
HAL Id: hal-00361637
https://hal.science/hal-00361637

Submitted on 16 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards IEC 61499 Function Blocks Diagrams
Verification

Camille Schnakenbourg, Jean-Marc Faure, Jean-Jacques Lesage

To cite this version:
Camille Schnakenbourg, Jean-Marc Faure, Jean-Jacques Lesage. Towards IEC 61499 Function Blocks
Diagrams Verification. IEEE International Conference on Systems Man and Cybernetics, SMC’2002,
Oct 2002, Hammamet, Tunisia. CDRom paper N°TA1C2. �hal-00361637�

https://hal.science/hal-00361637
https://hal.archives-ouvertes.fr


 

Towards IEC 61499 Function Blocks Diagrams Verification 

C. Schnakenbourg*,***, J.-M. Faure**,***, J.-J. Lesage*** 
*CNAM 21 rue Pinel F75013 Paris, France 

**ISMCM-CESTI, 3 rue Fernand Hainaut, F93407 Saint-Ouen Cedex, France 
***LURPA, ENS de Cachan, 61 avenue du Président Wilson, F94235 Cachan Cedex, France 

[schnakenbourg, faure, lesage]@lurpa.ens-cachan.fr 
 
Abstract -- After having sketched the different techniques enabling 
to check properties of Discrete Event Systems control software, we 
present in this article a formal method for IEC 61499 function 
blocks diagrams verification. This method is based on a formal 
representation of the behaviour of function blocks diagrams and 
takes benefit of verification tools developed from the SIGNAL 
synchronous language. 
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I. INTRODUCTION 

Since numerous years safety is a major industrial issue. If it 
is true that industries like transport, critical industries (energy or 
chemical processes for instance) must, more than others, be 
concerned by safety objectives, in fact all the industries must 
consider this subject. So, in order to handle safety, each 
industrial field has developed some particular standards. The 
growing demand for automated systems has led to take into 
account control systems safety too. Nowadays industry needs not 
only safe processes but also safe control systems. 

 To federate safe control systems development, the recent 
IEC 61508 standard [1] proposes a generic model that can be 
applied to all the Electrical /Electronic/ Programmable 
Electronic (E/E/PE) safety-related systems. This standard 
provides a generic framework within which accurate methods 
can be applied, whatever the application domain should be, and 
shows moreover that safety must be an everyday preoccupation 
during all the life of a system. 

 
Considering the great amount of methods developed in order 

to design and implement safe control systems, classification 
criteria have to be defined to organise these methods. We will 
focus only on two classifications based on complementary points 
of view: the control system life cycle and the expected 
objectives. 

With a life cycle point of view, [2] introduces the On-line 
and Off-line safety notions based on the classical “square root” 
life cycle (Figure 1). This cycle is composed of two different 
phases: the conception phase and the exploitation phase. To 
these two phases are linked two kinds of safety: Off-line safety 
for the first phase, On-line safety for the second one. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1  Life cycle and safety [2] 

The purpose of the Off-line safety methods is to minimise the 
fault risk during conception, i.e. before the system is used. On 
the opposite side, the objective of the On-line safety methods is 
to ensure safety in an already implemented and running system. 
This article deals only with Off-line safety methods. 

 
On another hand, Laprie [3] proposes a classification based 

on the expected objective of the method. The safety-related 
works are arranged in four categories: fault prevention methods, 
fault forecasting methods, fault tolerance methods and fault 
removal methods. 

Fault prevention methods aim at organising development 
process and are rather related to system engineering. Functional 
analysis, project organisation and management methods, 
business process engineering are examples of such methods. 

Fault forecasting methods can be split in two categories: 
ordinal assessment methods, like FMECA, and probabilistic 
assessment methods, that provide numerical values of safety 
attributes (reliability, availability). These last ones use models 
such as fault trees, Markov chains, stochastic Petri nets. 

Fault tolerance methods are based on the assumption that the 
occurrence of a failure shall not stop the system operation. These 
methods fit well with systems owning some flexibility degrees 
and/or redundancies. 

Fault removal when designing and implementing a system 
consists in verifying the results of the different activities 
(models, drawings, schemata, programs, sub-systems), by tests, 
simulation techniques or formal verification methods. During the 
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operation of the system, fault removal is performed by corrective 
and preventive maintenance. 

 
This article will focus on the off-line fault removal methods 

for control software. In the first part, simulation and verification 
methods are shortly described. This enables to point out the 
advantages and the drawbacks of these two kinds of methods and 
leads to strongly advocate verification for safety-related systems. 
The second part is dedicated to the presentation of a formal 
method developed in our laboratory in order to verify programs 
developed in the IEC 61499 function blocks language.  

II. CONTROL SOFTWARE SIMULATION AND VERIFICATION 

Industrial control programs are developed by using standard 
languages described in the IEC 61131-3 or IEC 611499 [4] 
standards in order to be adapted to the industrial needs. 
Whatever the chosen language could be (Sequential Function 
Chart, Ladder Diagram, or another standard language), a control 
program behaves as a Discrete Event System and hence can be 
represented by a state automaton. It is the reason why software 
simulation and verification methods will be explained thanks to 
this suitable representation of the behaviour of the control 
software. 

A. Simulation 

This method consists in stimulating the program by inputs 
sequences representing the behaviour of the controlled process 
and in checking whether the outputs sequences generated by the 
program are compliant to the application requirements or not. 
Simulation techniques are very popular in industry. They take 
benefit of specialised software providing process simulation with 
user-friendly interfaces. These software tools facilitate the 
generation of input sequences and the interpretation of the 
results. Nevertheless the main drawback of simulation is not to 
enable a complete verification of the program behaviour within a 
reasonable time. This comes from the huge amount of input 
sequences that should be generated to test the entire program. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2  Simulation drawback 

A simple explanation can be given thanks to the state 
automaton depicted in Figure 2 and assumed to represent part of 
the equivalent automaton of a control software. In this state 

space, simulation is aimed at generating a set of paths and at  
verifying if properties are satisfied along these paths. 

Unfortunately the huge size of state automata representing 
industrial control software does not enable to go along all 
possible paths during a simulation session. In the example of the 
state automaton depicted in Figure 2, simulation allows to check 
properties related to the path in bold but does not give any 
information on properties related to the other paths.  

 
So, simulation is not an exhaustive method and the quality of 

a simulation session is up to the skill and the experience of the 
automation engineer who has to choose relevant inputs 
sequences corresponding to usual and hazardous situations of 
the controlled process. Formal verification methods have been 
developed to tackle this problem by providing means allowing to 
verify the totality of a program. 

B. Formal verification methods 

Three kinds of formal verification methods are usually 
defined : 

• theorem-proving or algebraic methods 
• model-checking 
• methods based on the translation of the model or 

the software to be verified into a formal language, 
e.g. a Petri Net or a synchronous language. 

The last one is merely aimed to take benefit of formal 
analysis tools developed from the target language. Hence only 
theorem-proving and model-checking are really basic 
verification methods that enable an exhaustive analysis. 

 
Whatever the verification method could be, formal 

expression of the software behaviour and of the properties is 
required. Properties can be grouped into three categories [5]: 
vivacity and safety (something must or must not happen) and 
celerity (time related properties). A priori, those properties are 
defined in the requirements. All the verification methods need 
that the properties are written in a formal way. With this goal, 
[6] introduces a formalism to express dynamic properties: the 
temporal logic. This logic enables to write formulas describing 
in a formal way expressions including words like “until”, 
“always”. CTL* [7] is an example of such a logic.  
 

The algebraic methods’goal (a.k.a. theorem-proving) is to do 
or to verify proofs, manipulating only the syntax as it can be 
done in a mathematics’ demonstration. A prover takes a 
hypothesis (H) as data or definitions and a formula or a property 
to be proved φ and search if φ can be obtained from H using the 
deduction rules of the used logic. One of the interests of such a 
method is that no hypothesis on the model to analyse is to be 
made. More particularly infinite state automata can be 
proceeded. The main drawback is indecidability, which means 
that no solution is found in some cases. An example of theorem-
proving can be found in [8]. 

 
Model-checking operates on state automata. The basis 

principle of this method is the marking process explained 
hereafter. 
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On the considered automata, for a property φ, composed of 
sub-properties ψi, each state q verifying ψi will be marked 
thanks to a variable q.ψi, true when ψi is verified on q. Thus, q.φ, 
which indicates whether the property is verified or not, can be 
obtained from the q.ψi. More precisions on model checkers for 
the temporal logic CTL can be found in [9]. 

 
All the model-checking algorithms, and more generally all 

the algorithms using explicitly given state automata share the 
same problem: they hugely depend on the size of the automata. 
Thus, the marking time is a function of the number of states and 
transitions of the automata. Even if it is possible to reduce a state 
automaton, the combinatory explosion makes classical model-
checking methods unusable for the verification of huge 
industrial systems. 

In order to overcome this problem, a new kind of model-
checker named symbolic model-checker has been created. 
Symbolic model-checkers use a symbolic representation of the 
automata (for example equations or BDD [10] [11]). This kind 
of formal method can handle the equivalent of a 1022 state 
automata. 

Another drawback of model-checking methods is that the 
languages used by model-checkers are not industrial languages 
(there is no IEC 61131-3 model-checker for example). 

 
So, the last solution consists in the translation of the model 

or software to verify into a language from which formal 
verification tools (theorem-prover or model-checker) have been 
developed. Synchronous languages offer this possibility.  

 
Our laboratory has several results for each verification 

method: theorem-proving and model-checking (for example 
[12], [13], [14]). In the following, an example of properties 
verification on an industrial standard language using the 
synchronous language SIGNAL will be presented. 

 

III. IEC 61499 FUNCTION BLOCKS DIAGRAMS VERIFICATION 

This work is an abstract of the work presented in [14]. Its 
goal is to verify properties on IEC 61499 function blocks 
models. This objective can only be achieved through a formally 
defined syntax and semantics for this function block language.  

 
As proposed in [15], this formalisation problem can be 

solved thanks to a new class of Petri Net named Signal/Net 
Systems. The main drawback of such a method is that the 
verification tools don’t exist and must be developed too. So we 
decided to use results on synchronous languages. More 
precisely, some similarities between IEC 61499 function blocks 
diagrams and SIGNAL process diagrams having been remarked, 
the development of a verification method based on the 
synchronous language SIGNAL [16] and on the (Z/3Z, +, *) 
algebra [17] was undertaken. 

 
This method consists mainly in (Figure 3) : 
• translating the function blocks diagram into a SIGNAL 

model ; 

• expressing the properties that must be verified into a 
SIGNAL syntax ; 

• exploiting the existing proof tools that use the 
automaton equivalent to the SIGNAL model. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3  Verification method 

Such a method has already been used to prove properties for 
models described in Statecharts or in GRAFCET [18]. Though 
the final objective would be formal verification, the translation 
of function blocks diagrams into SIGNAL processes allows, in a 
first step, the simulation of their behaviour thanks to SIGNAL 
models simulators, like SILDEX  from the TNI society. This 
feature can enable a better understanding of negative verification 
results. 

A. A brief description of the IEC 61499 standard [4] 

The IEC 61499 standard draft focuses on industrial-process 
measurement and control systems and proposes, to that purpose, 
several concepts including the function block1 (Figure 4 a)).  

A function block is built using two parts: the ECC 
(“Execution Control Chart”) part  shown in Figure 4 b) which 
receives and sends events, and an algorithmic part which 
receives and sends data. The ECC, which is a state automaton 
included in the ECC part, is described in an IEC 61131-3 SFC 
like language [19], for the construction rules (excluding 
parallelism) as for the behaviour rules. This behaviour model, 
composed by a succession of EC-states and EC-transitions, can 
control the algorithm part using the input events (the variables 
Ev1 to Ev4 in our figure, named Event Input variables or EI-
variables). The ECC can, eventually, send some output events 
using event output variables, or EO-Variables (EvO2 in the 
example) or modify some internal variables. Those internal 
variables as the output events can be used in the receptivities 
associated with the ECC transitions. The algorithm part 
describes the relations between the input data (Da and Db in our 
example) and the output data (Dc in the example). Those 
algorithms are expressed using the IEC 61131-3 languages (IL, 
SFC, Ladder diagram…). In the example, the two algorithms A1 
(Dc = Da + Db) and A2 (Dc = Da – Db) are used when the EC-
states E1 and E2 are activated respectively. An output event is 
sent when E2 is activated. 

                                                           
1 The IEC 61499 function blocks must be distinguished from the 

IEC 61131-3 function blocks. The first one is a structure entity using a 
state automaton to describe only a part of its behaviour. For the second 
standard, a function blocks diagram can be linked to a step of a SFC. 
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Figure 4  a) block example b) ECC of this function block2 

The blocks can be linked to build nets named function 
blocks diagrams (Figure 5). The main building rules are: 

• The block outputs are linked to the inputs of another 
block. 

• An event type output can only be linked to an input of 
the same type (this rules also applies to the data). 

• An input (event or data) can only be linked to one and 
only one output of the same type. 

 
 
 
 
 
 

 
Figure 5  A simple function blocks diagram 

The syntactic formalisation of those rules can be made 
thanks to a static metamodel. This metamodel will not be 
presented in this article. 

The standard introduces several other concepts (scheduling 
function, communication blocks, …) whose aim is to implement 
the diagram in a distributed real time system. Those concepts, 
mandatory when implementing a control system, will not be 
used in this paper, for only control design will be considered.  

 

B. Function Blocks Diagram translation 

Figure 6 depicts the chosen methodology. The analysis of 
the standard enables to define two evolution algorithms: one for 
the function block (FB) and one for the function blocks diagram 
(FBD). These algorithms explain formally the generic behaviour 
of a block or a diagram. Then it is possible to translate any block 
or block diagram into a SIGNAL model thanks to these formal 
behaviours definitions. 

 
 

                                                           
2 In the case where no output event is associated to a state, an empty 

rectangle is left where normally the name of an output event should take 
place (see the E1 EC-state). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 6  Translation method  

Figure 7 sketches the function block evolution algorithm that 
includes two loops. The first one models input events reading, 
the second one the ECC evolution. It matters to highlight that 
several evolutions of this last loop (numbered 2 in figure 7) can 
happen before two successive inputs reading. This feature, 
defined in the standard in order to ensure a deterministic 
behaviour, means merely that an ECC stable state must be 
reached before reading the inputs. So this FB evolution 
algorithm can be called “Stability-driven”. 

 
 
 
 
 
 
 
 
 
 
 

Figure 7  Behaviour of a block 

From this algorithmic representation, a global translation 
method from a FB into its SIGNAL equivalent model has been 
developed. The main phase of the algorithm is the ECC 
evolution phase, expressed below in a SIGNAL syntax: 

Xi = true when (((Xi$=true) and (Ri$=false)) or  
     ((X(i-1)$=true) and (R(i-1)$=true))) default false 
Where Xi is a state variable true when the EC-state is active, 

Ri is the receptivity of the downstream transition of the state i. 
This equation is nothing else than the translation into SIGNAL 
of the behaviour of a finite state automaton evolving according 
to IEC 61499 rules. 

 
However, these signals have only a sense if they are linked 

to a given clock. That’s why a clock, named Block Clock (Cbl), 
synchronised with the loop number 2 and with which are 
associated all the variables of the here-above equation, is to be 
defined. However this clock addresses only internal variables of 
FB. To translate an entire FBD into SIGNAL, an other clock 
related to FB input and output events must be defined. The 
definition of this clock as well as the relation between block 
clock and event clock is presented below.  
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Event and block clocks 
No assumption is made on FB input events clocks: they can 

be different. In order to simplify the SIGNAL model, a clock 
named event union clock and noted Cunion, equal to the union 
of the different clocks of the input events, has been defined. 
Figure 8 depicts the construction of Cunion. 

 
 
 
 
 
 
 
 
 

Figure 8  Cunion clock definition 

To synchronise an input event with this clock is equivalent to 
create a Boolean signal, whose clock is Cunion, true when the 
event is present, false otherwise. 

 
The IEC standard indicates also that any occurrence of an 

output event brought about by an occurrence of an input event 
must be sent before the next occurrence of an input event. This 
imposes to overclock Cunion. For that purpose, a clock named 
event clock and noted Ceve has been defined from Cunion. That 
clock has a period equal to a fraction of the lowest interval 
between two dates of Cunion. Figure 9 shows an instance of 
Ceve built from the Cunion clock of figure 8 with a period twice 
smaller than the lowest time interval of Cunion. 

 
 
 
 

Figure 9  Event clock Ceve 

At last, the standard indicates that: 
• all the occurrences of input events are to be taken into 

account (no occurrence is missed), and that  
• all the evolutions of a FB coming from a given input 

event occurrence should be ended before an other 
input event occurs.  

This reactivity property leads to consider that the block 
clock is faster than the event clock so that no input event occurs 
during a FB evolution (loop number 2 in figure 7). 

 
More precisely, the ratio between the event clock period and 

the block clock period shall be greater than or equal to the 
maximum number of evolutions of the block coming from any 
input event occurrence. This number can be easily determined by 
analysing the evolutions of the ECC with regards to the 
algorithm of figure 7. Such a method has already been used in 
[18]. 

 
 
 
 

 

Figure 10  Block and event clocks 

 

Function blocks diagrams modelling 
The function blocks diagram evolution algorithm is based on 

several assumptions:  
• All the blocks can evolve in parallel. 
• There is no priority of a block on another. 
• There is no priority of an algorithm on another. 

 
With these assumptions, it is possible to derive from a FBD a 

SIGNAL model including as much processes as FB in the initial 
FBD. Each process encloses a SIGNAL code describing the 
behaviour of the FB from which it is derived. Each process 
receives the same input signals and emits the same output signals 
as the corresponding FB. All the events share the same clock: 
Ceve, built as explained previously. The block clock is common 
to all the blocks. As initially the FB can have different clocks (a 
FB clock can be twice faster than Ceve whereas another one is 
four times faster), the faster clock is chosen, in order to ensure 
reactivity for all the FB. Hence, only two clocks are used within 
the model. 

 
In order to ensure clocks consistency, two processes must 

been added for the inputs and for the outputs of each process. 
The aim of these processes is to convert signals with the event 
clock to signals with the block clock (for the inputs) and vice 
versa (for the outputs). 

 
 
 
 
 
 
 
 
 

Figure 11  Clocks consistency SIGNAL processes  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12  a) Function block diagram  

b) SIGNAL process diagram3 

                                                           
3 For clarity reason, the inputs Ceve and Cbl are not shown in the 

input of the process E->B and B->E. 
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C. Example 

In order to illustrate the developed method, a simplified 
version of the steam boiler control [20] has been treated. This 
example has been chosen because: 

• It deals with numeric and boolean variables. 
• It is close enough to an industrial problem. 
• It is related to a critical system. 
• It is a reference in the hybrid system control field. 
 
After translation of the specification into an IEC 61499 

function blocks diagram, the translation of this diagram into a 
SIGNAL model has been made. This model includes five blocks, 
each of them embedding approximately 100 lines of SIGNAL 
code. Properties have been formally verified on this model by 
using the SILDEX tool. Each property verification is performed 
in one to five minutes. To illustrate the usefulness of the 
approach, some verification results of the property “the failure of 
all the pumps starts the emergency stop mode” will be given. 
This property is a vivacity property that had been chosen 
because it is a major concern for the designers of a nuclear 
power plant. 

With our initial model, the SILDEX tool gives two kinds of 
results: 

• There is a situation where, when all the pumps are out 
of order, the emergency stop mode is not reached. 
Hence the studied property is not verified with this 
model. 

• A trace allowing to find how this situation can be 
reached. This trace is composed of a succession of input 
events leading to the faulty situation. 

These results enable to correct the initial model so that the 
property would be satisfied for any input events sequence.  

 
For the moment, no property dealing with physical time has 

been verified because SILDEX considers only logical time. This 
problem can be overcome by giving a value to the gap between 
two instants of a clock; e.g. by translating a property such as “the 
pump must make less that 5 minutes to become operational” into 
“the pump must take less than 100 periods of Ceve to become 
operational”. 

IV. CONCLUSIONS 

This article was aimed to highlight the interest of formal 
verification methods (theorem proving, model checking) for safe 
control systems development. 

The verification method of IEC 61499 function blocks has 
enabled to show the advantages and drawbacks of the SIGNAL 
based approach. 

Future works will focus on verification of distributed 
systems and of real time multitasking systems.  
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