
HAL Id: hal-00361624
https://hal.science/hal-00361624

Submitted on 16 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Elaboration of invariant safety properties from fault-tree
analysis

Sébastien Henry, Jean-Marc Faure

To cite this version:
Sébastien Henry, Jean-Marc Faure. Elaboration of invariant safety properties from fault-tree analysis.
IMACS-IEEE ”CESA’03” : ”Computational Engineering in Systems Applications”, Jul 2003, Lille,
France. CD ROM paper S2-I-04-0372. �hal-00361624�

https://hal.science/hal-00361624
https://hal.archives-ouvertes.fr

Elaboration of invariant safety properties from fault-tree analysis

S. HENRY*, ** and J.M. FAURE**
* LAG - ENSIEG - Rue de la Houille Blanche, F38402 Saint Martin d'Heres

sebastien.henry@lag.ensieg.inpg.fr
** LURPA – ENS de Cachan - 61, Avenue du President Wilson, F94230 Cachan

jean-marc.faure@lurpa.ens-cachan.fr

Abstract – Formal verification of PLC programs using
model-checking requires to elaborate previously
temporal logic formulae that state in a formal way the
properties that must be checked. Unfortunately
temporal logic is a formalism totally unknown by
automation engineers. This explains why PLC
programs developers willing to verify the behavior of
their programs are unable to use the existing model-
checking tools. Temporal logic formulae elaboration is
a too difficult task. In order to overcome this problem
and to bridge the gap between PLC programs
development and model-checking, this paper proposes
a methodology enabling to obtain invariant safety
properties from fault-tree analysis. Fault-tree analysis
is a quite popular analysis method often used in
industry when designing critical systems. Hence using
the results of this analysis to elaborate formal
properties may contribute to increase the use of
formal verification techniques.

I. INTRODUCTION

Programmable Logic Controllers (PLC) are widely
employed nowadays to implement industrial control
systems. The first PLC systems have been used in the
1980s to control simple processes, mainly in production
systems where they have replaced hard-wired switching
networks based on relays. The new capabilities of PLCs,
the comfort of PLC programming languages and of
programming environments as well as economic
constraints have led to an increasing use of PLC-based
systems in all the industrial fields and even for safety-
related applications. Examples can be found in transport
systems, in critical industries like chemical processes, oil
industry, power production and distribution. The growing
demand of the society for risk prevention combined with
this expanding use of PLC systems explain why PLC
programs verification [FAU, 01], [FRE, 00] is to-day a
major industrial concern.

PLC program verification does not aim merely at
checking the intrinsic properties of the program, e.g. no
infinite loop, no locking point, …, regardless the
application, but mainly at checking that the program
behaves as required. This paper focuses only on this last
kind of property: the compliance of a given PLC program
with the properties required for the application. Moreover
these properties are often ranked in two categories: safety

properties (what shall not be done) and liveliness
properties (what must be done). In this paper only safety
properties will be dealt with.

The LURPA has achieved since ten years several works
on PLC programs verification using model-checking. A
significant result of these works is a formal semantics of
the SFC and ladder diagram languages [LAM, 00], [DES,
02]. This formal definition enables to represent any
program written in these languages as a state automaton
and consequently to translate such programs into model-
checkers compliant languages. The underlying theory of
model checking [MAC, 93] [SCH, 99] is indeed state
automata theory. Hence, using a model-checker for PLC
program verification implies to have a state model of the
program as well as formal properties, in some temporal
logic, that expresses in a formal way the application
requirements and that must be satisfied by the program
(Fig. 1).

Obtaining these formal properties is unfortunately a major
problem. The application requirements are indeed
expressed in industry in a quite informal way, i.e. some
sentences in natural language or drawings., but never with
sound mathematical formulae. Moreover, temporal logic
[PNU, 77] [EME, 90] is not a classical logic and is
difficult to grasp for automation engineers. It really
matters to highlight that the use of temporal logic for
expressing properties acts as a brake for the industrial use
of model-checking of PLC programs.

Fig. 1. Formal verification using model-checking

Model – checking tool

Properties verified or not

AG(e1∧¬ e2)

Requirements

Temporal logic
formulae

Formalization

PLC

program

Modelling

State
automaton

The works presented in this paper are aimed at easing the
elaboration of formal properties of PLC programs. Other
methods, developed with the same objective, are
presented in [FIL, 99], [JUL, 99], [KLE, 01]. Though they
may help usefully designers looking for formal properties,
they require some experience and are not directly
connected to any existing industrial method for
dependability or safety analysis. On the opposite the
method presented hereafter has been developed in order to
link formal properties elaboration to a method commonly
employed in industry: fault-tree analysis. This constraint
has been put to facilitate the acceptance of industrial
users.

In the scope of this paper, only invariant safety properties
will be considered. An invariant (or static) property is true
for each state of the state automaton modeling the
program. It does not depend on time or on events
sequence and is written in CTL temporal logic [CLA, 81]
[EME, 82]: AG (present formula) or AG ¬ (present
formula), where the present formula is a combinatory
formula. A textual description of that kind of property is:
"For each path, in each state, the formula holds (or does
not hold)".

This paper is structured as follows. The section 2 gives an
overview on the developed method. A small example used
in the rest of the paper to illustrate this method is
presented in the section 3. The section 4 shows the design
of a fault-tree taking into account PLC program faults.
Formal statements are then derived from this fault-tree in
section 5. The scope of these statements as well as
program invariants elaboration are discussed in the last
section.

II. METHOD OVERVIEW

Lots of techniques have been developed in order to assess
or to enhance systems dependability when specifying and
designing [VIL, 88]. Fault-tree analysis [IEC, 90] has
been chosen for the following reasons:
• This analysis technique is widely used for critical

systems design.
• It aims to find the different causes of a given fault.
• It enables to determine how failures combinations

may lead to faults.
• Several research works have been developed to

facilitate fault–trees design from functional analysis
[DUT, 95] or to generate automatically fault-trees
[GAL, 99] [GAU, 01].

The objective of the work presented in this paper is to
take benefit of the results of a fault-tree analysis to
elaborate invariant safety properties. Figure 2 depicts the
proposed method. The general idea is to perform from the
requirements a fault-tree analysis taking into account PLC
programs faults and then to deduce temporal logic
formulae from the obtained fault-trees.

Fig. 2. Using fault-tree analysis to elaborate formal properties

III. ILLUSTRATIVE EXAMPLE

This method for properties elaboration will be presented
thanks to a small example used in the framework of a
benchmarking project by the French working group
COSED [COS]. This example, sketched in figure 3, is a
pick-and-place manipulator, part of an assembly line
located at the Mechanical Engineering Department of the
ENS Cachan. The aim of this manipulator is to pick up
gearwheels with suction cups and to transfer the
gearwheels to gear housings using two pneumatic
cylinders. Only automatic operations will be considered.

The controlled system may be decomposed into three
parts:
- Horizontal movement:

1 double-acting cylinder
1 dual-solenoid valve
2 magnetic sensors (rightmost and leftmost
positions)

- Vertical movement:
1 double-acting cylinder
1 dual-solenoid valve
2 magnetic sensors (upper and lower positions)

- Drawing up:
suction cups with a venturi system
1 single-solenoid valve
no sensor

The control system is implemented by a control program
running on a PLC. The inputs and outputs of this program
are given in figure 3.

In order to avoid collisions with mechanical systems
located between the two stations, all the horizontal
movements must be performed with the drawing up
system in the upper position. Hence any downward

Translation
method

Fault-tree analysis

Fault-trees

Formal
propertiesAG(e1∧¬ e2)

Properties verified or not

Model – checking tool

Aim of the work

Collision
au poste de prise

descendre sans être
en position avancée

avancer sans être
en haut

Collis ion en partant
du poste de prise:

reculer sans être en
pos ition haute

Descendre
(S3)

non pos.
avancée

(/e1)

Avancer
(S1)

non pos.
haute
(/e3)

Reculer
(S2)

non pos.
haute
(/e3)

movement between the two stations shall be forbidden and
considered as a fault during safety analysis.

Fig. 3. Studied example

IV. SYSTEM FAULT-TREE ELABORATION

The aim of fault-tree analysis [IEC, 90] is to determine all
the possible causes of a considered fault, called
"undesirable event". To reach this objective, fault-tree
analysis looks for how combinations of elementary faults
(faults that do not come from other faults) can lead to this
fault. The result of a fault-tree analysis can be represented
in the form of a tree including faults and logical gates.
The root of this tree is the "undesirable event", its leaves
are the elementary faults. The figure 4 presents an extract
of a fault-tree designed for the "Collision with the
environment at the picking station" fault. Similar analysis
can be carried out for other faults, like: "Collision with the
environment at the placing station" or "Drawing up
system fault".

In a classical fault tree [NIE, 02], any fault is related to a
physical component failure or to an operator fault or error.
When dealing with automatic systems, faults can come
from:

• The controlled system. In this case only physical
components failures are considered.

• The control system. Faults can be then either
physical failures of the components of this system
(sensors, input/output cards, processor, …), or
faults or errors of the control software.

It is the reason why the fault-tree depicted in the figure 4
includes physical components failures and software faults.
The fault "Move down with Leftmost Position false" is
related to the control system and is a fault of the control
software, whilst the fault "Move down with Leftmost
Position information true", is also related to the control
system but is a failure of an hardware component.

Hence, the obtained fault-tree includes three kinds of
faults: control software faults, physical components
failures and faults that are combination of these two kinds
of faults (Move down without being at the leftmost

position for instance). In order to elaborate properties
dealing only with control software faults, control program
faults shall be decoupled from other faults (coming from
physical components failures). This can be achieved by
introducing the following constraint, that the fault-tree
shall verify:

Any control program fault must be combined with
physical components faults only using OR logical
gates.

Fig. 4. Fault-tree for the "Collision with the environment at the picking
station" fault

V. FROM FAULT-TREE TO FORMAL STATEMENTS

A System properties

Assuming that the global system, that includes the
controlled system and the control system, can be
described in the form of a state automaton, the following
property in temporal logic can be derived from the
previous fault-tree:

AG ¬ (Collision with the environment at the picking
station)

INPUTS
Leftmost Position e1
Rightmost Position e2
Upper Position e3
Lower Position e4

OUTPUTS
Move to the Left S1
Move to the Right S2
Move Up S3
Move Down S4

e1 e2

e3

e4

S3 S4
S1

S2

Picking
station

Placing
station

1s

Collision with the
environment at the

picking station

Move down
without being
at the leftmost

position

Move left
without being
at the upper

position

Move
down with
Leftmost
Position

true

Move
down with
Leftmost
Position

false

Move
left with
Upper

Position
true

Move
left with
Upper

Position
false

Sensor
failure

Sensor
failure

Software
fault

Software
fault

Physical component failure

Software component fault

Combination of faults of software
and physical components

This property states that the considered fault must never
happen or, with other words, that for all paths, for each
state, this property shall always hold. Using the
decomposition provided by the fault-tree it is then
possible to obtain another equivalent expression:

AG ¬ (Move down without being at the leftmost position

∨

Move to the left without being at the upper position)

That becomes when applying the De Morgan theorem:

AG (¬Move down without being at the leftmost position

∧

¬ Move to the left without being at the upper position)

This property may be interpreted as follows: "For all
paths, in each state, it is impossible to move down without
being at the leftmost position and to move to the left
without being at the upper position", and be rewritten as a
system of two properties: "For all paths, in each state, it is
impossible to move down without being at the leftmost
position" and "For all paths, in each state, it is impossible
to move to the left without being at the upper position":

AG (¬Move down without being at the leftmost position)

AG (¬Move to the left without being at the upper

position)

When a fault is indeed the output of an OR gate, this fault
will never occur if none of the faults inputs of this gate
occurs.

B Control software properties

In order to obtain program properties, only software faults
will be kept in the following. In the case of the studied
fault-tree, the two hereafter mentioned faults will be
retained:

• Move down with Leftmost Position false

• Move left with Upper Position false.

The root of this fault-tree (the "undesirable event") is
indeed the output of a OR logical gate. Each input of this
gate is itself output of a OR gate. This structure enables to
state that the undesirable event will never occur if none of
the control program faults occurs, that leads to the
following properties system:

AG ¬ (Move down with Leftmost Position false)

AG ¬ (Move left with Upper Position false)

This system means by reasoning in the state automaton
describing the program, that, for all paths, in each state,

the two properties must hold to avoid the fault for which
the fault-tree analysis has been made.

C Taking into account PLC inputs-outputs

It is now possible to replace textual expressions by the
input and output variables of the control program, that
leads to:

 AG ¬ (S3 ∧ ¬e1) (1)

 AG ¬ (S2 ∧ ¬e3) (2)

VI. PROGRAM INVARIANTS ELABORATION

The properties system obtained in the previous section has
been deduced from a fault-tree related to collision at the
picking station. Nevertheless checking invariant
properties of a program implies that the properties to
check shall hold for all the states of the automaton
representing the program, i.e. in our case when the
drawing up system is at the placing station or moves from
a station to the other.

It matters now to ensure that the above obtained
properties are really invariants and, if not, to modify them
so as to obtain real invariants.

A. Model-based verification: introducing conditions on
inputs

[FRE, 00] describes two approaches for PLC programs
verification:

• The first one does not use any plant model. All inputs
combinations are possible.

• The other one uses a plant model that limits inputs
combinations to physically plausible ones. Hence
constraints on inputs are introduced, stating for
instance that two sensors used to indicate the
rightmost and leftmost positions of a cylinder must
never give simultaneously a true signal.

The main advantage of this second approach is to reduce
the number of reachable states and therefore the checking
time. It is the reason why this approach is often used and
will be taken in what follows. In the case of the studied
example, it is possible to introduce the two following
conditions that constraint PLC input variables:

 e1 ∧ e2=0 (c1)

the horizontal cylinder can not be at the same time at the
rightmost position and at the leftmost position

 e3 ∧ e4=0 (c2)

the vertical cylinder can not be at the same time at the
upper position and at the lower position.

B. Scope of the previous properties

The properties system (1), (2) has been deduced
considering the "Collision with the environment at the
picking station" fault. But a collision with the
environment can also occur at the placing station. From
the fault-tree of the "Collision with the environment at the
placing station" a system of two invariant properties can
be derived in a similar way:

 AG ¬ (S3 ∧ ¬e2) (3)

 AG ¬ (S1 ∧ ¬e3) (4)

The first attempt to obtain a program invariant is to
consider a generic fault "Collision with the environment"
and to merge the four previously obtained properties (1),
(2), (3) an (4):

 AG ¬ (Collision with the environment)

 AG ¬ [(S3∧¬ e1)∨ (S3∧¬ e2)∨ (S1∧¬ e3)∨ (S2∧¬ e3)]

 AG ¬ (S3∧¬ e1)∧¬ (S3∧¬ e2)∧¬ (S1∧¬ e3)∧¬ (S2∧¬ e3)

 AG (¬S3∨ e1)∧ (¬S3∨ e2)∧¬ (S1∧¬ e3)∧¬ (S2∧¬ e3)

 AG [¬S3∨ (e1∧ e2)]∧¬ (S1∧¬ e3)∧¬ (S2∧¬ e3)

It is easy to see that this attempt was wrong. The condition
c1 [e1 ∧ e2] is always false. The property is true only if
¬S3, i.e. if the drawing up system never goes down.

The properties systems previously obtained are true only
in the conditions for which the fault-tree analysis has been
performed. The system (1), (2) is true only for a collision
at the picking station and the system (3), (4) is true only
for a collision at the placing station. It is not allowed to
merge them so as to obtain a program invariant, true
whatever the state of the controlled system would be.

C. Program invariants

In order to obtain program invariants (properties true for
all states of the program), previous statements are to be
rewritten by introducing a condition indicating from
which fault-tree analysis they have been deduced, i.e. for
which situation of the plant (controlled system) there are
true. This implies to add to each present formula coming
from a given fault-tree an other present formula stating the
situation of the plant considered when designing the fault-
tree. Hence program invariants will be written in the
following way:

 AG ¬ (present formula #1∧ present formula #2)

The first formula is merely that deduced from the fault-
tree. The second one indicates the plant situation.

In the case of the studied example, a collision at the
picking station does not imply that the drawing up system
is strictly at this station, but that it arrives, leaves or is
waiting for at this station. Hence this situation must be
translated by "Not at the placing station" with a control
point of view and will be characterized with PLC inputs
by using the ¬e2 condition. The properties system (1) and
(2) becomes consequently:

 AG ¬ (S3 ∧ ¬e1 ∧ ¬e2) (5)

 AG ¬ (S2 ∧ ¬e3 ∧ ¬e2) (6)

In a similar way, "Collision at the placing station" will be
translated by ¬e1 (not to be at the picking station). The
properties system (3) and (4) becomes consequently:

 AG ¬ (S3 ∧ ¬e2 ∧ ¬e1) (7)

 AG ¬ (S1 ∧ ¬e3 ∧ ¬e1) (8)

The property (5) is identical to the property (7) and means
that the control program shall never set the "Move down"
output if neither the input variable e1 (drawing up system
at the leftmost position), nor the variable e2 (drawing up
system at the rightmost position) are true. Properties (6)
and (8) mean respectively that no movement to the left (to
the right) can occur if he drawing up system is not at the
upper position.

These four properties are the searched program invariants.

VII. CONCLUSION

This paper has presented the first results of a work whose
objective is to facilitate the elaboration of invariant safety
properties using a preliminary fault-tree analysis. The
presented method has been tested on other examples, e.g.
the control of a water distribution system including
several pumps. The main difficulty of this method lies in
the scope of the statements directly obtained from the
fault-tree. Nevertheless it has been shown in section VI
that it is possible to obtain from these statements program
invariants by introducing a formula clearly stating the
scope of the fault-tree analysis from which the statement
has been obtained.

The perspectives of this work are numerous. First of all
the robustness of this method has to be evaluated thanks
to several examples. The next step will aim at easing
dynamic properties elaboration. This implies to design
fault-trees that do not include only logical gates, but also
gates dealing with time and events sequences. Some
works taking into account that kind of specific elements
are presented in [HEN, 02]. The last step, that must be
carried out in strong cooperation with safety engineers
and PLC developers, may be the development of a
software tool supporting the method and linked to existing
fault-tree design commercial software.

REFERENCES

[CLA, 81] E.M. Clarke, E.A Emerson., "Design and synthesis of
synchronization skeletons using branching time temporal logic", In
Proc. Logics of Programs Workshop, Yorktown Heights, New-York,
May 1981, volume 131 of Lecture Notes in Computer Science, page 52-
71. Springer, 1981.
[COS] Site Internet du groupe de travail COSED du Club
EEA,http://lurpa.ens-cachan.fr/cosed/
[DES, 02] O. De Smet, O. Rossi, "Verification of a controller for a
flexible manufacturing line written in Ladder Diagram via model-
checking", In Porc. Of the American Control Conference, Anchorage,
AK May 8-10, 2002.
[DUT, 95] Y. Dutuit, F. Chatelet, J. Dos Santos, T. Bouhoufani, "Les
diagrammes-blocs fonctionnels: une aide à la construction manuelle des
arbres de defaillances - Systemes sans boucle de regulation", Revue
Europeenne Diagnostic et Sûreté de Fonctionnement, vol. 5, n°2, p.
181-200, 1995.
[EME, 90] E.A. Emerson "Temporal and modal logic" In J. Van
Leeuwen, editor, Handbook of Theoretical Computer Science, vol. B,
chapter 16, pages 995-1072. Elsevier Science Publishers, 1990.
[EME, 82] E.A. Emerson, J.Y. Halpern, "Decision procedures and
expressiveness in the temporal logic of branching time", In Proc. 14th
ACM Symp. Theory of Computing, STOC’82, San Francisco, CA, May
1982, pages 169-180, 1982.
[FAU, 01] J.M. Faure, J.J. Lesage, "Methods for safe control systems
design and implementations", 10th IFAC Symposium on Information
Control Problems in Manufacturing, INCOM 2001, Vienna (Austria),
CDRom paper, 6pages, September 2001.
[FIL, 99] T. Filkorn, M. Holzein, P. Warkentin, M. Weiss, "Formal
verification of PLC-programs", Proceedings of the 14th IFAC, 1999.
[FRE, 00] G. Frey,L. Litz, "Formal methods in PLC programming",
Proceedings of IEEE int. conf. on Systems, Man and Cybernetics,
Nashville, USA, pp. 2431-2436.
[GAL, 99] M. Gallois, M. Pilliere, "Benefits expected from automatic
studies with KB3 at EDF", Proceding of PSA'99, International Topical
Meeting on Probalistic Safety Assessment, vol. 2, p. 1061-1067,
Washington D.C., 1999.
[GAU, 01] J. Gauthier, "Outil de conception et analyse systeme",
Aralia workshop, manuel d'utilisation, Dassault Aviation, 2001.
[HEN, 02] S. Henry, "Elaboration de proprietes de surete a partir de la
methode de l'arbre des causes", Memoire de recherche de DEA de
l’Ecole Normale Superieure de Cachan, septembre 2002.
[IEC, 90] CEI/IEC - 1025, "Analyse par arbre de panne (AAP),
Geneve, Bureau Central de la CEI, 1990.
[JUL, 99] J. Julliand, F. Bellegarde, B. Parreaux, "De l’expression
des besoins à l’expression formelle de proprietes dynamiques",
Technique et Sciences Informatiques, V. 18, n°7, p747-776, juillet
1999.
[KLE, 01] Klein, S., "A case study in design and formal verification
of control algorithms using Interpreted Petri Nets and SFC", Memoire
de recherche de DEA de l’Ecole Normale Superieure de Cachan, juin
2001.
[LAM, 00] S. Lamperiere - Couffin, J.J. Lesage, "Formal Verification
of the Sequential Part of PLC Programs", 5th Workshop on Discrete
Event Systems (WODES 2000), , Ghent, Belgium, August 21 - 23,
2000.
[MAC, 93] Mac Millan, K.L., "Symbolic model checking", Kluwer
Academic, 1993.
[NIE, 02] E. Niel, E. Craye, "Maitrise des risques et surete de
fonctionnement des systemes de production", Traite IC2 productique,
ed. Hermes - Lavoisier, 2002.

[PNU, 77] A. Pnueli, "The temporal logic of programs", In proc. 18th
IEEE Symp. Foundations of computers Science (FOCS’77), Providence,
RI, USA, Oct. – Nov. 1977, pages 46-57.
[SCH, 99] P. Schnoebelen, "Verification de logiciels – Techniques et
outils du model-checking", Ed. Vuibert Informatique, 1999.
[VIL, 88] A. Villemeur, " Surete de fonctionnement des systemes
industriels", Ed. Eyrolles, 1988.

