
HAL Id: hal-00361509
https://hal.science/hal-00361509

Preprint submitted on 16 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Random repeated quantum interactions and random
invariant states

Ion Nechita, Clément Pellegrini

To cite this version:
Ion Nechita, Clément Pellegrini. Random repeated quantum interactions and random invariant states.
2009. �hal-00361509�

https://hal.science/hal-00361509
https://hal.archives-ouvertes.fr


RANDOM REPEATED QUANTUM INTERACTIONS

AND RANDOM INVARIANT STATES

ION NECHITA AND CLÉMENT PELLEGRINI

Abstract. We consider a generalized model of repeated quantum interactions, where
a system H is interacting in a random way with a sequence of independent quantum
systems Kn, n > 1. Two types of randomness are studied in detail. One is provided by
considering Haar-distributed unitaries to describe each interaction between H and Kn.
The other involves random quantum states describing each copy Kn. In the limit of a
large number of interactions, we present convergence results for the asymptotic state of
H. This is achieved by studying spectral properties of (random) quantum channels which
guarantee the existence of unique invariant states. Finally this allows to introduce a new
physically motivated ensemble of random density matrices called the asymptotic induced

ensemble.

1. Introduction

Initially introduced in [2] as a discrete approximation of Langevin dynamics, the model
of repeated quantum interactions has found since many applications (quantum trajecto-
ries, stochastic control, etc.). In this work we generalize this model by allowing random
interactions at each time step. Our main focus is the long-time behavior of the reduced
dynamics.

Our viewpoint is that of Quantum Open Systems, where a “small” system is in inter-
action with an inaccessible environment (or an auxiliary system). We are interested in
the reduced dynamics of the small system, which is described by the action of quantum
channels. When repeating such interactions, under some mild conditions on the spectrum
of the quantum channel, we show that the successive states of the small system converge
to the invariant density matrix of the channel.

These considerations motivated us to consider random invariant states, and we introduce
a new probability measure on the set of density matrices. There exists extensive literature
[8, 28, 19, 3] on what is a “typical” density matrix. There are two general categories of

such probability measures on M1,+
d (C): measures that come from metrics with statistical

significance and the so-called “induced measures”, where density matrices are obtained as
partial traces of larger, random pure states. Our construction from Section 4 falls into the
second category, since our model involves an open system in interaction with a chain of
“auxiliary” systems.

Next, we introduce two models of random quantum channels. In the first model, we
allow for the states of the auxiliary system to be random. In the second one, the unitary
matrices acting on the coupled system are assumed random, distributed along the Haar
invariant probability on the unitary group, and independent between different interactions.
Since the (random) state of the system fluctuates, almost sure convergence does not hold,
and we state results in the ergodic sense.

The article is structured as follows. The Section 2 is devoted to presenting the model
of quantum repeated interactions and its description via quantum channels. Section 3
contains some general facts about the spectra of completely positive maps, as well as some
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2 I. NECHITA AND C. PELLEGRINI

related tools from matrix analysis. Next, in Section 4 we study our first model, where
the interaction unitary is a fixed, deterministic matrix. We prove that, under some as-
sumptions on the spectrum of the quantum channel, the state of the system converges to
the invariant state of the channel. It is at this time that we introduce the new ensemble
of random density matrices, by transporting the unitary Haar measure via the applica-
tion which maps a channel to its invariant state. The final two sections are devoted to
introducing two models of random quantum channels, one where the interaction unitary
is constant and the auxiliary states are i.i.d. density matrices (Sec. 5) and another where
the interaction unitaries are independent and Haar distributed (Sec. 6).

We introduce now some notation and recall some basic facts and terminology from quan-
tum information theory. We write Msa

d (C) for the set of self-adjoint d×d complex matrices

and M1,+
d (C) for the set of density matrices (or states), M1,+

d (C) = {ρ ∈ Msa
d (C) | ρ >

0,Tr[ρ] = 1}. Since our main focus is quantum information, all Hilbert spaces in this arti-
cle are complex and finite dimensional. Scalar products are assumed linear in the second
coordinate and, for two vectors x ∈ H, y ∈ K we denote by |x〉〈y| ∈ B(K,H) the map

|x〉〈y|(z) = 〈y, z〉 · x, ∀z ∈ K.

An unit vector x ∈ H ≃ C
d is called a pure state and it is assimilated often with the

orthogonal projection on Cx, |x〉〈x|. Finally, for a matrix A ∈ B(H⊗K) ≃ B(H)⊗B(K),
we define its partial trace with respect to K as the unique element B = TrK[A] ∈ B(H)
which verifies

Tr[BX] = Tr[A(X ⊗ IK)], ∀X ∈ B(H).

We shall also extensively use the Haar (or uniform) measure hd on the unitary group
U(d); it is the unique probability measure which is invariant by left and right multiplication
by unitary elements:

∀V,W ∈ U(d), ∀f : U(d) → C Borel,

∫

U(d)
f(U)dhd(U) =

∫

U(d)
f(V UW )dhd(U).

2. The repeated quantum interaction model

In this introductory section we give a description of the physical model we shall use in
the rest of the paper: repeated quantum interactions. The setting, a system interacting
repeatedly with “independent” copies of an environment, was introduced by S. Attal
and Y. Pautrat in [2] where it was shown that in the continuous limit (when the time
between interactions approaches zero), the dynamics is governed by a quantum stochastic
differential equation. A different model, where after each interaction an indirect quantum
measurement of the system is performed, was considered by the second named author
in [21, 22] and shown to converge in the limit to the so-called stochastic Schrödinger
equations. Here, we are concerned only with the discrete setting and with the limit of a
large number of interactions. The study of random quantum trajectories is postponed to
a later paper.

Consider a quantum system S described by a complex Hilbert space state H. In realistic
physical models, S is usually a quantum system with relatively few degrees of freedom and
it represents the object of interest of our study; we shall refer to it as the small system.
Consider also another quantum system E which interacts with the initial small system S.
We shall call E the environment and we denote by K its Hilbert state space. In this work
we consider finite dimensional spaces H ≃ C

d and K ≃ C
d′ .

We shall eventually be interested in repeated interactions between S and independent
copies of E , but let us start with the easier task of describing a single interaction between
the “small” system and the environment. Assume that the initial state of the system is a
product state σ = ρ⊗ β, where ρ and β are the respective states of the small system and
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the environment. The coupled system undergoes an unitary evolution U and U(ρ⊗β)U∗ is
the global state after the interaction. The unitary operator U comes from a Hamiltonian

Htot = HS ⊗ I + I⊗HE +Hint,

where the operators HS and HE are the free Hamiltonians of the systems S and E re-
spectively and Hint represents the interaction Hamiltonian. We shall be interested in the
situation where Hint 6= 0, otherwise there is no coupling and the system and the environ-
ment undergo separate dynamics. In this general case, the evolution unitary operator U
is given by

U = e−iτHtot ,

where τ > 0 is the interaction time. Hence, the state of the coupled system S + E after
one interaction is given by

σ′ = U(ρ⊗ β)U∗.

Since one is interested only in the dynamics of the “small” system S, after taking the
partial trace we obtain the final state of S,

(1) ρ′ = TrK[U(ρ⊗ β)U∗].

We now move on to describe successive interactions between S and a chain of indepen-
dent copies of E . In order to do this, consider the countable tensor product

Ktot =

∞
⊗

n=1

Kn,

where Kn is the n-th copy of the environment (Kn ≃ K ≃ C
d′). This setting can be inter-

preted in two different ways: globally, as an evolution on infinite dimensional countable
tensor product H ⊗ Ktot, or by discarding the environment, as a discrete evolution on
B(H) = Md(C). Since we are interested only in the evolution of the “small” system, the
latter approach is the better choice. From Eq. (1), we obtain the recurrence relation

(2) ρn = TrK[Un(ρn−1 ⊗ βn)U∗
n],

where ρn−1, ρn ∈ M1,+
d (C) are the successive states of the system S at times n − 1 and

n, and Un and βn are the interaction unitary and respectively the state of the auxiliary
system E for the n-th interaction. Note that at this stage we work in a general setting,
without making any assumptions on the sequences (Un)n and (βn)n.

We introduce now a more parsimonious description of repeated quantum interactions,
via quantum channels. Recall that a linear map Φ : Md(C) → Md(C) is called k-positive
if the extended map Φ ⊗ Ik : Md(C) ⊗ Mk(C) → Md(C) ⊗ Mk(C) is positive. Φ is
called completely positive if it is k-positive for all k > 1 (in fact k = d suffices) and trace
preserving if Tr[Φ(X)] = Tr[X] for all X ∈ Md(C). By definition, a quantum channel is
a trace-preserving, completely positive linear map. The next proposition gives two very
important characterizations of quantum channels.

Proposition 2.1 (Stinespring-Kraus). A linear map Φ : Md(C) → Md(C) is a quantum
channel if and only if one of the following two equivalent conditions holds.

(a) (Stinespring dilation) There exists a finite dimensional Hilbert space K = C
d′,

a density matrix β ∈ M1,+
d′ (C) and an unitary operation U ∈ U(dd′) such that

Φ(X) = TrK [U(X ⊗ β)U∗] , ∀X ∈ Md(C).

(b) (Kraus decomposition) There exists an integer k and matrices L1, . . . , Lk ∈
Md(C) such that

(3) Φ(X) =
k

∑

i=1

LiXL
∗
i , ∀X ∈ Md(C)
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and
k

∑

i=1

L∗
iLi = Id .

Remark 2.2. It can be shown that the dimension of the ancilla space in the Stinespring
dilation theorem can be chosen d′0 = d2 and β can be chosen to be a rank one projector. A
similar result holds for the number of Kraus operators: one can always find a decomposition
with k = d2 operators. The Choi rank of a quantum channel Φ is the least positive integer
k such that Φ admits a Kraus decomposition (3) with k operators Li.

We see now that Eq. (2) can be re-written as

ρn = ΦUn,βn(ρn−1),

where ΦU,β is the quantum channel

M1,+
d (C) → M1,+

d (C)

ρ 7→ TrK[U(ρ⊗ β)U∗].

After n such interactions, the state of the system becomes

(4) ρn = ΦUn,βn ◦ ΦUn−1,βn−1 ◦ · · · ◦ ΦU1,β1ρ.

Let us now consider a fixed channel Φ = ΦU,β and show that the Stinesping and Kraus
form of Φ are connected in a simple fashion. To this end, start with the Stinespring form
of Φ and pick some orthonormal bases {ei}

d
i=1 and {fj}

d′

j=1 of respectively H = C
d and

K = C
d′ such that the state of the environment β diagonalizes:

β =
d′

∑

j=1

bj |fj〉〈fj |.

Next, endow the product space H⊗K = C
dd′ with the basis

(5) {e1 ⊗ f1, e2 ⊗ f1, . . . , en ⊗ f1, e1 ⊗ f2, . . . , en ⊗ f2, . . . , en ⊗ fk}.

This particular ordering of the tensor product basis was preferred in order to have a simple
expression for the partial trace operation with respect to the environment K. Indeed, if
a matrix A ∈ Mdd′(C) is written in this basis and viewed as a d′ × d′ matrix of blocks
Aij ∈ Md(C):

A =











A11 A12 · · · A1d′

A21 A22 · · · A2d′

...
...

. . .
...

Ad′1 Ad′2 · · · Ad′d′











,

then the computation of the partial trace with respect to K = C
d′ reads

TrK[A] = TrK





d′
∑

i,j=1

Aij ⊗ |fi〉〈fj |



 =

d′
∑

i,j=1

Aij · 〈fj, fi〉 = A11 +A22 + · · · +Ad′d′ .

In other words, the partial trace of A over the environment K is simply the trace of the
block-matrix, that is the sum of the diagonal blocks of A. We apply now these ideas to
the Stinespring form of a quantum channel, Φ(X) = TrK[U(X⊗β)U∗]. Written as a block
matrix in the basis defined in Eq. (5), the matrix X ⊗ β is diagonal, with diagonal blocks
given by bjX ∈ Md(C). Writing U ∈ U(dd′) in the same fashion and taking the partial
trace, we obtain

(6) Φ(X) = TrK[U(X ⊗ β)U∗] =
d′

∑

i,j=1

bjUijXU
∗
ij =

d′
∑

i,j=1

(
√

bjUij)X(
√

bjUij)
∗,
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where Uij ∈ Md(C) are the blocks of the interaction unitary U . One recognizes a Kraus
decomposition for Φ, where the Kraus elements are rescaled versions of the blocks of the
Stinespring matrix U . Moreover, if β is a rank one projector then all the bj’s are zero
except one, hence the Kraus decomposition we obtained has d′ elements.

3. Spectral properties of quantum channels

Since we shall be interested in repeated applications of quantum channels, it is natural
that spectral properties of these maps should play an important role in what follows. One
should note that most results of this section can be generalized to infinite dimensional
Hilbert spaces.

The next lemma gathers some basic facts about quantum channels. Since quantum
channels preserve the compact convex set of density matrices M1,+

d (C), the first affirmation
follows from the fixed point theorem of Markov-Kakutani [10]. The second and the third
assertions are trivial (see [23] for further results on Lp norms of quantum channels), and
the last one is a consequence of 2-positivity.

Lemma 3.1. Let Φ : Md(C) → Md(C) a quantum channel. Then

(a) Φ has at least one invariant element, which is a density matrix;
(b) Φ has trace operator norm of 1;
(c) Φ has spectral radius of 1;
(d) Φ satisfies the Schwarz inequality

∀X ∈ Md(C), Φ(X)∗Φ(X) 6 ‖Φ(1)‖Φ(X∗X).

If one looks at a channel Φ as an operator in the Hilbert space Md(C) endowed with
the Hilbert-Schmidt scalar product, then one can introduce Ψ, the dual map of Φ. It is
defined by the relation

Tr[XΦ(Y )] = Tr[Ψ(X)Y ], ∀X,Y ∈ Md(C).

From Kraus decomposition Φ(X) =
∑

LiXL
∗
i , one can obtain a Kraus decomposition for

the dual channel, Ψ(X) =
∑

L∗
iXLi. Note that the trace preserving condition for Φ,

∑

L∗
iLi = I reads now Ψ(I) = I. Hence, the dual of a quantum channel is a unital (not

necessarily trace-preserving) completely positive linear map. Using this idea, one can see
that the partial trace operation TrK : Mdd′(C) → Md(C) is the dual of the tensoring
operation SK : Md(C) → Mdd′(C), S(X) = X ⊗ Id′ .

We now introduce some particular classes of positive maps which are known to have
interesting spectral properties.

Definition 3.2. Let Φ : Md(C) → Md(C) be a positive linear map. Φ is called strictly
positive (or positivity improving) if Φ(X) > 0 for all X > 0. Φ is called irreducible if there
is no projector P such that Φ(P ) 6 λP for some λ > 0.

Example 3.3. Let U ∈ U(d) be a fixed unitary and consider the channel Φ : Md(C) →
Md(C), Φ(X) = UXU∗. It is easy to check that the spectrum of Φ is the set

{λ1λ2 |λ1, λ2 eigenvalues of U}.

Since Φ maps pure states (i.e. rank-one projectors) to pure states, it neither irreducible,
nor strictly positive.

Obviously, a strictly positive map is irreducible. In fact, the following characterization
of irreducibility is known [11].

Proposition 3.4. A positive linear map Φ : Md(C) → Md(C) is irreducible if and only
if the map (1 + Φ)d−1 is strictly positive.
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Irreducible unital maps which satisfy the Schwarz inequality have very nice peripheral
spectra. The proof of the following important result can be found in one of [11, 13, 15],
in more general settings.

Theorem 3.5. If Ψ is a unital, irreducible map on Md(C) which satisfies the Schwarz
inequality, then the set of peripheral (i.e. modulus one) eigenvalues is a (possibly trivial)
subgroup of the unit circle T. Moreover, every peripheral eigenvalue is simple and the
corresponding eigenspaces are spanned by unitary elements of Md(C).

Irreducible (and, in particular, strictly positive) quantum channels have desirable spec-
tral properties, hence the interest one has for these classes of maps. As we shall see in
Section 4, irreducible maps are in certain sense generic. On the other hand, the strict pos-
itivity condition is rather restrictive and not suitable for the considerations on this work.
Next, we develop these ideas, giving criteria for irreducibility and for strict positivity.

Let us start by analyzing strict positivity. Subspaces of product spaces C
d ⊗ C

d′ with
high entanglement have received recently great attention. In this direction, applications to
the additivity conjecture [16, 17] are the most notable ones. The results in these papers,
which rely on probability theory techniques deal with von Neumann entropy. When one
looks at the rank, projective algebraic geometry comes into play. Indeed, possible states
of the coupled system are modeled by the projective space P

dd′ . This space contains the
product states, P

d−1 ⊗ P
d′−1 as a subset called the Segre variety. The following lemma,

a textbook result in algebraic geometry, is obtained by computing the dimension of the
Segre variety (see [9, 20, 26]).

Lemma 3.6. The maximum dimension of a subspace S ⊂ C
d⊗C

d′ which does not contain
any non-zero product elements x⊗ y is (d− 1)(d′ − 1).

As a rather simple consequence of this lemma, we obtain a necessary condition for strict
positivity.

Proposition 3.7. Let Φ : Md(C) → Md(C) be strictly positive quantum map. Then the
Choi rank of Φ is at least 2d− 1.

Proof. Let Φ(X) =
∑k

i=1 LiXL
∗
i be a minimal Kraus decomposition of a strictly positive

channel Φ. For all x 6= 0, Φ(|x〉〈x|) has full rank, and thus, for all non-zero y ∈ C
d,

Tr [Φ(|x〉〈x|)|y〉〈y|] =

k
∑

i=1

|〈y, Lix〉|
2 > 0.

Hence, for all non-zero x, y ∈ C
d, there exist an i such that 〈y, Lix〉 = Tr[Li|x〉〈y|] 6= 0,

or, in other words, L∗
i is not orthogonal to |x〉〈y| with respect to the Hilbert-Schmidt

scalar product. Consider now the space S =
⋂k

i=1(L
∗
i )

⊥ ⊂ Md(C). Obviously, S does not

contain any rank one matrices |x〉〈y|. Under the usual isomorphism C
d ⊗ (Cd)∗ ≃ Md(C),

product vectors x⊗ y are identified with rank one matrices |x〉〈y|, so, by the Lemma 3.6,
we get dimS 6 (d − 1)2 = d2 − (2d − 1). Since S is the intersection of k subspaces of
dimension d2 − 1, we get d2 − k 6 dimS 6 d2 − (2d− 1) which implies k > 2d− 1. �

We now turn to irreducible quantum maps and state some results which will be useful
later, when showing that irreducibility is generic for a specific model of random quantum
channels.

The following result of [13] gives necessary and sufficient conditions for a map written in
the Kraus form to be irreducible. We denote by Lat(T ) the lattice of invariant subspaces
of an operator T ∈ Md(C).

Proposition 3.8. Consider the map Φ : Md(C) → Md(C) defined by Φ(x) =
∑k

i=1 LiXL
∗
i ,

with Li ∈ Md(C), i = 1, . . . , k. Then Φ is irreducible if and only if
⋂k

i=1 Lat(Li) is trivial.
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Of course, quantum channels of Choi rank one (i.e. unitary conjugations, see also
Example 3.3), Φ(X) = LXL∗, with L∗L = I cannot be irreducible, since they leave
invariant eigenprojectors of L. When looking at channels with Choi rank at least two,

an useful criterion for deciding whether
⋂k

j=1 Lat(Lj) is trivial or not is given by the
following two results. The first proposition gives necessary and sufficient conditions for
two matrices A and B to share a common eigenvector, and the second one generalizes this
idea to arbitrary common subspaces.

Proposition 3.9 (The Shemesh criterion, [24]). Two matrices A,B ∈ Md(C) have a
common eigenvector if and only if

d−1
⋂

i,j=1

ker[Ai, Bj ] 6= {0},

or, equivalently, iff

det

d−1
∑

i,j=1

[Ai, Bj]∗ · [Ai, Bj ] = 0.

In order to move on from common eigenvectors to common invariant subspaces, we
consider antisymmetric tensor powers (or wedge powers) of matrices (see [4], Ch. I).
Given A ∈ Md(C) and and an integer 1 6 k 6 n, the k-th wedge power of A, denoted
by A∧k, is defined as the restriction of A⊗k to the antisymmetric tensor product (Cd)∧k.

More precisely, A∧k is a n× n matrix, where n =
(

d
k

)

. Its matrix elements are indexed by
couples (α, β) of strictly increasing sequences of size k from {1, . . . , d}:

(

A∧k
)

α,β
= detA[α|β],

where A[α|β] is the submatrix of A with rows indexed by α and columns indexed by β.
The next result of [14] is an easy consequence of the fact that if λ1, . . . , λk are eigenvalues
of A with linear independent vectors v1, . . . , vk, then λ1λ2 · · ·λk is an eigenvalue of A∧k

with corresponding eigenvector v1 ∧ · · · ∧ vk.

Proposition 3.10 (Generalized Shemesh criterion, [14]). Let A,B ∈ Md(C) be two
complex matrices. If A and B have a common invariant subspace of dimension k (for
1 6 k 6 d− 1), then their k-th wedge powers have a common eigenvector, and hence (we

put n =
(

d
k

)

)

n−1
⋂

i,j=1

ker[(A∧k)i, (B∧k)j ] 6= {0},

or, equivalently,

det

n−1
∑

i,j=1

[(A∧k)i, (B∧k)j ]∗ · [(A∧k)i, (B∧k)j ] = 0.

Remark 3.11. The preceding conditions turn out to be sufficient under more stringent
assumptions on the matrices A and B (see [14] for further details).

The main point of the two preceding results is that there exists an universal polynomial
P ∈ R[X1, . . . ,X4d2 ] with the property that whenever two matrices A = (aij) andB = (bkl)
have a non-trivial common invariant subspace, P (Re aij, Im aij ,Re bkl, Im bkl) = 0. This
fact (together with Proposition 3.8) will be useful later in this work, when we shall show
that a generic class of quantum maps are irreducible.
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4. Non-random repeated interactions and a new model of random density

matrices

In this section we consider repeated interactions with a fixed unitary matrix U (∀n,Un =
U) and fixed state of the environment β (∀n, βn = β). By the results of the previous
section, the recurrence relation which governs the discrete, deterministic dynamics is

ρn+1 = Φ(ρn) = TrK [U(ρn ⊗ β)U∗] .

Iterating this formula, one obtains the state of the system after n interactions:

ρn = Φn(ρ0),

where ρ0 was the initial state of the system. There is one obvious situation in which the
asymptotic properties of the sequence (ρn)n can be established. Indeed, from Lemma 3.1,
one knows that all quantum channels have eigenvalue 1 and that all other eigenvalues
have module less than 1. Let C be the set of all quantum channels that have 1 as a simple
eigenvalue and all other eigenvalues are contained in the open unit disc. Since 1 is a
simple eigenvalue, Φ has an unique fixed point which is (by Lemma 3.1) a density matrix

ρ∞ ∈ M1,+
d (C). Using the Jordan form of Φ, one can show the following result ([25]).

Proposition 4.1. Let Φ ∈ C be a fixed quantum channel. Then, for all ρ0 ∈ M1,+
d (C),

lim
n→∞

Φn(ρ0) = ρ∞,

where ρ∞ is the unique invariant state of Φ.

The importance of the peripheral spectrum of a quantum channel is illustrated in the
following example.

Example 4.2. Consider the following channel Φ : M2(C) → M2(C)

Φ(X) =
1

2
σ1Xσ1 +

1

2
σ3Xσ3,

where the Pauli matrices are given by

σ0 = I =

[

1 0
0 1

]

, σ1 =

[

0 1
1 0

]

, σ2 =

[

0 −i
i 0

]

, σ3 =

[

1 0
0 −1

]

.

Direct computation shows that Φ(I) = I, Φ(σ2) = −σ2 and Φ(σ1) = Φ(σ3) = 0. Hence,
the peripheral spectrum of Φ has 2 simple eigenvalues, 1 and −1. However, for ρ0 =
1/2(I +σ2) ∈ M1,+

2 (C), one has

Φn(ρ0) =
1

2
(I +(−1)nσ2) ,

which does not converge in the limit n → ∞. Hence, the simplicity of the eigenvalue 1
does not suffice to have convergence to the invariant state. Note also that the channel Φ
is irreducible, since σ1 and σ3 do not have any common non-trivial invariant subspaces.

Let us now show that the class C of quantum channels which have 1 as an unique
peripheral eigenvalue is generic in a certain sense. To this end, we shall introduce a model
of random quantum channel, based on the Stinespring decomposition. To start, fix the
dimension of the environment d′ and a state β ∈ M1,+

d′ (C). Next, consider an unitary
random matrix U distributed along the (uniform) Haar measure hdd′ on U(dd′). To the
state β and the evolution operator U , we associate the quantum channel ΦU,β. In this
way, we define a model of random quantum channels by considering the image measure
of the Haar distribution hdd′ on the set of quantum channels. In the recent preprint [27],
the authors study a similar model of random quantum channels, focusing on the spectral
properties of the random matrix defining the channel.
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More precisely, we claim that if the state of the environment β is fixed and the interaction
unitary U ∈ U(dd′) is chosen randomly with the uniform Haar distribution hdd′ , then, with
probability one, the channel ΦU,β admits 1 as the unique eigenvalue on the unit circle. Here
we need another fact from algebraic geometry, summarized in the following lemma (for a
similar result, one should have a look at Proposition 2.6 of [1]).

Lemma 4.3. Given a polynomial P ∈ R[X1, . . . ,X2d2 ], the set

Z = {U = (uij) ∈ U(d) |P (Re uij , Imuij) = 0}

is either equal to the whole set U(d) or it has Haar measure 0.

Proof. We start by noticing that the real algebraic set U(d) is irreducible. This follows
from the connectedness of U(d) (in the usual topology) and from the fact that irreducible
components of a linear algebraic group are disjoint ([18], 7.3). The set Z is the intersection
of the irreducible variety U(d) with the variety V of zeros of the polynomial P . If U(d) ⊂ V ,
then Z = U(d); otherwise, the dimension of Z is strictly smaller than d2, the real dimension
of U(d). Since the Haar measure is just the integration of an invariant differential form,
it has a density in local coordinates ([12], Ch. 5) and hence hd(Z) = 0 in this case. �

Theorem 4.4. Let β be a fixed density matrix of size d′. If U is a random unitary matrix
distributed along the Haar invariant probability hdd′ on U(dd′), then ΦU,β ∈ C almost
surely.

Proof. The proof goes in two steps. First, we show that ΦU,β is almost surely irreducible
and then we conclude by a simple probabilistic argument.

Let us start by applying Lemma 4.3 to show that a random quantum channel is almost
surely irreducible. To this end, using Eq. (6), we obtain a set of Kraus operators for ΦU,β

which are sub-matrices of U ∈ U(dd′). Consider two such Kraus operators A,B ∈ Md(C)
(choose j such that bj 6= 0 and take A = U1j , B = U2j). Using Proposition 3.8, to show
irreducibility it suffices to see that A and B do not have a non-trivial common invariant
subspace. Let 1 6 k 6 d−1 be the dimension of a potentially invariant common subspace
of A and B. By the criterion in Proposition 3.10, there exists a polynomial Pk in the
entries of A and B (and thus in the entries of U) such that if Pk(U) is non-zero, then A
and B do not share a k-dimensional invariant space. Note that Pk can not be identically
zero: for two small enough matrices Ã, B̃ without common invariant subspaces, one can
build a unitary matrix Ũ such that Ã = Ũ1j , B̃ = Ũ2j . By the Lemma 4.3, hdd′ -almost
all unitary matrices U give Kraus operators A and B that do not have any k-dimensional
invariant subspaces in common. Since the intersection of finitely many full measure sets
has still measure one, almost all quantum channels are irreducible.

Consider now a random channel ΦU,β which we can assume irreducible. Since the
peripheral spectrum of an irreducible channel is a multiplicative subgroup of the unit
circle T, it suffices to show that for all element λ of the finite set {ξ ∈ T|∃1 6 n 6

d2 s.t. ξn = 1} \ {1}, with Haar probability one, λ is not an eigenvalue of ΦU,β. We
use the same trick as earlier. Consider such a complex number λ and introduce the
polynomialQλ(U) = det[ΦU,β−λ I(dd′)2 ], where ΦU,β is seen as a matrix ΦU,β ∈ M(dd′)2(C).

Since λ 6= 1 and the identity channel ΦU=I,β has only unit eigenvalues, Qλ(U) cannot be
identically zero, and the conclusion follows. �

Remark 4.5. The main difficulty in the proof of the preceding result comes from the fact
that the matrices A and B are “correlated”: two blocks of an unitary matrix must satisfy
norm and (maybe) orthogonality relations. Hence the need to use sophisticated geometric
algebra techniques. Proving that two independent random Gaussian (or unitary) matrices
do not share non-trivial invariant subspaces is much simpler and does not require the use
of such techniques.
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We now move on and apply the previous results to constructing a new family of prob-
ability distributions on the set of density matrices. The main idea is to assign, whenever
possible, to a random unitary U ∈ U(dd′) its unique invariant density matrix ρ∞. In this
way, the Haar measure hdd′ on the unitary group U(dd′) is transported to the set of density

matrices M1,+
d (C).

Let us now make this construction more precise. The new family of probability measures
shall be indexed by an integer d′ > 1 (the dimension of the auxiliary system) and by a non-

increasing probability vector b = (b1, . . . , bd′) ∈ C
d′ : b1 > b2 > . . . > bd′ > 0 and

∑

i bi = 1
(these are the eigenvalues of the state of the auxiliary system). For such a couple (d′, b)

consider a density matrix β ∈ M1,+
d′ (C) with eigenvalue vector b (the eigenvectors of β do

not matter, see Lemma 4.6). As it follows from Proposition 4.4, for almost all unitaries
U ∈ U(dd′), the channel ΦU,β satisfies the hypotheses of Proposition 4.1. Hence, for almost

all U and for all density matrices ρ0 ∈ M1,+
d (C), limn→∞(ΦU,β)nρ0 = ρ∞, where ρ∞ is the

unique invariant state of ΦU,β. We have defined almost everywhere an application

U(dd′) → M1,+
d (C)

U 7→ ρ∞.

We denote by νb the image measure of the Haar probability hdd′ on U(dd′) by the previous
application (notice that we dropped the integer parameter d′, since this is the dimension
of the vector b). We call νb the asymptotic induced measure on the set of density matrices.

We now motivate the term “asymptotic induced” in the previous definition by showing
how the measures νb relate to the induced random density matrices considered in [28, 19].
Let us recall here how these measures are constructed and how one can sample from
this distribution. The physical motivation behind the induced measures comes from the
following setup. Assume that a system S is coupled to an environment E and that the
whole is in a pure state ψ ∈ H ⊗K. If one has no a priori knowledge about the state ψ,
then it is natural to assume that ψ is a random uniform element on the unit sphere of the
product space H⊗K. The distribution of the partial trace over the environment

ρ1 = TrK[|ψ〉〈ψ|]

is called the induced measure and it is denoted by µd′ (the parameter d′ = dimK is the
dimension of the environment). We refer the interested reader to [19] for more information
on these measures. Since the distribution of an uniform norm-one vector ψ is the equal to
the distribution of Uψ0, where ψ0 is any fixed norm-one vector and U is a Haar unitary,
µd′ is also the distribution of the matrix

ρ1 = TrK[U |ψ0〉〈ψ0|U
∗].

If one chooses ψ0 = e1 ⊗ f1, where e1 and f1 are the first vectors of the canonical basis of
C

d and respectively C
d′ , then

ρ1 = TrK[U(ρ0 ⊗ β0)U
∗] = ΦU,β0(ρ0),

with ρ0 = |e1〉〈e1| and β0 = |f1〉〈f1|. Hence, the induced measure µd′ is the distribution
of the result of one application of a random channel ΦU,β0 on the constant matrix ρ0:
ρ1 ∼ µd′ . On the other hand, after a large number of identical interactions, one gets

ρ∞ = lim
n→∞

[

ΦU,β0

]n

(ρ0).

In this work we have shown that with hdd′-probability one, ρ∞ is a well defined density
matrix-valued random variable which does not depend on the value of ρ0. Since the
eigenvalue vector of β0 is b0 = (1, 0, . . . , 0) ∈ C

d′ we have that ρ∞ ∼ νb0 . Now, the relation
between the two families of measures is clear: the induced measure µd′ is the distribution
of the density matrix after one interaction, whereas νb0 is the distribution at the limit,
after a large number of interactions. The reader may notice that this analogy is valid
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only in the case where b = (1, 0, . . . , 0) (pure state on the environment). Generalizations
of the (usual) induced measures to other environment states are possible, but out of the
scope of the present work. To further compare the asymptotic and the one interaction
induced measures, we plotted the spectra of samples of density matrices from both families
in Figures 1 and 2. In particular, one should compare Figure 1(a) with Figure 2(a)
(d = d′ = 2), Figure 1(d) with Figure 2(b) (d = d′ = 3) and Figure 1(f) with Figure 2(c)
(d = 3, d′ = 5).
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Figure 1. Asymptotic measure eigenvalue distribution. First row, from
left to right: (d = 2, b = [1, 0]), (d = 2, b = [3/4, 1/4]), (d = 2, b =
[1, 0, 0, 0]). Second row: (d = 3, b = [1, 0, 0]), (d = 3, b = [3/4, 1/8, 1/8])
and (d = 3, b = [1, 0, 0, 0, 0]).
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Figure 2. Induced measure eigenvalue distribution for (d = 2, d′ = 2),
(d = 3, d′ = 3) and (d = 3, d′ = 5).

One particularly simple case is obtained by taking b = (1/d′, . . . , 1/d′). The measure
νb is then trivial, being equal to the Dirac mass supported on the “chaotic state” I /d. In
the next lemma we prove some basic properties of the newly introduced measures νb. A
more thorough investigation of these measures is postponed to a later work.

Proposition 4.6. The probability measures νb have the following properties:
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(a) For every probability vector b, the measure νb is well defined, in the sense that the
distribution of ρ∞ = limn→∞[ΦU,β]n(ρ0) does not depend on the eigenvectors of β,
but only on the eigenvalue vector b.

(b) For all unitary matrix V ∈ U(d), ρ and V ρV ∗ have the same distribution (we say
that the measure νb is unitarily invariant).

(c) There exists a probability measure nb on the probability simplex ∆d−1 such that if
D is a diagonal matrix sampled from nb and V is an independent Haar unitary on
U(d), then V DV ∗ has distribution νb. In other words, the distribution of a random
density matrix ρ ∼ νb is determined by the distribution of its eigenvalue vector
∆d−1 ∋ λ ∼ nb.

Proof. To prove the first assertion, we show that for all W ∈ U(d′), replacing β with
WβW ∗ does not change the distribution of ρ∞. To see this, note that by the invariance
of the Haar probability measure hdd′ , the random matrices U and Ũ = U(Id ⊗W ) have
the same distribution. It follows that the same holds for the random channels ΦU,β and
ΦŨ,β = ΦU,WβW ∗

and thus for their invariant states. The second affirmation is proved in
the same manner (this time using a fixed unitary V acting on H) and the third one is a
trivial consequence of the second. �

5. Repeated interactions with random auxiliary states

In the previous section we considered repeated identical quantum interactions of a
system S with a chain of identical environment systems E . We now introduce classical
randomness in our model by considering random states on the environment E . In this
model, the unitary describing the interaction is a fixed deterministic matrix U ∈ U(dd′).

The n-th interaction between the small system S and the environment E is given by
the following relation:

ρn = Φβn(ρn−1) = TrK[U(ρn−1 ⊗ βn)U∗],

where (βn)n is a sequence of independent identically distributed random density matrices.
Notice that, since U is constant, we use the shorthand notation Φβ = ΦU,β.

We are interested, as usual, in the limit n → ∞. In this case however, the (random)
channels Φβn do not have in general a common invariant state, so one has to look at ergodic
limits. We use here the machinery developed by L. Bruneau, A. Joye and M. Merkli in
[6] (see [7, 5] for additional results in this direction). For the sake of completeness, let us
state their main result.

Theorem 5.1 ([6], Theorem 1.3.). Let (Mn)n be a sequence of i.i.d. random contractions
of Md(C) with the following properties:

(a) There exists a constant vector ψ ∈ C
d such that M(ω)ψ = ψ for (almost all) ω;

(b) P(the multiplicity of the eigenvalue 1 of M(ω) is exactly one) > 0.

Then the (deterministic) matrix E[M ] has eigenvalue 1 with multiplicity one and there
exists a constant vector θ ∈ C

d such that

lim
N→∞

1

N

N
∑

n=1

M1(ω)M2(ω) · · ·Mn(ω) = |ψ〉〈θ| = P1,E[M ],

where P1,E[M ] is the rank-one spectral projector of E[M ] corresponding to the eigenvalue 1.

Note that this result does’t apply to our situation, mainly for two reasons: the order
of the composition of the channels Φ is reversed and the linear applications Φβn do not
necessarily share a constant invariant state ψ. This inconvenient can be overcome by
considering dual channels (see Section 3), or, in physicists’ language, by switching from the
Schrödinger to the Heisenberg picture of Quantum Mechanics. Duals of quantum channels
are unital, hence they have in common the invariant element I. Another important benefit



RANDOM REPEATED QUANTUM INTERACTIONS AND RANDOM INVARIANT STATES 13

of considering duals is that the order of composition of maps is reversed. Indeed, if one
starts from a state ρ0, applies successively n channels Φ1, . . . ,Φn and finally measures an
observable A ∈ Msa

d (C), it is easy to see that the expected outcome is

Tr[(Φn ◦ · · · ◦Φ1)(ρ) ·A] = Tr[(Φn−1 ◦ · · · ◦Φ1)(ρ) ·Ψn(A)] = · · · = Tr[ρ · (Ψ1 ◦ · · · ◦Ψn)(A)].

We are now in position to state and prove the analogue of Theorem 5.1 for infinite products
of quantum channels, simply by replacing quantum channels with their duals.

Theorem 5.2. Let (Φn)n be a sequence of i.i.d. random quantum channels acting on
Md(C) such that P(Φ has an unique invariant state) > 0. Then E[Φ] is a quantum chan-

nel with an unique invariant state θ ∈ M1,+
d (C) and, P-almost surely,

lim
N→∞

1

N

N
∑

n=1

[Φn ◦ · · · ◦ Φ1](ρ0) = θ, ∀ρ0 ∈ M1,+
d (C).

Proof. Let us start by introducing some notation. Let, for some initial state ρ0 ∈ M1,+
d (C),

µN =
1

N

N
∑

n=1

[Φn ◦ · · · ◦ Φ1](ρ0),

and consider the dual operators Ψn which are, as described earlier, the adjoints of Φn

with respect to the Hilbert-Schmidt scalar product on Md(C). Then, for a self-adjoint
observable A ∈ Msa

d (C), one has

(7) Tr[µNA] = Tr

[

ρ0
1

N

N
∑

n=1

(Ψ1 ◦ · · · ◦ Ψn)(A)

]

.

It is easy to see that the random operators Ψn satisfy the hypotheses of Theorem 5.1 on
the Hilbert space Md(C) endowed with the Hilbert-Schmidt scalar product. Indeed, the
spectrum of Ψ is the complex conjugate of the spectrum of Φ, hence Ψ is a contraction
(with respect to the Hilbert-Schmidt norm). Moreover, with non-zero probability, Id is
the unique invariant state of Ψ. From the Theorem 5.1, one obtains the existence of a
non-random element θ ∈ Md(C) such that, P-almost surely,

lim
N→∞

1

N

N
∑

n=1

Ψ1 ◦ · · · ◦ Ψn = | Id〉〈θ|.

Plugging this into Eq. (7), one gets

lim
N→∞

Tr[µNA] = Tr[ρ0| Id〉〈θ|A] = 〈θ,A〉HS Tr[ρ0 Id] = Tr[θ∗A].

Since the set of density matrices M1,+
d (C) is (weakly) closed, θ = θ∗ ∈ M1,+

d (C) and
limN→∞ µN = θ. The fact that θ is the unique invariant state of E[Φ] follows again from
Theorem 5.1. �

Remark 5.3. When comparing the preceding theorem with the Proposition 4.1, one notes
that the hypotheses are relaxed here, asking only that the eigenvalue 1 is simple, without
further constraints on the peripheral spectrum. This is due to the fact that we are con-
sidering Césaro means and fluctuations (such as the ones seen in Example 4.2) cancel out
at the limit.

We now move on to apply the preceding general result to the setting described in the
beginning of this section. Recall that the successive interactions were described by i.i.d.
random quantum channels Φn = Φβn, where

Φβ(ρ) = TrK[U(ρ⊗ β)U∗].
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Since the previous equation is linear in β, E[Φβ] = ΦE[β] and one gets the following
corollary.

Corollary 5.4. Let {βn}n be a sequence of i.i.d. random density matrices and consider
the repeated quantum interaction scheme with constant interaction unitary U . Assume
that, with non-zero probability, the induced quantum channel Φβ has an unique invariant
state. Then, P-almost surely, for all initial states ρ0 ∈ M1,+

d (C), one has

lim
N→∞

1

N

N
∑

n=1

[Φβn ◦ · · · ◦ Φβ1](ρ0) = θ,

where θ ∈ M1,+
d (C) is the unique invariant state of the deterministic channel ΦE[β]. In

particular, if E[β] = Id′ /d
′, then θ is the “chaotic” state Id/d.

6. Repeated interactions with i.i.d. unitaries

We now consider a rather different framework from the one studied in Sections 4 and 5.
We shall assume that the interaction unitaries Un acting on the coupled system H⊗K are
random independent and identically distributed (i.i.d.) according to the unique invariant
(Haar) probability measure hdd′ on the group U(dd′). This is a rather non-conventional
model from a physical point of view, but it permits to relax hypothesis on the successive
states of the environment and to obtain an ergodic-type convergence result.

As before, we start with a fixed state ρ0 ∈ M1,+
d (C). The n-th interaction is given by

ρn = ΦUn,βn(ρn−1), where (βn)n is a (possibly random) sequence of density matrices on
K and (Un)n is a sequence of i.i.d. Haar unitaries of U(dd′) independent of the sequence
(βn)n. Note that we make no assumption on the joint distribution of the sequence (βn)n;
in particular, the environment states can be correlated or they can have non-identical
probability distributions. The state of the system after n interactions is given by the
forward iteration of the applications ΦUn,βn :

(8) ρn = ΦUn,βn ◦ ΦUn−1,βn−1 ◦ · · · ◦ ΦU1,β1ρ0.

Since we made no assumption on the successive states of the environment βn ∈ M1,+
d′ (C),

the sequence (ρn)n is not a Markov chain in general. Indeed, the density matrices (βn)n
were not supposed independent, hence βn+1 (and thus ρn+1) may depend not only on the
present randomness, but also on past randomness, such as βn−1, βn−2, etc. Although the
sequence (ρn)n lacks markovianity, it has the following important invariance property.

Lemma 6.1. Let (Vn)n be a sequence of i.i.d. Haar unitaries independent of the family
{Un, βn}n and consider the sequence of successive states (ρn)n defined in Eq. (8). Then
the sequences (ρn)n and (VnρnV

∗
n )n have the same distribution.

Proof. Consider a i.i.d. sequence (Vn)n of hd-distributed unitaries independent from the
Un’s and the βn’s appearing in Eq. (8). To simplify notation, we put ρ̃n = VnρnV

∗
n . We

also introduce the following sequence of (random) dd′ × dd′ unitary matrices:

Ũ1 = (V1 ⊗ I)U1,

Ũn = (Vn ⊗ I)Un(V ∗
n−1 ⊗ I), ∀n > 2.

A simple calculation shows that

ρ̃n = ΦŨn,βn ◦ ΦŨn−1,βn−1 ◦ · · · ◦ ΦŨ1,β1ρ0.

It follows that, in order to conclude, it suffices to show that the family (Ũn)n is i.i.d. and
hdd′-distributed (it is obviously independent of the β’s). We start by proving that, at fixed

n, Ũn is hdd′ -distributed. Since the families (Un)n and (Vn)n are independent, one can
consider realizations of these random variables on different probability space Un : Ω1

n →
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U(dd′) and Vn : Ω2
n → U(d). For a positive measurable function f : U(dd′) → R+, one has

(we put V0 = I)

E[f(Ũn)] = E[f((Vn ⊗ I)Un(V ∗
n−1 ⊗ I))] =

=

∫

f((Vn(ω2
n) ⊗ I)Un(ω1

n)(V ∗
n−1(ω

2
n−1) ⊗ I))dP(ω2

n)dP(ω1
n)dP(ω2

n−1)

=

∫
(

∫

f((Vn(ω2
n) ⊗ I)Un(ω1

n)(V ∗
n−1(ω

2
n−1) ⊗ I))dP(ω1

n)

)

dP(ω2
n)dP(ω2

n−1)

(∗)
=

∫

E[f(Un)]dP(ω2
n)dP(ω2

n−1) = E[f(Un)],

where we used in (∗) the fact that the Haar probability on U(dd′) is invariant by left

and right multiplication with constant unitaries. We now claim that the r.v. Ũn are
independent. For some positive measurable functions f1, . . . , fn : U(dd′) → R+, one has

E

[

n
∏

k=1

fk(Ũk)

]

= E

[

n
∏

k=1

fk((Vk ⊗ I)Uk(V
∗
k−1 ⊗ I))

]

=

=

∫ n
∏

k=1

fk((Vk(ω
2
k) ⊗ I)Uk(ω

1
k)(V

∗
k−1(ω

2
k−1) ⊗ I))

n
∏

k=1

dP(ω1
k)dP(ω2

k)

=

∫ n
∏

k=1

(
∫

fk((Vk(ω
2
k) ⊗ I)Uk(ω

1
k)(V

∗
k−1(ω

2
k−1) ⊗ I))dP(ω1

k)

) n
∏

k=1

dP(ω2
k)

(∗∗)
=

∫

E[fk(Uk)]
n

∏

k=1

dP(ω2
k) =

n
∏

k=1

E[fk(Uk)]
(∗∗∗)
=

n
∏

k=1

E[fk(Ũk)].

Again, we used in the equality (∗∗) the invariance of the dd′-dimensional Haar measure

and in (∗ ∗ ∗) the fact that Uk and Ũk have the same distribution.
�

We conclude from the above result that although the successive states of the small
system (ρn)n are random density matrices that can be correlated in a very general way,
their joint probability distribution is invariant by independent unitary basis changes. In
other words, the correlations manifest only at the level of the spectrum, the matrices being
independently rotated by random Haar unitaries. The ergodic convergence result in such
a case is established in the following proposition.

Proposition 6.2. Let (τn)n be a sequence of random density matrices (we make no as-
sumption whatsoever on their distribution) and (Vn)n a sequence of i.i.d. Haar unitaries
independent of (τn)n. Then, almost surely,

σn =
V1τ1V

∗
1 + . . . + VnτnV

∗
n

n
−→
n→∞

Id
d
.

Proof. Since both sides of the previous equation are self-adjoint matrices, it suffices to
show that for any self-adjoint operator A ∈ Md(C) we have limn→∞ Tr[σnA] = Tr[A]/d.
Using the invariance of the Haar measure, one can assume that the observable A is diagonal

A =
∑d

i=1 si|ei〉〈ei| in some fixed orthonormal basis {ei}
d
i=1 of C

d. In the same basis, we

write τk = (t
(k)
i,j )di,j=1 and Vk = (v

(k)
i,j )di,j=1. To simplify notation, we put

Tr[σnA] =
T1 + · · · + Tn

n
,
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where Tk = Tr[VkρkV
∗
k A] =

∑d
i1,i2,j=1 t

(k)
i1,i2

sjv
(k)
i1,jv

(k)
i2,j. Using the fact that

E

[

v
(k)
i,j v

(k)
i′,j′

]

= δi,i′δj,j′
1

d
,

one can easily check that that the random variables Tk have mean Tr[A]/d, finite variance
(a rough bound for E[T 2

k ] is Tr[A]2) and that they are not correlated (cov(Tk, Tk′) = 0, if
k 6= k′). It is a classical result in probability theory that in this case the (strong) Law of
Large Numbers holds and thus, almost surely,

lim
n→∞

Tr[σnA] =
Tr[A]

d
.

�

Putting the previous proposition and Lemma 6.1 together, one obtains the main result
of this section, an ergodic-mean convergence result for the sequence of states of the “small”
system.

Proposition 6.3. Let (ρn)n be the successive states of a repeated quantum interaction
scheme with i.i.d. random unitary interactions. Then, almost surely,

lim
n→∞

ρ1 + . . .+ ρn

n
=

Id
d
.
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