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Abstract: This paper proposes a method enabling to state formal properties of a logic 
controller, a prerequisite for formal verification using model-checking, from a fault-tree 
analysis taking into account both the controlled process and the controller. Invariants, 
untimed and timed properties are considered and illustrated thanks to an example. The 
aim of this method is to ease formal properties design and to bridge the gap between fault 
forecasting and fault removal for automated systems.  
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1. INTRODUCTION 
 
Dependability of automated systems is a very 
important concern in numerous industrial fields. 
Classical dependability attributes are reliability, 
safety and availability, and can be improved thanks 
to lots of methods ranked usually in four categories: 
fault prevention methods, fault removal methods, 
fault tolerance methods, and fault forecasting 
methods (Laprie, 1992). This paper focuses only on 
fault forecasting and on fault removal. 
 
Ensuring dependability of automated systems 
requires to take into account not only the random 
faults produced by failures of physical components 
of the process (process dependability) but also the 
faults issued from control algorithms (controller 
dependability). These last ones come from designer’s 
errors or misinterpretation of the control 
requirements and behave as systematic faults. Only 
controller faults will be addressed in this paper. 
 
An efficient way to avoid controller faults consists in 
using formal verification techniques during design 

and implementation of control algorithms (Faure and 
Lesage, 2001). These fault removal methods are 
aimed at checking whether a given controller 
satisfies (or does not satisfy) the properties required 
for the control of the process.  
 
The most usual formal verification technique is 
named model-checking and relies on state automata 
theory (Bérard, et al., 2001). Its principle is to check 
whether a formal property holds on a state model of 
the system. Hence, formal verification of controller 
using model-checking implies to build a state model 
of the controller as well as to write the formal 
properties that express in a formal way the 
application requirements that must be satisfied by the 
controller. The formalism used to write the controller 
properties depends upon the selected model-checking 
tool; choosing the untimed model-checker NuSMV 
(Cimatti, et al., 2000), for instance, will lead to 
employ the CTL (Computation Tree Logic) temporal 
logic, while properties proof thanks to the timed 
model-checker UPPAAL (Uppaal homepage) will 
enable to represent formal properties in the form of 
timed automata.  



Unfortunately properties formalization is a difficult 
task because the application requirements are 
expressed in industry in a quite informal way, i.e. 
some sentences in natural language or drawings, but 
never with sound mathematical statements. Moreover 
the formalisms used by the model-checking tools 
(temporal logic or timed automata) are totally 
unknown by automation engineers.  
 
The objective of the method presented in this paper 
is to overcome this problem by facilitating the 
elaboration of formal properties. Other works like 
(Filkorn, 1999) have been developed with the same 
purpose but although those methods may usefully 
help designers looking for formal properties, they 
require some experience and are not directly 
connected to any existing industrial method for 
dependability improvement. Conversely the work 
presented in this paper proposes a methodology 
enabling to obtain formal properties for model-
checking of control algorithms by means of an 
analysis technique commonly employed in industry 
for critical systems design: fault-tree analysis.  
 
This work enables therefore to bridge the gap 
between a widely used fault forecasting method: 
fault tree analysis, and a fault removal method: 
model checking. Our aim is to take benefit of the 
results of a fault tree analysis, developed from the 
application requirements, to elaborate formal 
properties. Using fault tree analysis as the starting 
point of the method will facilitate its acceptance by 
industrial users. This paper is structured as follows. 
Section 2 sketches the bases of Fault Tree Analysis 
(FTA) and presents some recent developments of this 
fault forecasting technique. The proposed method is 
explained in section 3 and is exemplified in Section 4 
thanks to a simple mechatronics system. Conclusions 
and prospects are discussed in the last section. 
 

     

 
2. FAULT TREE ANALYSIS 

 
Since its development in 1960 by the American 
company Bell Telephone, a lot of technical and 
scientific works have been reported in the literature 
about fault tree analysis. Today it is a well known 
technique, widely used in companies for critical 
systems design. This section addresses certain fault 
trees concepts and discusses some additional variants 
of the traditional fault tree method that improve its 
application scope. 
 
2.1 Fault Tree fundamentals 
 
Fault Tree Analysis aims to find out all the 
associated sets of basic events (cut sets) in the 
system that could cause that a given top event (a 
system failure of some kind) occurs. Minimal Cut 
Sets are the smallest combinations of basic events 
being able to lead to the undesirable event. The 
events are termed “faults” if they are initiated by 
other events and are termed “failures” if they are the 
basic initiating events (US N.R. Commission, 1981). 
A basic event is an event that is not developed 

further in the analysis. The connections between the 
various identified basic events are carried out by 
means of logical gates. The two basic gate categories 
are the AND-gate and the OR-gate. Nowadays, it is 
possible to find a large offer of software tools to 
generate automatically fault trees, to find minimal cut 
sets and to calculate failure probabilities (Brooke, 
2003). As our objective is to find out systematic 
faults of controller, failure probabilities computation 
will not be considered in what follows. Focus will be 
put only on logical relationships between events.  
 
 
2.2 Dynamic Fault Trees 
 
Classical fault trees are clearly structured, but unable 
to model some aspects of real systems behaviour, 
such as event ordering information. A Fault Tree is 
called dynamic if it integrates relative time and 
sequences of events, which force a particular event to 
happen before or after another. Several research 
works have been carried out to enhance dynamic 
fault trees capacities. Thus (Bozzano and Villafiorita, 
2003) proposes a method to generate automatically 
fault trees with minimal cut sets containing event 
ordering information. (Cepin and Mavko, 2002) uses 
the house events to follow the evolution of a fault 
tree with respect to time. (Dugan, 1999) proposes the 
extension of fault trees with additional gates, which 
can model functional dependencies or primary-spare 
relationships. The works mentioned previously focus 
on faults of the process whereas our work deals with 
faults of the controller. It is the reason why we prefer 
to use the dynamic gates Exclusive OR with 
condition and Priority AND (US N.R. Commission, 
1981) depicted in figure 1.  
 
 
Fig. 1. Dynamic and temporal gates 
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2.3 Temporal Fault Trees 
 
While dynamic gates focus on relative time and 
sequential behaviour, temporal gates specify actual 
time intervals allowing to state physical delays 
between events. The work developed by (Palshikar, 
2003) proposes the creation of other special gates to 
describe temporal systems. The term Temporal Fault 
Trees (TFT) is coined for this model. TFT notation 
allows the user to easily specify the temporal 
dependence between events and preserves the 
simple, qualitative and visual nature of the fault 
trees. The semantics of this series of additional 
temporal gates is defined in terms of the past-
oriented linear propositional temporal logic 
(PLTLP). The PLTLP includes the usual non-
temporal operators: ¬ (not), ⋁(or), ⋀(and), → 
(implies), and ↔ (if and only if), as well as several 
instance-oriented past temporal operators: 
O (PREVn), � (FORPASTn), ◊ (WITHINn), 

U (UNTIL-PAST), where n is a positive integer. 
One unary temporal gate is proposed for each one of 
these temporal connectives. Figure 1 depicts only the 
FORPASTn and WITHINn gates that will be 
employed in the example of section 4. More details 
on temporal fault trees are available in the previously 
mentioned reference. 
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n
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3. FORMAL PROPERTIES ELABORATION 
 
3.1 Method overview 
 
The basic idea of this method, depicted in figure 2, is 
to obtain formal properties required to perform a 
fault removal method: model-checking of a 
controller, from the results of a fault forecasting 
method: fault tree analysis. More precisely, this 
method includes two steps: 
 
1) Design of the fault tree 
This fault tree is aimed at describing all the causes of 
an undesirable event. In the case of automated 
systems, some of these causes are physical 
components failures; other ones are issued from the 
controller. The resulting fault tree includes static 
gates, dynamic gates, if event ordering description is 
necessary to describe a fault, and temporal gates if 
timing constraints must be taken into account. In 
order to elaborate formal properties related only to 
controller variables and not to physical components 
state, any controller fault must be combined with 
physical failures using only OR logical gates. This 
enables to decouple these two kinds of faults. 
 
2) Formal properties elaboration 
Once the controller faults have been extracted from 
the fault tree obtained at the previous step, it is 
possible for each of them to give a formal property 
stating how the controller must behave so as not to 
generate this fault.  
 
 

Fig. 2. Objective of the method 
 
It matters to highlight indeed that the general form of 
a property to check is in an informal fashion "The 
controller never generates the considered fault". 
Formal properties will be written in CTL 
(Computation Tree Logic) temporal logic for static 
and dynamic gates or in the form of timed automata 
if temporal gates are used to describe the fault, for 
these two formalisms are commonly used by untimed 
and timed model-checkers. This second step is 
detailed hereafter. 
 
 
3.2 Obtaining formal properties from fault tree gates  
 
As previously mentioned, model-checking uses a 
state automaton model of the controller to check 
properties. This is the reason why formal properties 
will refer to states and paths of this automaton by 
using state quantifiers F and G and path quantifiers 
A and E: 

− F ϕ means that the property ϕ holds for 
some state within a path 

− G ϕ means that the property ϕ holds for all 
the states within a path 

− A ϕ means that the property ϕ holds for all 
the paths starting from the current state 

− E ϕ means that the property ϕ holds in some 
path starting from the current state. 

The general forms of formal properties that can be 
deduced from fault tree gates are given below. 
 
Static gates. The output fault of a static gate is 
merely a combinatory expression of its inputs. It 
doesn’t depend on time or on events sequence. The 
controller property to verify must therefore state that 
for all the paths and for all the states of the state 
automaton modelling the controller this combinatory 
expression is never true, i.e. in a formal fashion: 
AG ¬[Combinatory expression issued from the 
gate]. 
This property is an invariant that requires to consider 
only present values of controller variables. (Henry 
and Faure, 2003) illustrates the use of this property 
for checking invariant safety properties in PLC 
(Programmable Logic Controller) programs. 
 

     



Dynamic gates. Two cases will be considered: 
priority AND gate and exclusive OR gate with 
condition. 
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According to the definition of the priority AND gate, 
the fault happens if its input basic events occur in a 
specific order. In the figure 1, the output fault 
happens when the basic event “a” occurs before “b”. 
The formal property deduced from this dynamic gate 
must therefore state that this sequence of events must 
never occur within the state automaton modelling the 
controller, i.e. in a formal way:  

AG ¬ (a ⇒ EF ab). 
This formal statement means that there is no state 
where “a” is true and from which starts a path within 
which stands an other state where “ab” is true1. This 
property is an invariant that requires to consider both 
present and future values of controller variables.  It 
matters to underline that this property is written 
assuming that a is a persistent fault, i.e. that remains 
always true once occurred. Taking into account 
transient faults implies to rewrite the property as 
follows: a ⇒ EF b. Therefore two definitions of the 
priority AND gate (a followed by a.b or a followed 
by b) will lead to two different formal properties. 
Only the first one, closer to the usual definition of 
the AND gate, will be kept in the rest of this paper. 
 
In the case of an exclusive OR gate with condition, 
the fault happens if the conditioned input is true 
while the other input is false. The formal property 
that can be deduced from this gate states that this 
proposition is never true within the state automaton 
modelling the controller, i.e. in a formal way:  

A (¬b W a) 
where W represents the weak until operator (ϕ W 
Ψ holds if and only if ϕ holds as long as Ψ  does not 
hold). In the studied case, that means that for all the 
paths, the variable “b” is never true (¬b) until the 
variable “a” becomes true. Figure 3 summarizes the 
previous results. 
 
Temporal gates. The semantic of temporal gates in 
(Palshikar, 2003) is defined in terms of PLTLP but 
this semantic is not recognized by usual timed model 
checkers like Uppaal. Therefore, properties issued 
from temporal gates will be depicted as timed 
automata, which is a format accepted by timed model 
checkers. This will be illustrated in the next section. 

     

 
4. EXAMPLE  

 
The proposed method will be illustrated by means of 
an example: control of the test station. This station is 
the second one of a Bosch mechatronics system 
whose aim is to assembly/disassembly gear wheels. 
The main function of this station is to test whether a 
plain bearing is housed into the bore of the gear 
wheel. Only automatic operations will be considered 
in the following. 
 
 
 
 
 

 
Fig. 3. Properties to verify derived from some gates 
 
4.1 The process 
 
At the initial position (receiving position at the left 
side of the station) the carriage waits for a part from 
the previous station. The transfer signal issued by 
this station starts the process. Then the carriage 
moves right to a testing position where the presence 
or the absence of a plain bearing is detected. It passes 
under a detection sensor on this way; this sensor aims 
at detecting the absence or the presence of a part on 
the carriage. 
 
If there is no part on the carriage, it runs back to the 
initial position and the station demands a new gear 
wheel. In the opposite case, the process goes on and 
the carriage stops at the testing position. Then a 
pneumatic cylinder scans the bore in the gear wheel; 
the signal delivered by the cylinder switch indicates 
whether a plain bearing is in the bore or not. Then the 
carriage moves to the transfer position where the gear 
is transferred to the following station by means of a 
rotary/lift gripper.  
 
The carriage returns back to the receiving position 
and the process starts again. A PLC controls the 
global process. Its inputs and outputs are given in 
figure 4. 
 
The following sections present the design of fault 
trees corresponding to two different undesirable 
events as well as controller properties derived from 
these fault trees.  
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Fig. 4. Diagram of the test station  
 
 
 



     

 
Fig. 5. Fault tree for “Carriage containing a part is 
sent to left” 
 
4.2 First case: fault in carriage control 
 
In this analysis, we consider events related to 
physical components or to controller or that are 
combinations of these two kinds of events (edged 
respectively in fault trees by a dot line, a double line, 
and a simple line). 
 
The undesirable event to analyse is “carriage 
containing a part is sent to left” (to the initial 
position). The tree depicting this fault, shown in 
figure 5, exhibits two primary faults linked by an OR 
logical gate. The carriage with a part is sent to the 
left because the detection sensor has failed or 
because the controller failed in the signal 
interpretation and sends the carriage back.  
 
“Commission of Carriage_to_left command” is the 
result of a Priority AND gate. This fault occurs if at 
first the signal of the detection sensor is set, then the 
controller sends back the carriage. Note that we 
include the normal event “Part_Detected set”. This is 
essential here to derive the formal property that can 
model effectively the event of an erroneous 
commission of the controller output. Based on the 
results of section 3.2, the controller property to check 
is:  

AG ¬ ( pd ⇒ EF (pd . M-))         (1) 
 
 
4.3 Second case: fault in testing cylinder control  
 
The second undesirable top-level event to analyze is  
“Testing cylinder failure”. The corresponding fault 
tree is depicted in figure 6. Two primary causes lead 
to the top-level event. The first one “Commission of 
Cylinder_Extension with Testing_Position false” is a 
controller fault that means that the controller sets the 
cylinder extension when the carriage with a part is in 
any other position than the testing position. 
 
The other fault means that there is no cylinder 
extension. This may come from a physical 
(mechanical or pneumatic) failure or because the 
controller fails to set the cylinder extension output in 
a time interval of n units starting from the event 
"Testing_Position is set”. Hence we use the temporal 
gates FORPASTn and WITHINn in the fault tree.  

   Carriage   
containing 

a part is sent to left  

Commission of 
Carriage _ to_Left 

command 
Detection 

Sensor 
Failure 

Part_Detected
set   Carriage_to_ Left

set 
  

  

Elaboration of formal properties. The root of this 
fault-tree is the output of an OR logical gate. One 
input of this gate is itself output of an OR gate. This 
structure enables to state that the undesirable event 
will never occur if no physical failure occurs and if 
none of the following controller faults occurs: 

• Commission of Cylinder_Extension with 
Testing_Position false                         (F1) 

• Omission of the Cylinder_Extension 
command         (F2) 

 
F1 is the output of an AND gate. The property to 
verify, derived from this gate, can be formally stated: 
AG ¬(Commission of Cylinder_extension with 
Testing_Position false). Replacing textual 
expressions by the input and output variables of the 
control program leads to: 

AG ¬ (V+ ∧¬tp)            (2) 
 
We propose two ways to obtain a formal property 
from the fault F2. The first one is mandatory when 
untimed model-checking is employed and consists in 
treating this fault as a dynamic one and not as a 
temporal one, i.e. taking into account only the 
relative order of events and not the physical delay 
between events. Given this reinterpretation, the fault 
F2 occurs if Cylinder_extension is not set after 
Testing_Position is set. Consequently the property to 
check can be expressed as follows: “when 
Testing_Position is set then the controller must set 
Cylinder_extension”, that leads to the following 
formal CTL statement:  

AG (tp ⇒ AF V+)   (3) 
meaning that for each state where tp is true all the 
paths starting from this state will contain a state 
where V+ is true. 
 
Fig. 6. Fault tree for “Testing cylinder failure” 
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Fig. 7. Timed automaton for the temporal property 
 
The second solution is to express the property in the 
form of a timed automaton. Timed automata is a 
modeling language that allows to describe the 
behavior of systems by means of finite state 
automata, extended with clocks and time constraints 
(Alur and Dill, 1994). Timed properties expressed in 
this way can be verified with a timed model checker 
like Uppaal (Zoubek et al., 2003).  
 
The corresponding automaton for the studied 
property is shown in figure 7. The clock of the 
system is the variable t and is increased at the same 
rate as time. From the initial state of this automaton, 
only one transition leads to an intermediate state 
Verif if Testing_Position (tp) is true. In this transition 
the clock is reset. From this intermediate state, where 
the value of the clock must be smaller than or equal 
to n, two transitions are possible, the first one 
arriving to Final if V+ is true, (the controller set 
Cylinder_Extension within the n units of time), the 
second one to Error if t=n (the controller failed to 
set Cylinder_Extension within these n units). The 
property to check holds if this Error state is never 
reached. The formalization of the property in the 
form of a state automaton keeps better the semantics 
of temporal fault trees and must be prioritized. The 
first solution is a useful alternative when only 
untimed model-checking is used.  
 
 

5. CONCLUSIONS 
 

Model checking is a quite popular technique for 
formal verification of controllers and an useful tool 
when designing dependable automated systems. 
However its application requires that the properties 
to verify are written in a formal way. This paper 
proposes to facilitate this task by means of a 
preliminary fault-tree analysis taking into account 
not only random faults coming from physical 
components but also systematic controller faults. 
Dynamic and temporal gates enable to model 
complex cause-consequence relationships taking into 
account event ordering information, and real-time 
constraints. The simple case-study presented 
illustrates the interest of this method. 
 
Several prospects can be drawn from this work. First 
of all, it matters to determine the minimum set of 
gates needed to describe all potential controller 
faults; only some usual or promising gates have been 
dealt with indeed. Hence several case studies must be 

performed to determine whether this set is sufficient 
or not. These studies may lead to define new gates 
able to describe more complex events ordering 
information and time constraints than the ones 
presented. Obtaining minimal cut-sets of fault-trees 
including dynamic and temporal gates is also a 
challenging issue that deserves to be addressed. At 
last, robustness and scalability of the properties 
elaboration method will have to be evaluated thanks 
to larger examples. 
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