (for the outputs).

Figure 11 Clocks consistency SIGNAL processes

Figure 12 a) Function block diagram

b) SIGNAL process diagram3

3 For clarity reason, the inputs Ceve and Cbl are not shown in the

input of the process E->B and B->E.

Block => Events

a2 := a1 when Ceve

a1
a2

Ceve

Events => Block
(events)

Synchro (a2, Cbl)
a2 := a1 default false

a1
a2

Cbl

Ceve

Cbl

i i+1

Event E1

Event E2

Cunion

true

true

Cunion

Ceve

a)

a

b

c e

f

g h

b) h

e

f

g

c2

d2
B2

B3

 v1, v2,

B1

a

b

C. Example

In order to illustrate the developed method, a simplified
version of the steam boiler control [20] has been treated. This
example has been chosen because:

• It deals with numeric and boolean variables.
• It is close enough to an industrial problem.
• It is related to a critical system.
• It is a reference in the hybrid system control field.

After translation of the specification into an IEC 61499

function blocks diagram, the translation of this diagram into a
SIGNAL model has been made. This model includes five blocks,
each of them embedding approximately 100 lines of SIGNAL
code. Properties have been formally verified on this model by
using the SILDEX tool. Each property verification is performed
in one to five minutes. To illustrate the usefulness of the
approach, some verification results of the property “the failure of
all the pumps starts the emergency stop mode” will be given.
This property is a vivacity property that had been chosen
because it is a major concern for the designers of a nuclear
power plant.

With our initial model, the SILDEX tool gives two kinds of
results:

• There is a situation where, when all the pumps are out
of order, the emergency stop mode is not reached.
Hence the studied property is not verified with this
model.

• A trace allowing to find how this situation can be
reached. This trace is composed of a succession of input
events leading to the faulty situation.

These results enable to correct the initial model so that the
property would be satisfied for any input events sequence.

For the moment, no property dealing with physical time has

been verified because SILDEX considers only logical time. This
problem can be overcome by giving a value to the gap between
two instants of a clock; e.g. by translating a property such as “the
pump must make less that 5 minutes to become operational” into
“the pump must take less than 100 periods of Ceve to become
operational”.

IV. CONCLUSIONS

This article was aimed to highlight the interest of formal
verification methods (theorem proving, model checking) for safe
control systems development.

The verification method of IEC 61499 function blocks has
enabled to show the advantages and drawbacks of the SIGNAL
based approach.

Future works will focus on verification of distributed
systems and of real time multitasking systems.

V. REFERENCES

[1] International Electronical Committee, “IEC 61508 (1998-2000),
Functional safety of electrical/electronic/programmable electronic
safety-related systems. Parts 1-7.” 1998.

[2] J.-M. Faure, J.-J. Lesage, “Methods for safe control systems
design and implementation”, IFAC conference INCOM 2001,
Vienna (Austria), CD-ROM support, 2001.

[3] Laprie, J.C. and al., “Guide de la surete de fonctionnement”,
Cepadues, 1996.

[4] International Electronical Committee, “IEC 61499 function
blocks for industrial-process measurement and control systems”,
draft version ; 1999.

[5] L. Lamport, “Proving the correctness of multiprocess programs”,
IEEE Transactions on software engineering, N° 3(2), pages 125-
143 ; 1973.

[6] A. Pnueli, “The temporal logic of programs”, Proceedings of the
18th IEEE symposium foundations of computer science
(FOCS’77), pages 46-57, Providence, RI, USA; 1977.

[7] E. A. Emerson, J. Y. Halpern,“ “Sometimes” and “not never”
revisited: On branching versus linear time temporal logic”,
Journal of ACM, N° 33(1), pages 151-178 ; 1986.

[8] X. Rival, J. Goubault-Larrecq, “Experiments with finite tree
automata in Coq”, Proceedings of the 14th Int. Conf. Theorem
Proving in Higher Order Logics (TPHOL'01), pages 362-377,
Edinburgh, Scotland ; 2001.

[9] B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L.
Petrucci, and Ph. Schnoebelen, “Systems and Software
Verification. Model-Checking Techniques and Tools”, Springer,
2001.

[10] O. Coudert, C. Berthet, J.C. Madre, “Verification of synchronous
sequential machines based on symbolic execution”, Lecture notes
in computer science, vol. 407, pages 365-373 ; 1980.

[11] J-R. Bruch, E.M. Clarke, K.L. McMillan, D.L. Dill, L.J. Hwang,
“Symbolic model-checking, 1020 states and beyond”, Information
and Computation, N° 98(2), pages 142-170 ; 1992.

[12] S. Lampérière-Couffin, O. Rossi, J.-M. Roussel, J.-J. Lesage

“Formal validation of PLC programs: a survey”, ECC’99, 1999.
[13] C. Thierry, J.-M. Roussel, J.-J. Lesage, “An extended boolean

algebra for the control of logical systems”, IMACS’00, 2000.
[14] C. Schnakenbourg, “Formalisation en vue de la vérification de

propriétés du langage à blocs fonctionnels IEC 61499”, Ph. D
thesis, ENS Cachan, 2002.

[15] V. Vyatkin, H.-M. Hanisch, P. Starke, S. Roch, “Formalisms for
verification of discrete control applications on example of
IEC1499 function blocks“, Proceedings of the conference
« Verteilte Automatisierung » (Advanced Automation),
Magdeburg, Allemagne, pages 72-79 ; 2000.

[16] P. Le Guernic, M. Le Borgne, T. Gautier, C. Le Maire,
“Programming real time application with SIGNAL”, Proc. of the
IEEE, 79(9) :1321-1336, 1991.

[17] M. Le Borgne, “Systèmes dynamiques sur des corps finis”, Thèse
de doctorat, Université de Rennes I, 1993.

[18] P. Le Parc, L. Marce, “Synchronous definition of GRAFCET with
SIGNAL”, Proc. of the IEEE/SNC’93 conference, le Touquet,
France, 1993.

[19] International Electronical Committee, “IEC 61131-3 standard for
programmable controllers. Part 3: Programming language”, 1993.

[20] J.-R. Abrial, “Steam-boiler control specification problem”,
Dagstuhl Meeting: Methods for semantics and specification,
1995.

