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Abstract – Formal verification of PLC programs using 
model-checking requires to elaborate previously 
temporal logic formulae that state in a formal way the 
properties that must be checked. Unfortunately 
temporal logic is a formalism totally unknown by 
automation engineers. This explains why PLC 
programs developers willing to verify the behavior of 
their programs are unable to use the existing model-
checking tools. Temporal logic formulae elaboration is 
a too difficult task. In order to overcome this problem 
and to bridge the gap between PLC programs 
development and model-checking, this paper proposes 
a methodology enabling to obtain invariant safety 
properties from fault-tree analysis. Fault-tree analysis 
is a quite popular analysis method often used in 
industry when designing critical systems. Hence using 
the results of this analysis to elaborate formal 
properties may contribute to increase the use of 
formal verification techniques. 
 

I. INTRODUCTION 

 
Programmable Logic Controllers (PLC) are widely 
employed nowadays to implement industrial control 
systems. The first PLC systems have been used in the 
1980s to control simple processes, mainly in production 
systems where they have replaced hard-wired switching 
networks based on relays. The new capabilities of PLCs, 
the comfort of PLC programming languages and of 
programming environments as well as economic 
constraints have led to an increasing use of PLC-based 
systems in all the industrial fields and even for safety-
related applications. Examples can be found in transport 
systems, in critical industries like chemical processes, oil 
industry, power production and distribution. The growing 
demand of the society for risk prevention combined with 
this expanding use of PLC systems explain why PLC 
programs verification [FAU, 01], [FRE, 00] is to-day a 
major industrial concern. 

PLC program verification does not aim merely at 
checking the intrinsic properties of the program, e.g. no 
infinite loop, no locking point, …, regardless the 
application, but mainly at checking that the program 
behaves as required. This paper focuses only on this last 
kind of property: the compliance of a given PLC program 
with the properties required for the application. Moreover 
these properties are often ranked in two categories: safety 

properties (what shall not be done) and liveliness 
properties (what must be done). In this paper only safety 
properties will be dealt with. 

The LURPA has achieved since ten years several works 
on PLC programs verification using model-checking. A 
significant result of these works is a formal semantics of 
the SFC and ladder diagram languages [LAM, 00], [DES, 
02]. This formal definition enables to represent any 
program written in these languages as a state automaton 
and consequently to translate such programs into model-
checkers compliant languages. The underlying theory of 
model checking [MAC, 93] [SCH, 99] is indeed state 
automata theory. Hence, using a model-checker for PLC 
program verification implies to have a state model of the 
program as well as formal properties, in some temporal 
logic, that expresses in a formal way the application 
requirements and that must be satisfied by the program 
(Fig. 1).  

Obtaining these formal properties is unfortunately a major 
problem. The application requirements are indeed 
expressed in industry in a quite informal way, i.e. some 
sentences in natural language or drawings., but never with 
sound mathematical formulae. Moreover, temporal logic 
[PNU, 77] [EME, 90] is not a classical logic and is 
difficult to grasp for automation engineers. It really 
matters to highlight that the use of temporal logic for 
expressing properties acts as a brake for the industrial use 
of model-checking of PLC programs.  

 

 

 

 

 

 

 

 

Fig. 1. Formal verification using model-checking 
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The works presented in this paper are aimed at easing the 
elaboration of formal properties of PLC programs. Other 
methods, developed with the same objective, are 
presented in [FIL, 99], [JUL, 99], [KLE, 01]. Though they 
may help usefully designers looking for formal properties, 
they require some experience and are not directly 
connected to any existing industrial method for 
dependability or safety analysis. On the opposite the 
method presented hereafter has been developed in order to 
link formal properties elaboration to a method commonly 
employed in industry: fault-tree analysis. This constraint 
has been put to facilitate the acceptance of industrial 
users.  

In the scope of this paper, only invariant safety properties 
will be considered. An invariant (or static) property is true 
for each state of the state automaton modeling the 
program. It does not depend on time or on events 
sequence and is written in CTL temporal logic [CLA, 81] 
[EME, 82]: AG (present formula) or AG ¬ (present 
formula), where the present formula is a combinatory 
formula. A textual description of that kind of property is: 
"For each path, in each state, the formula holds (or does 
not hold)". 

This paper is structured as follows. The section 2 gives an 
overview on the developed method. A small example used 
in the rest of the paper to illustrate this method is 
presented in the section 3. The section 4 shows the design 
of a fault-tree taking into account PLC program faults. 
Formal statements are then derived from this fault-tree in 
section 5. The scope of these statements as well as 
program invariants elaboration are discussed in the last 
section. 

II. METHOD OVERVIEW  

Lots of techniques have been developed in order to assess 
or to enhance systems dependability when specifying and 
designing [VIL, 88]. Fault-tree analysis [IEC, 90] has 
been chosen for the following reasons:  
• This analysis technique is widely used for critical 

systems design. 
• It aims to find the different causes of a given fault. 
• It enables to determine how failures combinations 

may lead to faults. 
• Several research works have been developed to 

facilitate fault–trees design from functional analysis 
[DUT, 95] or to generate automatically fault-trees 
[GAL, 99] [GAU, 01]. 

The objective of the work presented in this paper is to 
take benefit of the results of a fault-tree analysis to 
elaborate invariant safety properties. Figure 2 depicts the 
proposed method. The general idea is to perform from the 
requirements a fault-tree analysis taking into account PLC 
programs faults and then to deduce temporal logic 
formulae from the obtained fault-trees.  

Fig. 2. Using fault-tree analysis to elaborate formal properties 

III. ILLUSTRATIVE EXAMPLE  

This method for properties elaboration will be presented 
thanks to a small example used in the framework of a 
benchmarking project by the French working group 
COSED [COS]. This example, sketched in figure 3, is a 
pick-and-place manipulator, part of an assembly line 
located at the Mechanical Engineering Department of the 
ENS Cachan. The aim of this manipulator is to pick up 
gearwheels with suction cups and to transfer the 
gearwheels to gear housings using two pneumatic 
cylinders. Only automatic operations will be considered. 

The controlled system may be decomposed into three 
parts:  
- Horizontal movement: 

1 double-acting cylinder  
1 dual-solenoid valve  
2 magnetic sensors (rightmost and leftmost 
positions)  

- Vertical movement: 
1 double-acting cylinder  
1 dual-solenoid valve  
2 magnetic sensors (upper and lower positions)  

- Drawing up: 
suction cups with a venturi system 
1 single-solenoid valve 
no sensor 
 

The control system is implemented by a control program 
running on a PLC. The inputs and outputs of this program 
are given in figure 3. 

In order to avoid collisions with mechanical systems 
located between the two stations, all the horizontal 
movements must be performed with the drawing up 
system in the upper position. Hence any downward 
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movement between the two stations shall be forbidden and 
considered as a fault during safety analysis.  
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Studied example 
 

IV. SYSTEM FAULT-TREE ELABORATION  

The aim of fault-tree analysis [IEC, 90] is to determine all 
the possible causes of a considered fault, called 
"undesirable event". To reach this objective, fault-tree 
analysis looks for how combinations of elementary faults 
(faults that do not come from other faults) can lead to this 
fault. The result of a fault-tree analysis can be represented 
in the form of a tree including faults and logical gates. 
The root of this tree is the "undesirable event", its leaves 
are the elementary faults. The figure 4 presents an extract 
of a fault-tree designed for the "Collision with the 
environment at the picking station" fault. Similar analysis 
can be carried out for other faults, like: "Collision with the 
environment at the placing station" or "Drawing up 
system fault". 

In a classical fault tree [NIE, 02], any fault is related to a 
physical component failure or to an operator fault or error. 
When dealing with automatic systems, faults can come 
from:  

• The controlled system. In this case only physical 
components failures are considered.  

• The control system. Faults can be then either 
physical failures of the components of this system 
(sensors, input/output cards, processor, …), or 
faults or errors of the control software.  

It is the reason why the fault-tree depicted in the figure 4 
includes physical components failures and software faults. 
The fault "Move down with Leftmost Position false" is 
related to the control system and is a fault of the control 
software, whilst the fault "Move down with Leftmost  
Position information true", is also related to the control 
system but is a failure of an hardware component. 
 
Hence, the obtained fault-tree includes three kinds of 
faults: control software faults, physical components 
failures and faults that are combination of these two kinds 
of faults (Move down without being at the leftmost 

position for instance). In order to elaborate properties 
dealing only with control software faults, control program 
faults shall be decoupled from other faults (coming from 
physical components failures). This can be achieved by 
introducing the following constraint, that the fault-tree 
shall verify:  

Any control program fault must be combined with 
physical components faults only using OR logical 
gates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Fault-tree for the "Collision with the environment at the picking 
station" fault 

 

V. FROM FAULT-TREE TO FORMAL STATEMENTS 

A System properties  

Assuming that the global system, that includes the 
controlled system and the control system, can be 
described in the form of a state automaton, the following 
property in temporal logic can be derived from the 
previous fault-tree: 

AG ¬  (Collision with the environment at the picking 
station) 
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This property states that the considered fault must never 
happen or, with other words, that for all paths, for each 
state, this property shall always hold. Using the 
decomposition provided by the fault-tree it is then 
possible to obtain another equivalent expression: 

AG ¬  (Move down without being at the leftmost position 

∨   

Move to the left without being at the upper position) 

That becomes when applying the De Morgan theorem: 

AG (¬Move down without being at the leftmost position 

∧   

¬  Move to the left without being at the upper position) 

This property may be interpreted as follows: "For all 
paths, in each state, it is impossible to move down without 
being at the leftmost position and to move to the left 
without being at the upper position", and be rewritten as a 
system of two properties: "For all paths, in each state, it is 
impossible to move down without being at the leftmost 
position" and "For all paths, in each state, it is impossible 
to move to the left without being at the upper position":  

AG (¬Move down without being at the leftmost position) 

AG (¬Move to the left without being at the upper 

position) 

When a fault is indeed the output of an OR gate, this fault 
will never occur if none of the faults inputs of this gate 
occurs. 

B Control software properties 

In order to obtain program properties, only software faults 
will be kept in the following. In the case of the studied 
fault-tree, the two hereafter mentioned faults will be 
retained: 

• Move down with Leftmost Position false 

• Move left with Upper Position false. 

The root of this fault-tree (the "undesirable event") is 
indeed the output of a OR logical gate. Each input of this 
gate is itself output of a OR gate. This structure enables to 
state that the undesirable event will never occur if none of 
the control program faults occurs, that leads to the 
following properties system: 

AG ¬ ( Move down with Leftmost Position false) 

AG ¬ ( Move left with Upper Position false) 

This system means by reasoning in the state automaton 
describing the program, that, for all paths, in each state, 

the two properties must hold to avoid the fault for which 
the fault-tree analysis has been made.   

C Taking into account PLC inputs-outputs 

It is now possible to replace textual expressions by the 
input and output variables of the control program, that 
leads to:  

 AG ¬ ( S3 ∧  ¬e1 ) (1) 

 AG ¬ ( S2 ∧  ¬e3 ) (2) 

 

VI. PROGRAM INVARIANTS ELABORATION 

The properties system obtained in the previous section has 
been deduced from a fault-tree related to collision at the 
picking station. Nevertheless checking invariant 
properties of a program implies that the properties to 
check shall hold for all the states of the automaton 
representing the program, i.e. in our case when the 
drawing up system is at the placing station or moves from 
a station to the other.  

It matters now to ensure that the above obtained 
properties are really invariants and, if not, to modify them 
so as to obtain real invariants.  

A. Model-based verification: introducing conditions on 
inputs 

[FRE, 00] describes two approaches for PLC programs 
verification:  

• The first one does not use any plant model. All inputs 
combinations are possible.  

• The other one uses a plant model that limits inputs 
combinations to physically plausible ones. Hence 
constraints on inputs are introduced, stating for 
instance that two sensors used to indicate the 
rightmost and leftmost positions of a cylinder must 
never give simultaneously a true signal.  

The main advantage of this second approach is to reduce 
the number of reachable states and therefore the checking 
time. It is the reason why this approach is often used and 
will be taken in what follows. In the case of the studied 
example, it is possible to introduce the two following 
conditions that constraint PLC input variables: 

 e1 ∧  e2=0 (c1) 

the horizontal cylinder can not be at the same time at the 
rightmost position and at the leftmost position 

 e3 ∧  e4=0 (c2) 



the vertical cylinder can not be at the same time at the 
upper position and at the lower position. 

B. Scope of the previous properties 

The properties system (1), (2) has been deduced 
considering the "Collision with the environment at the 
picking station" fault. But a collision with the 
environment can also occur at the placing station. From 
the fault-tree of the "Collision with the environment at the 
placing station" a system of two invariant properties can 
be derived in a similar way: 

 AG ¬ ( S3 ∧  ¬e2 ) (3) 

 AG ¬ ( S1 ∧  ¬e3 ) (4) 

The first attempt to obtain a program invariant is to 
consider a generic fault "Collision with the environment" 
and to merge the four previously obtained properties (1), 
(2), (3) an (4): 

 AG ¬ ( Collision with the environment) 

 AG ¬ [(S3∧¬ e1)∨ (S3∧¬ e2)∨ (S1∧¬ e3)∨ (S2∧¬ e3)]  

 AG ¬ (S3∧¬ e1)∧¬ (S3∧¬ e2)∧¬ (S1∧¬ e3)∧¬ (S2∧¬ e3) 

 AG (¬S3∨ e1)∧ (¬S3∨ e2)∧¬ (S1∧¬ e3)∧¬ (S2∧¬ e3) 

 AG [¬S3∨ (e1∧ e2)]∧¬ (S1∧¬ e3)∧¬ (S2∧¬ e3) 

It is easy to see that this attempt was wrong. The condition 
c1 [e1 ∧  e2] is always false. The property is true only if 
¬S3, i.e. if the drawing up system never goes down. 

The properties systems previously obtained are true only 
in the conditions for which the fault-tree analysis has been 
performed. The system (1), (2) is true only for a collision 
at the picking station and the system (3), (4) is true only 
for a collision at the placing station. It is not allowed to 
merge them so as to obtain a program invariant, true 
whatever the state of the controlled system would be.  

C. Program invariants 

In order to obtain program invariants (properties true for 
all states of the program), previous statements are to be 
rewritten by introducing a condition indicating from 
which fault-tree analysis they have been deduced, i.e. for 
which situation of the plant (controlled system) there are 
true. This implies to add to each present formula coming 
from a given fault-tree an other present formula stating the 
situation of the plant considered when designing the fault-
tree. Hence program invariants will be written in the 
following way: 

 AG ¬ (present formula #1∧  present formula #2) 

The first formula is merely that deduced from the fault-
tree. The second one indicates the plant situation.  

In the case of the studied example, a collision at the 
picking station does not imply that the drawing up system 
is strictly at this station, but that it arrives, leaves or is 
waiting for at this station. Hence this situation must be 
translated by "Not at the placing station" with a control 
point of view and will be characterized with PLC inputs 
by using the ¬e2 condition. The properties system (1) and 
(2) becomes consequently: 

 AG ¬ ( S3 ∧  ¬e1 ∧  ¬e2) (5) 

 AG ¬ ( S2 ∧  ¬e3 ∧  ¬e2) (6) 

In a similar way, "Collision at the placing station" will be 
translated by ¬e1 (not to be at the picking station). The 
properties system (3) and (4) becomes consequently: 

 AG ¬ ( S3 ∧  ¬e2 ∧  ¬e1) (7) 

 AG ¬ ( S1 ∧  ¬e3 ∧  ¬e1) (8) 

The property (5) is identical to the property (7) and means 
that the control program shall never set the "Move down" 
output if neither the input variable e1 (drawing up system 
at the leftmost position), nor the variable e2 (drawing up 
system at the rightmost position) are true. Properties (6) 
and (8) mean respectively that no movement to the left (to 
the right) can occur if he drawing up system is not at the 
upper position. 

These four properties are the searched program invariants. 

VII. CONCLUSION 

This paper has presented the first results of a work whose 
objective is to facilitate the elaboration of invariant safety 
properties using a preliminary fault-tree analysis. The 
presented method has been tested on other examples, e.g. 
the control of a water distribution system including 
several pumps.  The main difficulty of this method lies in 
the scope of the statements directly obtained from the 
fault-tree. Nevertheless it has been shown in section VI 
that it is possible to obtain from these statements program 
invariants by introducing a formula clearly stating the 
scope of the fault-tree analysis from which the statement 
has been obtained.  

The perspectives of this work are numerous. First of all 
the robustness of this method has to be evaluated thanks 
to several examples. The next step will aim at easing 
dynamic properties elaboration. This implies to design 
fault-trees that do not include only logical gates, but also 
gates dealing with time and events sequences. Some 
works taking into account that kind of specific elements 
are presented in [HEN, 02]. The last step, that must be 
carried out in strong cooperation with safety engineers 
and PLC developers, may be the development of a 
software tool supporting the method and linked to existing 
fault-tree design commercial software. 
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