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Abstract

The aim of this paper is to propose weak assumptions to prove maximal Lq

regularity for Cauchy problem :

du

dt
(t) − Lu(t) = f(t).

Mainly we only require “off-diagonal” estimates on the real semigroup (etL)t>0 to
obtain maximal Lq regularity. The main idea is to use a one kind of Hardy space
H1 adapted to this problem and then use interpolation results. These techniques
permit us to prove weighted maximal regularity too.
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1 Introduction

Let (Y, dY , ν) be a space of homogeneous type. Let L be the infinitesimal generator of an
analytic semigroup of operators on Lp := Lp(Y ) and J = (0, l], l > 0 or J = (0, +∞) (in
the second case, one has to assume that L generates a bounded analytic semigroup).
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Consider the Cauchy problem

{

du
dt

(t) − Lu(t) = f(t), t ∈ J,
u(0) = 0,

(CP)

where f : J → B is given, where B is a Banach space. If etL is the semigroup generated
by L, u is formally given by

u(t) =

∫ t

0

e(t−s)Lf(s)ds.

For fixed q ∈ (1, +∞), one says that there is maximal Lq regularity on B = Lp for the
problem if for every f ∈ Lq(J, Lp), ∂u

∂t
(or Lu) belongs to Lq(J, Lp). It is known that the

property of maximal Lq-regularity does not depend on q ∈ (1,∞).

For the maximal Lq regularity, we refer the reader to the works of P. Cannarsa and V.
Vespri [7], T. Coulhon and X.T. Duong [10, 9], L. de Simon [11], M. Hieber and J. Prss
[12] and D. Lamberton [13] etc. The literature is so vast that we do not give exhaustive
references. However we emphasize that in all these works, the different authors obtain
maximal regularity under the assumption that the heat kernel (the kernel of the semi-
group) admits pointwise estimates and gaussian decays. Such assumptions imply that the
semigroup extends consistently to all Lebesgue spaces Lp for p ∈ (1,∞).
For a few years, people have studied problems associated to a semigroup, which do not
satisfy this property. For example, gaussian estimates have been succesfully generalized
by “off-diagonal estimates” for studying the boundedness of Riesz transforms on a man-
ifold (see [1]). That is why we look for weaker assumptions associated to “off-diagonal”
estimates on the semigroup to guarantee the maximal Lq-regularity.

In this direction, there is a first work of S. Blunck and P.C. Kunstmann [6]. The authors
have obtained the following result (using the R-boundedness of the complex semigroup
and the recent characterization of L. Weiss [14]) :

Theorem 1.1 Let δ be the homogeneous dimension of Y . Assume that (ezL)z is a bounded
analytic semigroup on L2 and p0 < 2 < q be exponents. Suppose there are coefficients
(g(k))k≥1 such that for all balls Q or radius rQ and all integer k ≥ 0, we have

∥

∥

∥
1Qer2

QL1(k+1)Q\kQ

∥

∥

∥

Lp0→Lq
. ν(Q)

1
q
− 1

p0 g(k) (1)

with
∞
∑

k=1

kδ−1g(k) < ∞. (2)

Then for all r ∈ (p0, 2], L has maximal regularity on Lr.

Now we come to our results. We look for similar results with some improvements. First as
the conclusion concerns only exponents r ∈ (p0, 2], we would like to not require assumption
(1) with an exponent q > 2. In addition, we want to understand how the assumption (2)
is important. In our result, we will give some similar assumption, which seem to be not
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comparable to this one. However our proof (which use very different techniques) permit
us to obtain simultaneously positive and new results for “weighted” maximal regularity.

In [2], the authors consider the Cauchy problem (CP ) with −L equals to the Laplacian
operator on some Riemannian manifolds or a sublapacian on some Lie groups or some
second order elliptic operators on a domain. We show the boundedness of the operator of
maximal regularity f 7→ Lu and its adjoint on appropriate Hardy spaces. In this paper,
we apply the general theories of our paper [5] to the maximal regularity in abstract setting.
In [5], we construct Hardy spaces through an atomic (or molecular) decomposition which
keep the main properties of the (already known) Hardy spaces H1. We prove some results
about continuity from these spaces into L1 and some results about interpolation between
these spaces and the Lebesgue spaces. Now we will use these theories to study the maximal
regularity.

Here is our main result :

Theorem 1.2 Let L be a generator of a bounded analytic semigroup T := (etL)t>0 on
L2(Y ) such that T , (tLetL)t>0 and (t2L2etL)t>0 satisfy “L2 − L2 off-diagonal decay” (pre-
cisely belonging to the class O4(L

2 −L2), see Definition 3.2). For an exponent p0 ∈ (1, 2],
we assume some weak “Lp0 − L2 off-diagonal decay” (we require (14), see Proposition
3.9).
Then for all exponent p ∈ (p0, 2], the operator T admits a continuous extension on Lp(Y )
and so L has maximal Lp-regularity. In addition we can have weighted results : let
ω ∈ A∞(Y ) be a weight on Y . Then for all exponents p ∈ (p0, 2) satisfying

ω ∈ Ap/p0 ∩ RH(2/p)′ ,

L has maximal Lp(ω)-regularity.

Remark 1.3 Our weak “Lp0 −L2 off-diagonal decay” is similar to the assumption (1) of
Theorem 1.1 but is not comparable to this one. What is important is that we only require
informations on the real semigroup. In addition, the answer concerning weighted results
is totally new and do not seem accessible by the techniques of [6] used to prove Theorem
1.1.

The plan is as follows : in Section 2, we recall the abstract results concerning Hardy
spaces. Then in Section 3, we will explain the application to the maximal regularity
problem : how to define an adapted Hardy space. Then we conclude in Section 4 by
checking the abstract assumptions for this application. We will finish in the last section
to give results for exponents p ≥ 2 and study the Hardy spaces adapted to this problem
of maximal regularity.

2 Preliminaries

In this section, we give an overview of some basic facts which we will use in the sequel.
For more details concerning abstract Hardy spaces, see [5].

Let (X, d, µ) be a space of homogeneous type. That is meaning d is a quasi-distance on
the space X and µ a Borel measure which satisfies the doubling property :

∃A > 0, ∃δ > 0, ∀x ∈ X, ∀r > 0, ∀t ≥ 1, µ(B(x, tr)) ≤ Atδµ(B(x, r)), (3)
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where B(x, r) is the open ball with center x ∈ X and radius r > 0. We call δ the
homogeneous dimension of X.

Let Q be a ball, for i ≥ 0, we write Si(Q) the scaled corona around the ball Q :

Si(Q) :=

{

x, 2i ≤ 1 +
d(x, c(Q))

rQ

< 2i+1

}

,

where rQ is the radius of Q and c(Q) is its center. Then S0(Q) corresponds to the ball Q
and Si(Q) ⊂ 2i+1Q for i ≥ 1, where λQ is as usual the ball with center c(Q) and radius
λrQ.

Denote Q the collection of all balls : Q := {B(x, r), x ∈ X, r > 0} , and B := (BQ)Q∈Q a
collection of L2-bounded linear operators, indexed by the collection Q. We assume that
these operators BQ are uniformly bounded on L2 : there exists a constant 0 < A′ < ∞
so that :

∀f ∈ L2, ∀Q ball, ‖BQ(f)‖2 ≤ A′(δ)‖f‖2. (4)

Now, we recall some definitions and theorems of [5]. The ǫ-molecules (or atoms) are
defined as follows.

Definition 2.1 ([5]) Let ǫ > 0 be a fixed parameter. A function m ∈ L1
loc is called an

ǫ-molecule associated to a ball Q if there exists a real function fQ such that

m = BQ(fQ),

with
∀i ≥ 0, ‖fQ‖2,Si(Q) ≤

(

µ(2iQ)
)−1/2

2−ǫi.

We call m = BQ(fQ) an atom if in addition we have supp(fQ) ⊂ Q. So an atom is exactly
an ∞-molecule.

Using this definition, we can define the “finite” molecular (atomic) Hardy space.

Definition 2.2 ([5]) A measurable function h belongs to the “finite” molecular Hardy
space H1

F,ǫ,mol if there exists a finite decomposition :

h =
∑

i

λimi µ − a.e,

where for all i, mi is an ǫ-molecule and λi are real numbers satisfying

∑

i∈N

|λi| < ∞.

We define the norm :

‖h‖H1
F,ǫ,mol

:= inf
h=

P

i λimi

∑

i

|λi|,

where we take the infimum over all the finite atomic decompositions. Similarly we define
the “finite” atomic space H1

F,ato replacing ǫ-molecules by atoms.
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We will use the following theorem for studying maximal regularity.

Proposition 2.3 ([5]) Let T be an L2-bounded sublinear operator satisfying the following
“off-diagonal” estimates : for all ball Q, for all k ≥ 0, j ≥ 2, there exists some coefficient
αj,k(Q) such that for every L2-function f supported in Sk(Q)

(

1

µ(2j+k+1Q)

∫

Sj(2kQ)

|T (BQ(f))|2 dµ

)1/2

≤ αj,k(Q)

(

1

µ(2k+1Q)

∫

Sk(Q)

|f |2dµ

)1/2

. (5)

If the coefficients αj,k satisfy

Λ := sup
k≥0

sup
Q ball

[

∑

j≥2

µ(2j+k+1Q)

µ(2k+1Q)
αj,k(Q)

]

< ∞, (6)

then for all ǫ > 0 there exists a constant C = C(ǫ) such that

∀f ∈ H1
F,ǫ,mol ‖T (f)‖1 ≤ C‖f‖H1

F,ǫ,mol
.

Definition 2.4 ([5]) We set AQ be the operator Id − BQ. For σ ∈ [2,∞] we define the
maximal operator :

∀x ∈ X, Mσ(f)(x) := sup
Qball

x∈Q

(

1

µ(Q)

∫

Q

∣

∣A∗
Q(f)

∣

∣

σ
dµ

)1/σ

. (7)

We use duality so we write A∗
Q for the adjoint operator. The standard maximal “Hardy-

Littlewood” operator is defined by : for s > 0,

∀x ∈ X, MHL,s(f)(x) := sup
Qball

x∈Q

(

1

µ(Q)

∫

Q

|f |s dµ

)1/s

.

The main result of [5] is the following one about interpolation between L2 and the Hardy
spaces :

Theorem 2.5 ([5]) Let σ ∈ (2,∞]. Assume that we have an implicit constant such that
for all functions h ∈ L2

Mσ(h) . MHL,2(h).

Let T be an L2-bounded, linear operator. Assume that T is continuous from H1
F,ato (or

H1
F,ǫ,mol) into L1. Then for all exponent p ∈ (σ′, 2] there exists a constant C = C(p) such

that :
∀f ∈ L2 ∩ Lp, ‖T (f)‖p ≤ C‖f‖p.

We have boundedness in weighted spaces too. We recall the definition of Muckenhoupt’s
weights and Reverse Hölder classes :
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Definition 2.6 A nonnegative function ω on X belongs to the class Ap for 1 < p < ∞ if

sup
Q ball

(

1

µ(Q)

∫

Q

ωdµ

)(

1

µ(Q)

∫

Q

ω−1/(p−1)dµ

)p−1

< ∞.

A nonnegative function ω on X belongs to the class RHq for 1 < q < ∞, if there is a
constant C such that for every ball Q ⊂ X

(

1

µ(Q)

∫

Q

ωqdµ

)1/q

≤ C

(

1

µ(Q)

∫

Q

ωdµ

)

.

We use the following notation of [3] :
Let ω ∈ A∞ be a weight on X and 0 < p0 < q0 ≤ ∞ be two exponents, we introduce the
set

Wω(p0, q0) :=
{

p ∈ (p0, q0), ω ∈ Ap/p0
∩ RH(q0/p)′

}

.

Then we have the following result :

Theorem 2.7 Let σ ∈ (2,∞]. Assume that we have an implicit constant such that for
all h ∈ L2

Mσ(h) . MHL,2(h).

Let T be an L2-bounded, linear operator such that for all balls Q and for all functions f
supported in Q

∀j ≥ 2

(

1

µ(2j+1Q)

∫

Sj(Q)

|T (BQ(f))|2 dµ

)1/2

≤ αj(Q)

(

1

µ(Q)

∫

Q

|f |2dµ

)1/2

, (8)

with coefficients αj(Q) satisfying

sup
Q ball

∑

j≥0

µ(2j+1Q)

µ(Q)
αj(Q) < ∞.

Let ω ∈ A∞ be a weight. Then for all exponents p ∈ Wω(σ′, 2), there exists a constant C
such that

∀f ∈ L2 ∩ Lp(ω), ‖T (f)‖p,ωdµ ≤ C‖f‖p,ωdµ.

Remark 2.8 From Proposition 2.3, (8) implies the H1
F,ato − L1 boundedness of T . How-

ever, the proof for weighted results requires (8) and not only this boundedness of the
operator T .

Now we give some results concerning the Hardy spaces. Assume that B satisfies some
decay estimates : for M > n/2 an integer (with n the homogeneous dimension of X),
there exists a constant C such that

∀i ≥ 0, ∀k ≥ 0, ∀f ∈ L2, supp(f) ⊂ 2kQ ‖BQ(f)‖2,Si(2kQ) ≤ C2−Mi‖f‖2,2kQ. (9)

Then we have the following results:
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Proposition 2.9 ([5]) The spaces H1
ato and H1

ǫ,mol are Banach spaces. And

∀ǫ > 0, H1
ato →֒ H1

ǫ,mol →֒ L1.

Therefore
L∞ ⊂ (H1

ǫ,mol)
∗ ⊂ (H1

ato)
∗.

We denote H1
CW the classical Hardy space (of Coifman-Weiss) (see [8]). As we noted

in [5], it corresponds to our Hardy space H1
ato or H1

ǫ,mol when the operators BQ exactly
correspond to the oscillation operators.

Proposition 2.10 ([5]) Let ǫ ∈ (0,∞]. The inclusion H1
ǫ,mol ⊂ H1

CW is equivalent to the
fact that for all Q ∈ Q, (AQ)∗(1X) = 1X in (Molǫ,Q)∗. In this case for all ǫ′ ≥ ǫ we have
the inclusions H1

ato ⊂ H1
ǫ′,mol ⊂ H1

ǫ,mol ⊂ H1
CW .

3 An application to maximal Lq regularity on Lebesgue

spaces.

In this section, we apply the previous general theory to maximal Lq regularity for Cauchy
Problem.

We first define an operator T :

Definition 3.1 With L the generator of the semigroup, we define the operator :

Tf(t, x) =

∫ t

0

[

Le(t−s)Lf(s, .)
]

(x)ds.

Let p, q ∈ (1,∞) be two exponents. We know that the maximal Lq regularity on Lp(Y )
is equivalent to the fact that T is bounded on Lp(J × Y ). That is why we study this
operator. Of course, the problem of maximal Lq regularity is completely understood by
the abstract result in [14] of L. Weis using the R boundedness. Here we want to remain
as concrete as possible and look for practicable assumptions.

We define operators BQ and Hardy spaces adapted to the operator T . Then using inter-
polation, we prove Lp boundedness of this one.
In particular case we will see that the H1

F,ǫ,mol − L1 continuity of the operator T below
depends only on L2 assumptions. It is only when we want to deduce Lp estimates that
we need stronger assumptions which imply R-boundedness used in [14].

Now we describe the choice of the collection B, adapted to this operator. Then we will
check that the assumption (4) and the one about Mq0 are satisfied. To finish the proof,
we will show the H1

F,ǫ,mol − L1 boundedness of T in Theorem 4.1.

Equip X = J × Y with the parabolic quasi-distance d and the measure µ defined by :

d
(

(t1, y1), (t2, y2)
)

= max
{

dY (y1, y2),
√

|t1 − t2|
}

and dµ = dt ⊗ dν.

If we write δ for the homogeneous dimension of the space (Y, dY , ν), then the space X is
of homogeneous type with homogeneous dimension δ+2. We choose ϕ ∈ S(R+) such that
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∫

R+ ϕ(t)dt = 1 and ϕ(t) := 0 for all t < 0 (ϕ does not need to be continuous at 0). In fact
we shall use only the fast decay of ϕ and we will never consider regularity about it. In
addition, we have added a condition for the support. This is a “physical” heuristics : this
condition permits to define AQ(f)(t, x) by (11) with only (f(σ, y))σ≤t, which corresponds
to the “past informations” about f . However we do not really need this assumption in
the sequel.
For each ball Q of X, we write rQ its radius and we define the BQ operator as :

BQ = Br2
Q

with Br(f) := f − Ar(f), (10)

where the operator Ar is defined by :

Ar(f)(t, x) :=

∫ +∞

σ=0

ϕr(t − σ)erL(f(σ, .))(x)dσ. (11)

Here we write ϕr as the L1(R) normalized function ϕr(t) := r−1ϕ(t/r). In fact, the
integral for σ ∈ [0,∞) is reduced to [0, t], due to the fact that ϕ is supported in R

+.

Now to check the abstract assumption on the Hardy space, to be able to interpolate our
operator T , we will use some conditions on our semigroup etL. We refer the reader to the
work of P. Auscher and J.M. Martell ([4]) to a precise study of off-diagonal estimates.
Here we exactly define the decays, which will later be required.

Definition 3.2 Let T := (Tt)t∈J be a collection of L2(Y )-bounded operators and p a
positive integer. We will say that T satisfies off-diagonal L2 − L2 estimates at order p if
there exists a bounded function γ satisfying

∀ 0 ≤ k ≤ p, sup
u≥0

γ(u)(1 + u)k < ∞, (12)

such that for all balls B ⊂ Y of radius r, for all functions f supported in B then

(

1

ν(2j+1B)

∫

Sj(B)

|Tu2(f)|2 dν

)1/2

≤ ν(B)

ν(2j+1B)
γ

(

2j+1r

u

)(

1

ν(B)

∫

B

|f |2dν

)1/2

. (13)

We also write T ∈ Op(L
2 − L2).

Remark 3.3 This condition is satisfied for p = ∞ if the kernel Kt of the operator Tt

admits some gaussian estimates like

|Kt(x, y)| .
1

ν(B(x, t1/2))
e−ρd(x,y)2/t,

with ρ > 0.

We will prove the following result in the next section :

Theorem 3.4 Let L be a generator of a bounded analytic semigroup T := (etL)t>0 on
L2(Y ) such that T , (tLetL)t>0 and (t2L2etL)t>0 belong to O4(L

2 −L2). Then for all ǫ > 0
the operator T is continuous from H1

F,ǫ,mol(X) to L1(X).
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Remark 3.5 We recall that the semigroup (etL)t>0 is supposed to be analytic on L2. Using
Cauchy formula, if (ezL)z satisfies the L2−L2 off-diagonal estimates of O4(L

2−L2) for the
complex variable z belonging to a complex cone, then (tLetL)t>0 and (t2L2etL)t>0 belong
to O4(L

2 − L2).

We finish this Section by explaining how we can use this result to obtain positive answer
for the maximal regularity problem. We want to apply the abstract results, recalled in
the previous section. First we have to check the assumption (4) :

Proposition 3.6 There is a constant 0 < A′ < ∞ so that for all r > 0 the operator Ar

is L2(X) bounded and we have :

‖Ar‖L2→L2 ≤ A′.

Proof : By definition the semigroup erL is L2(Y )-bounded so we have the following
estimates :

‖Ar(f)‖2 ≤
∥

∥

∥

∥

∫ +∞

σ=0

∫

y∈Y

|ϕr(t − σ)|
∥

∥erL(f(σ, .))
∥

∥

2,dν
dσ

∥

∥

∥

∥

2,dt

.

∥

∥

∥

∥

∫ +∞

σ=0

|ϕr(t − σ)| ‖f(σ, .)‖2,dν dσ

∥

∥

∥

∥

2,dt

.

∥

∥

∥

∥

∫ t

σ=−∞

|ϕr(σ)| ‖f(t − σ, .)‖2,dν dσ

∥

∥

∥

∥

2,dt

. ‖ϕr‖1 ‖f‖2,dµ . ‖f‖2,dµ .

So we have proved that Ar is L2(X)-bounded and its boundedness is uniform for r > 0.
⊓⊔

Theorem 3.7 The operator T is L2(X)-bounded.

This fact was proved in [11] because it is equivalent to the maximal L2 regularity on
L2(Y ).

Applying Theorem 2.5, we have :

Theorem 3.8 Let L be a generator of a bounded analytic semigroup T := (etL)t>0 on
L2(Y ) such that T , (tLetL)t>0 and (t2L2etL)t>0 belong to O4(L

2 −L2). Let us assume that
for q0 ∈ (2,∞]

Mq0 . MHL,2. (14)

Then for all exponent p ∈ (q′0, 2], the operator T admits a continuous extension on Lp(Y )
and so L has maximal Lp-regularity. In addition we can have weighted results : let
ω ∈ A∞(Y ) be a weight on Y . Then for all exponents p ∈ Wω(q′0, 2) L has maximal
Lp(ω)-regularity.

9



Proof : The first part of the theorem is a direct consequence of Theorem 2.5 as the
above assumptions were checked before. The second part about weighted results is an
application of Theorem 2.7 with the following property. For ω ∈ A∞(Y ) a weight on the
space Y , we set ω̃ for the associated weight on X = J × Y defined by the tensor product
ω̃ := 1R ⊗ω : for all ball Q ⊂ X of radius rQ, we can write Q = I ×QY with an interval
I of length r2

Q and QY ⊂ Y a ball of radius rQ

ω̃(Q) := r2
Qω(QY ).

Then with this definition, it is obvious to check that for exponents p, q ∈ [1,∞] :

ω̃ ∈ Ap(X) ⇐⇒ ω ∈ Ap(Y )

and
ω̃ ∈ RHq(X) ⇐⇒ ω ∈ RHq(Y ).

So we have
Wω(σ′, 2) = Wω̃(σ′, 2).

⊓⊔
We want now to study the main assumption (14). For example, we give other stronger
assumption, describing “off-diagonal” estimates.

Proposition 3.9 We recall the maximal operator

Mq0(f)(σ, x) := sup
Q ball

(σ,x)∈Q

(

1

µ(Q)

∫

Q

∣

∣A∗
Q(f)

∣

∣

q0 dµ

)1/q0

.

If the semigroup (etL∗

)t>0 satisfy these “Lq′0 − L2 off-diagonal” estimates : there exist
coefficients (βj)j≥0 satisfying

∑

j≥0

2jβj < ∞ (15)

such that for all balls B and for all functions f ∈ L2(Y ) we have

(

1

ν(B)

∫

B

∣

∣

∣
er2

BL∗

(f)
∣

∣

∣

q′0
dν

)1/q′0

≤
∑

j≥0

βj

(

1

ν(2jB)

∫

2jB

|f |2dν

)1/2

. (16)

Then Mq0 is bounded by the Hardy-Littlewood maximal operator MHL,2 on X, so (14) is
satisfied.

Proof : Let Q be a ball containing the point (σ, x) ∈ X and rQ be its radius. For
f, g ∈ L2(X) we have :

〈AQ(f), g〉 :=

∫

(t,x)∈X

∫ +∞

σ=0

ϕr2
Q
(t − σ)er2

Q
L(f(σ, .))(x)g(t, x)dσdtdν(x)

=

∫

(t,x)∈X

∫ +∞

σ=0

ϕr2
Q
(t − σ)f(σ, x)

[(

er2
QL
)∗

g(t, .)
]

(x)dσdtdν(x).
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So we conclude that :

A∗
Q(g)(σ, x) :=

∫

t∈R+

ϕr2
Q
(t − σ)

[(

er2
QL
)∗

g(t, .)
]

(x)dt. (17)

By using the Minkowski inequality, we also have that

(
∫

Q

∣

∣A∗
Q(g)

∣

∣

q0
dµ

)
1
q0

≤
∫

t∈R+

∥

∥

∥
ϕr2

Q
(t − σ)

[(

er2
QL
)∗

g(t, .)
]

(x)1Q(σ, x)
∥

∥

∥

q0,dν(x)dσ
dt.

By definition of the parabolic quasi-distance, we can write

Q = I × B

with I an interval of lenght r2
Q and B a ball of Y of radius rQ. Then we have :

(
∫

Q

∣

∣A∗
Q(f)

∣

∣

q0
dµ

)1/q0

≤
∫

t∈R+

∥

∥

∥
ϕr2

Q
(t − σ)1I(σ)

∥

∥

∥

q0,dσ

∥

∥

∥
1B(x)

(

er2
Q

L
)∗

g(t, .)(x)
∥

∥

∥

q0,dν(x)
dt.

With the assumption (16), we obtain

(
∫

Q

∣

∣A∗
Q(f)

∣

∣

q0 dµ

)1/q0

≤

∑

j≥0

∫

t∈R+

∥

∥

∥
ϕr2

Q
(t − σ)1I(σ)

∥

∥

∥

q0,dσ
βj

ν(B)1/q0

ν(2jB)1/2
‖g(t, x)12jB(x)‖2,dν(x) dt.

Now we decompose the integration over t by :

(
∫

Q

∣

∣A∗
Q(f)

∣

∣

q0
dµ

)1/q0

≤

∑

j≥0

∑

k≥0

∫

t∈Sk(I)

∥

∥

∥
ϕr2

Q
(t − σ)1I(σ)

∥

∥

∥

q0,dσ
βj

ν(B)1/q0

ν(2jB)1/2
‖g(t, x)12jB(x)‖2,dν(x) dt.

With the Cauchy-Schwarz inequality, we have

(
∫

Q

∣

∣A∗
Q(f)

∣

∣

q0 dµ

)1/q0

.
∑

j≥0

∑

k≥0

r−2
Q

(

1 + 2k
)−l

r
2/q0

Q βj
ν(B)1/q0

ν(2jB)1/2
(2kr2

Q)1/2 ‖g(t, x)12kI×2jB(t, x)‖2,dtdν(x)

.
∑

j≥0

∑

k≥0

r
−1+2/q0

Q

(

1 + 2k
)−l+1/2

βj
ν(B)1/q0

ν(2jB)1/2
‖g(t, x)12kI×2jB(t, x)‖2,dtdν(x) .

Here l is an integer as large as we want, due to the fast decay of ϕ. Using the Hardy-
Littlewood maximal operator, we have

‖g(t, x)12kI×2jB(t, x)‖2,dtdν(x) ≤ µ
(

max{2j, 2k/2}Q
)1/2

inf
Q

MHL,2(g).
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So we obtain
(
∫

Q

∣

∣A∗
Q(g)

∣

∣

q0
dµ

)1/q0

≤
[

∑

j≥0

∑

k≥0

r
−1+2/q0

Q

(

1 + 2k
)−l+1/2

βj
ν(B)1/q0

ν(2jB)1/2
µ
(

max{2j, 2k/2}Q
)1/2

]

inf
Q

MHL,2(g).

We now estimate the sum over the parameters j and k. We have the two following cases.
Write

S1 :=
∑

j≥k/2≥0

r
−1+2/q0

Q

(

1 + 2k
)−l+1/2

βj
ν(B)1/q0

ν(2jB)1/2
µ
(

2jQ
)1/2

and

S2 :=
∑

k/2≥j≥0

r
−1+2/q0

Q

(

1 + 2k
)−l+1/2

βj
ν(B)1/q0

ν(2jB)1/2
µ
(

2k/2Q
)1/2

.

We must estimate these two sums. For the first, we use that µ(Q) = |I|ν(B) = r2
Qν(B)

to have

S1 ≤
∑

j≥k/2≥0

2j
(

1 + 2k
)−l+1/2

βj
µ(Q)1/q0

µ(2jQ)1/2
µ
(

2jQ
)1/2

≤ µ(Q)1/q0

∑

j≥k/2≥0

2j
(

1 + 2k
)−l+1/2

βj

≤ µ(Q)1/q0
∑

j≥0

2jβj . µ(Q)1/q0 .

In the last inequality, we have used the assumption (15) about the coefficients (βj)j.
For the second sum, we have (with the doubling property of µ and l large enough)

S2 ≤ r
2/q0

Q ν(B)1/q0
∑

k/2≥j≥0

r−1
Q

(

1 + 2k
)−l+1/2

βj

(

µ(2k/2Q)

ν(2jB)

)1/2

. µ(Q)1/q0
∑

k/2≥j≥0

r−1
Q

(

1 + 2k
)−l+1/2

βj

(

µ(2jQ)

ν(2jB)

)1/2

2(k/2−j)(δ+2)/2

. µ(Q)1/q0
∑

k/2≥j≥0

(

1 + 2k
)−l+1/2

βj2
j2(k/2−j)(δ+2)/2

. µ(Q)1/q0

∑

j≥0

(

1 + 2j
)−l+4+δ/2

βj2
−j(δ/2+1) . µ(Q)1/q0 .

So we have proved that there exists a constant C (independant on g and Q) such that :

(
∫

Q

∣

∣A∗
Q(g)

∣

∣

q0 dµ

)1/q0

≤ Cµ(Q)1/q0 inf
Q

MHL,2(g).

We can also conclude that
Mq0(f) . MHL,2(g).
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⊓⊔
We have described an “off-diagonal” estimates implying (14) with dyadic scale. Obviously
we could describe other “off-diagonal” estimates ...

We would like to finish this section by comparing our result with the one of S. Blunck and
P.C. Kunstmann [6]. In their paper, the authors have used their assumptions (1) and (2)
to use inside their proof the following inequality : for all ball QY of Y and all functions
f ∈ L2(Y )

(

1

ν(QY )

∫

QY

∣

∣

∣
e
−r2

QY
L
f
∣

∣

∣

2

dν

)1/2

.

(

∞
∑

k=0

k−1−ǫ

[

1

ν(kQY )

∫

kQY

|f |p0dν

]

)1/p0

. (18)

With this inequality, a simple computation gives us that for all function f ∈ L2(X) and
all balls Q of X

(

1

ν(Q)

∫

Q

|AQ(f)|2 dµ

)1/2

. inf
Q

MHL,p0(f). (19)

It is surprizing to note that their assumption (19) seems to be not comparable with ours
(14). These two assumptions are quite different in the sense that we require different kind
of “off-diagonal” estimates, however they seem to be the dual of each other.

4 Proof of Theorem 3.4.

This section is devoted to the proof of a technical result : Theorem 3.4. Let us first repeat
it.

Theorem 4.1 Let L be a generator of a bounded analytic semigroup on L2(Y ). Assume
that (etL)t>0, (tLetL)t>0 and (t2L2etL)t>0 belong to O4(L

2 − L2). Then there exist coeffi-
cients αj,k such that for all balls Q ⊂ X, for all k ≥ 0, j ≥ 2 and for all functions f
supported in Sk(Q)

(

1

µ(2j+k+1Q)

∫

Sj(2kQ)

|T (BQ(f))|2 dµ

)1/2

≤ αj,k

(

1

µ(2k+1Q)

∫

Sk(Q)

|f |2dµ

)1/2

. (20)

In addition the coefficients αj,k (independent in Q) satisfy

Λ := sup
Q

sup
k≥0

[

∑

j≥2

µ(2j+k+1Q)

µ(2k+1Q)
αj,k

]

< ∞. (21)

With Theorem 2.3, these estimates imply the H1
F,ǫ,mol(X) − L1(X) boundedness of T for

all ǫ > 0.

Proof : We write r = rQ and (t0, x0) the radius and the center of the ball Q so we have
defined BQ as Br2 . The function f is fixed. The parameter j and k are fixed too. We

13



write Q as the product Q = I × B with I an interval of length r2
Q and B a ball of Y of

radius rQ. We have

TBr2(f)(t, x) = T (f)(t, x) − TAr2(f)(t, x)

=

∫ t

0

[

Le(t−s)Lf(s, .)
]

(x)ds −
∫ t

0

[

Le(t−s)LAr2f(s, .)
]

(x)ds,

where

[

Le(t−s)LAr2f(s, .)
]

(x) = Le(t−s)L

[
∫ +∞

σ=0

ϕr2(s − σ)er2Lf(σ, .)dσ

]

(x).

So we obtain

T (Br2f)(t, x) =
∫

R

∫

R

ϕr2(s − σ)
[

10<σ≤tLe(t−σ)Lf(σ, .)(x) − 10<s≤tLe(t−s+r2)Lf(σ, .)(x)
]

dσds. (22)

We have three time-parameters σ, t and s. As in the case of Calderón-Zygmund operators,
the difference within the two brackets is very important. This will allow us to obtain the
necessary decay for the coefficients αj,k. We decompose into two domains :

D1 := {(σ, t, s), 0 ≤ σ ≤ t ≤ s} and D2 := {(σ, t, s), 0 ≤ s, σ ≤ t} .

For i ∈ {1, 2} we set Di(t) := {(σ, s); (σ, t, s) ∈ Di} and

Ui(f)(t, x) :=
∫∫

Di(t)

ϕr2(s − σ)
[

10<σ≤tLe(t−σ)Lf(σ, .)(x) − 10<s≤tLe(t−s+r2)Lf(σ, .)(x)
]

dσds.

As ϕ is supported in R
+, we have decomposed

T (Br2f)(t, x) =

2
∑

i=1

Ui(f)(t, x). (23)

If we do not want to use the condition of the support of ϕ, there is a third term which is
estimated as the first one.
We begin the study when one of the two terms, in the square brackets, vanishes. The
radius r is fixed for all the proof and we set

χN(y) :=
1

r2

(

1 +
|y|
r2

)−N

.

1−) First case : (σ, s) ∈ D1(t).
Here we have the following expression :

U1(f)(t, x) =

∫ ∞

t

∫ t

0

ϕr2(s − σ)Le(t−σ)Lf(σ, .)(x)dσds.

14



There is no “cancellation” so we can directly estimate it by using the fast decay of ϕ. For
N a large enough integer

|U1(f)(t, x)| . r2

∫ t

0

χN(t − σ)
∣

∣Le(t−σ)Lf(σ, .)(x)
∣

∣ dσ.

By definition of the parabolic quasi-distance,

(t, x) ∈ Sj(2
kQ) ⇐⇒

{

dY (x, x0) ≃ 2k+jr
|t − t0| ≤ (2k+j+1r)2 or

{

dY (x, x0) . 2k+jr
|t − t0| ≃ (2k+j+1r)2 .

So, as f is supported in 2kQ, we have

(

1

µ(2j+k+1Q)

∫

Sj(2kQ)

|U1(f)(t, x)|2 dν(x)dt

)1/2

. I + II (24)

with

I :=

(

r4

µ(2j+k+1Q)

∫

22(j+k)I

(
∫

22kI

χN (t − σ)
∥

∥Le(t−σ)Lf(σ, .)
∥

∥

2,Sj(2kB)
dσ

)2

dt

)1/2

and

II :=





1

µ(2j+k+1Q)

∫

S2j(22kI)

(

∫

22kI

∥

∥Le(t−σ)Lf(σ, .)
∥

∥

2,2k+j+1B

22N(k+j)
dσ

)2

dt





1/2

.

∗ Study of I.
By using off-diagonal estimates L2 − L2 (13), we know that

1

ν(2j+k+1B)1/2

∥

∥Le(t−σ)Lf(σ, .)
∥

∥

2,Sj(2kB)
≤

ν(2k+1B)

ν(2k+j+1B)|t − σ|γ
(

2j+kr
√

|t − σ|

)

(

1

ν(2k+1B)

∫

2k+1B

|f(σ, .)|2dν

)1/2

.

That is why, by using Cauchy-Schwarz inequality and the equality

µ(2j+k+1Q) = ν(2j+k+1B)22(j+k)r2,

we estimate I by the product





1

22(k+j)

∫

22k+2jI

∫

22kI

χ2N (t − σ)

(

ν(2k+1B)

ν(2k+j+1B)|t − σ|

)2

γ

(

2j+kr
√

|t − σ|

)2

dσdt





1/2

2kr

(

1

µ(2k+1Q)

∫

2k+1Q

|f |2dµ

)1/2

.
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Then we get

I .
ν(2k+1B)

ν(2k+j+1B)

[

1

|22k+2jI|

∫

22k+2jI

∫

22kI

χ2N (t − σ)
22kr4

|t − σ|2

γ

(

2j+kr
√

|t − σ|

)2

dσdt

]1/2
(

1

µ(2k+1Q)

∫

2k+1Q

|f |2dµ

)1/2

.
2kν(2k+1B)

ν(2k+j+1B)

(

∫ 22(j+k)

0

(1 + v)−2N 1

v2
γ

(

2j+k

√
v

)2

dv

)1/2

(

1

µ(2k+1Q)

∫

2k+1Q

|f |2dµ

)1/2

.
2kν(2k+1B)

ν(2k+j+1B)
2−j−k

(
∫ ∞

1

(

1 + 2k+jv−2
)−2N

γ(v)2vdv

)1/2

(

1

µ(2k+1Q)

∫

2k+1Q

|f |2dµ

)1/2

.

∗ Study of II.
In this case, we have t ∈ S2j(2

2kI) and σ ∈ 22kI, so

|t − σ| ≃ 22(j+k)r2.

By using off-diagonal estimates (13), we know that

1

ν(2j+k+1B)1/2

∥

∥Le(t−σ)Lf(σ, .)
∥

∥

2,2k+j+1B
.

1

22(j+k)r2

(

1

ν(2k+1B)

∫

2k+1B

|f(σ, .)|2dν

)1/2

.

So we obtain that

II .

(

1

22(j+k)r2

∫

t∈S2j (22kI)

∫

22kI

2−4N(k+j) 22kr2

24(j+k)r4
dσdt

)1/2

(

1

µ(2k+1Q)

∫

2k+1Q

|f |2dµ

)1/2

. 2−2j2−2N(k+j)

(

1

µ(2k+1Q)

∫

2k+1Q

|f |2dµ

)1/2

.

We have also the following estimate

I + II .

(

1

µ(2k+1Q)

∫

2k+1Q

|f |2dµ

)1/2

[

2−2j2−2N(k+j) +
ν(2k+1B)

ν(2k+j+1B)
2−j−k

(
∫ ∞

1

(

1 + 2k+jv−2
)−2N

γ(v)2vdv

)1/2
]

.
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With (24), here we can choose

αj,k =

[

2−N(k+j) +
ν(2k+1B)

ν(2k+j+1B)
2−j−k

(
∫ ∞

1

(

1 + 2jv−2
)−N

γ(v)2vdv

)1/2
]

for N a large enough integer.
2−) Last case for (σ, s) ∈ D2(t) : 0 ≤ s, σ ≤ t.
The relation (22) gives us that :

U2(f)(t, x) =

∫ t

0

∫ t

0

ϕr2(s − σ)
[

Le(t−σ)Lf(σ, .)(x) − Le(t−s+r2)Lf(σ, .)(x)
]

dσds.

Here we use the time regularity. We have :

∣

∣

∣
Le(t−σ)Lf(σ, .)(x) − Le(t−s+r2)Lf(σ, .)(x)

∣

∣

∣
=

∣

∣

∣

∣

∫ t−σ

t−s+r2

∂LezLf(σ, .)(x)

∂z
dz

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ t−σ

t−s+r2

L2ezLf(σ, .)(x)dz

∣

∣

∣

∣

.

We do not know whether t − s + r2 ≤ t − σ or t − s + r2 ≥ t − σ, fortunately this order
is not important. Then we repeat the same arguments as before :

(

1

µ(2j+k+1Q)

∫

Sj(2kQ)

|U2(f)(t, x)|2 dν(x)dt

)1/2

. I + II (25)

with

I :=

(

1

µ(2j+k+1Q)

∫

22k+2jI

(∫

22kI

∫ t

0

χN (s − σ)

∫ t−σ

t−s+r2

∥

∥L2ezLf(σ, .)
∥

∥

2,Sj(2kB)
dzdsdσ

)2

dt

)1/2

and

II :=

(

1

µ(2j+k+1Q)

∫

t∈S2j (22kI)

(
∫

22kI

∫ t

0

χN(s − σ)

∫ t−σ

t−s+r2

∥

∥L2ezLf(σ, .)
∥

∥

2,2k+jB
dzdsdσ

)2

dt

)1/2

.

∗ Study of I.
By using off-diagonal estimates (13), we know that

1

ν(2j+k+1B)1/2

∥

∥L2ezLf(σ, .)
∥

∥

2,Sj(2kB)
≤

ν(2kB)

ν(2k+j+1B)z2
γ

(

2j+kr√
z

)(

1

ν(2kB)

∫

2kB

|f(σ, .)|2dν

)1/2

.
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So we obtain

I .
ν(2kB)

ν(2k+j+1B)

(

1

µ(2kQ)

∫

2kQ

|f |2dµ

)1/2
[

1

22(k+j)r2

∫

22k+2jI

∫

22kI

(

∫ t

0

1

r2

(

1 +
|s − σ|

r2

)−N ∣
∣

∣

∣

∫ t−σ

t−s+r2

2kr

z2
γ

(

2j+kr√
z

)

dz

∣

∣

∣

∣

ds

)2

dσdt

]1/2

.

We use the fast decays of γ and a large enough exponent p ≥ 4 to obtain the following
inequality

∣

∣

∣

∣

∫ t−σ

t−s+r2

1

z2
γ

(

2j+kr√
z

)

dz

∣

∣

∣

∣

.

∣

∣

∣

∣

∣

∫ t−σ

t−s+r2

1

z2

(

2j+kr√
z

)−p

dz

∣

∣

∣

∣

∣

.

∣

∣

∣

∣

∫ t−σ

t−s+r2

zp/2−2

2p(j+k)rp
dz

∣

∣

∣

∣

. 2−p(j+k)r−p
∣

∣σ − s + r2
∣

∣

(

2j+kr
)2(p/2−2)

.

At the last inequality, we have used that |t − σ| .
(

2j+kr
)2

and similarly for |σ − s|. So
for example taking p = 4, we obtain

∣

∣

∣

∣

∫ t−σ

t−s+r2

1

z2
γ

(

2j+kr√
z

)

dz

∣

∣

∣

∣

. 2−4(j+k)r−2

(

1 +
|s − σ|

r2

)

. (26)

We also get

I .
ν(2kB)2k

ν(2k+j+1B)24(k+j)r

(

1

|22k+2jI|

∫

22k+2jI

22kr2dt

)1/2(
1

µ(2kQ)

∫

2kQ

|f |2dµ

)1/2

.
ν(2kB)

ν(2k+j+1B)
2−4j

(

1

µ(2kQ)

∫

2kQ

|f |2dµ

)1/2

.

Here we can choose

αj,k =
ν(2kB)

ν(2k+j+1B)
2−4j ≃ µ(2kQ)

µ(2k+j+1Q)
2−2j‖γ‖∞.

∗ Study of II.
In this case, we have |t − σ| ≃ 22(k+j)r2. By using off-diagonal estimates (13), we know
that for z ≥ r2

1

ν(2j+k+1B)1/2

∥

∥L2ezLf(σ, .)
∥

∥

2,Sj(2kB)
≤ 1

z2

ν(2kB)

ν(2j+k+1B)

(

1

ν(2kB)

∫

2kB

|f(σ, .)|2dν

)1/2

.

So we obtain

II .
ν(2kB)

2jν(2j+k+1B)

(

∫

22k+2jI

∫

22kI

(
∫ t

0

χN(s − σ)

∫ t−σ

t−s+r2

1

z2
dzds

)2

dσdt

)1/2

(

1

µ(2kQ)

∫

2kQ

|f |2dµ

)1/2

.
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Then we use

∣

∣

∣

∣

∫ t−σ

t−s+r2

1

z2
dz

∣

∣

∣

∣

.
r2 + |s − σ|

(t − σ)(t − s + r2)
.

1 + |s−σ|
r2

22(k+j)r2(1 + |t−s|
r2 )

.

(

1 + |s−σ|
r2

)2

22(k+j)r2(1 + |t−σ|
r2 )

.

(

1 + |s−σ|
r2

)2

24(k+j)r2

to finally obtain (with an other exponent N)

II .
ν(2kB)

ν(2j+k+1B)2j24(j+k)r2

(

∫

22k+2jI

∫

22kI

(
∫ t

0

χN (s − σ)ds

)2

dσdt

)1/2

(

1

µ(2kQ)

∫

2kQ

|f |2dµ

)1/2

.
ν(2kB)22kr2

ν(2j+k+1B)24(j+k)r2

(

1

µ(2kQ)

∫

2kQ

|f |2dµ

)1/2

.
µ(2kQ)

µ(2j+k+1Q)22j+2k

(

1

µ(2kQ)

∫

2kQ

|f |2dµ

)1/2

.

So here we can choose

αj,k =
µ(2kQ)

µ(2j+k+1Q)22j+2k
.

3−) End of the proof.
With the decomposition (23), we have proved in the two previous points that we have the
estimate (20) with the coefficients αj,k satisfying

αj,k . 2−N(k+j) +
ν(2kB)

ν(2k+j+1B)
2−j

(
∫ ∞

1

(

1 + 2jv−2
)−2N

γ(v)2vdv

)1/2

+
µ(2kQ)

µ(2j+k+1Q)22j
.

We are going to check that (21) is satisfied. So we must bound the quantity

λk,Q :=
∑

j≥2

µ(2j+k+1Q)

µ(2k+1Q)
αj,k

by a constant (independent on k and Q). The coefficient αj,k is estimated by three terms.
By using the doubling property for µ, with N large enough we can sum the first term
2−N(k+j). For the second term with N ≥ 2, we use (12) to have

∑

j≥2

µ(2j+k+1Q)

µ(2k+1Q)

ν(2kB)

ν(2k+j+1B)
2−j

(
∫ ∞

1

(

1 + 2jv−2
)−2N

γ(v)2vdv

)1/2

.
∑

j≥2

2j

(
∫ ∞

1

(

1 + 2jv−2
)−2N

γ(v)2vdv

)1/2

.

19



To estimate the integral, we decompose for v ∈ [1, 2j/2] and for v ∈ [2j/2,∞) and we use
γ(v) . (1 + v)−4 to have that

∑

j≥2

µ(2j+k+1Q)

µ(2k+1Q)

ν(2kB)

ν(2k+j+1B)
< ∞.

For the third term of αj,k, we have

∑

j≥2

µ(2j+k+1Q)

µ(2k+1Q)

µ(2kQ)

µ(2j+kQ)22j
.
∑

j≥2

2−2j < ∞.

We have the desired property due to the additionnal factor 2−2j, which is obtained by the
time-regularity of the semigroup in the case 2−). So (21) is satisfied. ⊓⊔

5 Other results.

5.1 Maximal regularity on Lp for p ≥ 2.

We have the same result for the adjoint operator T ∗ :

Theorem 5.1 Let L be a generator of a bounded analytic semigroup on L2(Y ). Assume
that (etL∗

)t>0, (tL
∗etL∗

)t>0 and (t2L2∗etL∗

)t>0 belong to
O4(L

2 − L2). Then T ∗ is H1
F,ǫ,mol − L1 bounded for every ǫ > 0, with the Hardy space

H1
ǫ,mol := H1

ǫ,mol,(BQ
∗)

Q∈Q

(which is the Hardy space constructed with the dual operators

B∗
Q).

Proof : The adjoint operator T ∗ is given by :

T ∗f(t, x) =

∫ Z

s=t

[

L∗
(

e(s−t)L
)∗

f(s, .)
]

(x)ds.

The parameter Z depends on the time interval J , it is defined by :

Z :=

{

∞ if J = (0,∞)
l if J = (0, l)

.

The argument of the previous theorem can be repeated and we omit details. ⊓⊔
So now we can apply our general theory to obtain the following result :

Theorem 5.2 Let L be a generator of a bounded analytic semigroup on L2(Y ) such that
(etL∗

)t>0, (tL
∗etL∗

)t>0 and (t2L2∗etL∗

)t>0 belong to O4(L
2 − L2). Let us assume that for

q0 ∈ (2,∞], for all balls Q ⊂ X and all functions f ∈ L2(X), we have

(

1

ν(Q)

∫

Q

|AQ(f)|q0 dµ

)1/q0

. inf
Q

MHL,2(f).

Then for all p ∈ (q′0, 2] the operator T ∗ is Lp(X)-bounded and so T is Lp′-bounded. We
have also the maximal regularity on Lp(Y ) for all p ∈ [2, q0).

Proof : We use Theorem 2.5 for the operator T ∗ whose hypotheses are satisfied thanks
to Theorem 5.1. ⊓⊔
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5.2 Study of our Hardy spaces.

To finish this paper, we show some results on our Hardy space. First we have the off-
diagonal decay (9).

Proposition 5.3 Assume that (etL)t>0 ∈ Op(L
2 − L2) for an integer p. For BQ defined

by (10) and (11), we have that for all balls Q ⊂ X

∀i ≥ 0, ∀k ≥ 0, ∀f ∈ L2(2kQ), ‖BQ(f)‖2,Si(2kQ) ≤ C2−M ′′i‖f‖2,2kQ (27)

with the exponent M ′′ = δ/2 − 1 + p.

Proof : By definition we have just to prove the decay for the AQ operator. Let r be the
radius of Q. As previously, we write Q = I ×B where I is an interval of length r2 and B
is a ball in Y of radius r. Recall that

AQ(f)(t, x) :=

∫ +∞

σ=0

[

ϕr2(t − σ)er2Lf(σ, .)
]

(x)dσ.

For i ≤ 1, we just use the L2(Y )-boundedness of AQ to prove (27). Then for i ≥ 2
and (σ, y) ∈ 2kQ if (t, x) ∈ Si(2

kQ) we have that d((x, t), (σ, y)) ≃ 2k+ir and by using
the definition of the parabolic quasi-distance, we conclude that either x ∈ Si(2

kB) either
t ∈ S2i(2

2kI). We will study the two cases :
First for x ∈ Si(2

kB), by the off-diagonal estimate (13) we have the estimate : for all
σ > 0

∥

∥

∥
er2L(f(σ, .))

∥

∥

∥

2,Si(2kB)
.

ν(2kB)

ν(2i+kB)
γ
(

2i+k
)

(

ν(2i+kB)

ν(2kB)

)1/2

‖f(σ, .)‖2,2kB.

So by the Minkowski inequality, we obtain

‖AQ(f)(t, .)‖2,Si(2kB)

.

∫ +∞

σ=0

(

1 +
|t − σ|

r2

)−N
ν(2kB)

ν(2i+kB)
γ
(

2i+k
)

(

ν(2i+kB)

ν(2kB)

)1/2

‖f(σ, .)‖2,2kB

dσ

r2

.

(

ν(2kB)

ν(2i+kB)

)1/2

γ
(

2i+k
)

‖f‖2,2kQ

1

r
.

Then we integrate for t ∈ 22(i+k)I to have

‖AQ(f)‖2,22(i+k)I×Si(2kB) .

(

ν(2kB)

ν(2i+kB)

)1/2

2i+kγ
(

2i+k
)

‖f‖2,2kQ.

For the second case, we have |t − σ| ≃ 22(i+k)r2. By using the L2(Y )-boundedness of the
semigroup

∥

∥

∥
er2L(f(σ, .))

∥

∥

∥

2,2i+kB
. ‖f(σ, .)‖2,2kB.

So by the Minkowski inequality, we obtain

‖AQ(f)(t, .)‖2,2k+iB .

∫

σ∈2kI

(

1 + 22(k+i)
)−N ‖f(σ, .)‖2,2kB

dσ

r2

. 2−2(k+i)(N−1)‖f‖2,2kQ

1

r
.
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So we can conclude that

‖AQ(f)‖2,S2i(22kI)×2i+kB . 2−(N−2)(k+i)‖f‖2,2kQ.

With these two cases, we can conclude (for N any large enough integer)

‖AQ(f)‖2,Si(2kQ) .

(

2−(N−2)i +

(

ν(2kB)

ν(2i+kB)

)1/2

2i+kγ
(

2i+k
)

)

‖f‖2,2kQ

which with the decay of γ permits to prove the result. ⊓⊔
With this decay M ′′ > δ+2

2
(if p = 4), we have shown that the Hardy spaces H1

ato(X) and
H1

ǫ,mol(X) are included into the space L1(X) (see Proposition 2.9).
In fact we can improve this result, by comparing it with the classical Hardy space of
Coifman-Weiss on X.

Proposition 5.4 Let ǫ > 0. The inclusion H1
ato(X) ⊂ H1

ǫ,mol(X) ⊂ H1
CW (X) is equiva-

lent to the fact for all r > 0, (erA)∗(1Y ) = 1Y (in the sense of Proposition 2.10).

Proof : We use the notations of Proposition 2.10. By using this Proposition, we know
that H1

ǫ,mol(X) ⊂ H1
CW (X) is equivalent to the fact that for all balls Q of X, A∗(1X) = 1X

in the sense of (Molǫ,Q)∗. Let Q = B((tQ, cQ), rQ) be fixed. By (17) we know that

A∗
Q(g)(σ, x) :=

∫

t∈R+

ϕr2
Q
(t − σ)

[(

er2
QL
)∗

g(t, .)
]

(x)dt.

As
∫

R
ϕ(t)dt = 1, we formally obtain

A∗
Q(1X)(σ, x) = (er2

Q
L)∗(1Y )(x).

This equality can be rigorously verified by defining (er2
Q

L)∗(1Y )(x) as the continuous linear
form on the space

Molǫ,rQ
(Y ) :=

{

f ∈ L1(Y ), ‖f‖Molǫ,rQ
(Y ) < ∞

}

,

where
‖f‖Molǫ,rQ

(Y ) := sup
i≥0

‖f‖2,Si(QY )

(

ν(2iQY )
)1/2

2ǫi.

Here we write
QY = B(cQ, rQ) = {y ∈ Y, dY (x, cQ) ≤ rQ}

the ball in Y . Then the equivalence is a consequence of Proposition 2.10. ⊓⊔

In the paper [2], the authors have shown that with −L equals to the laplacian on X a
complete Riemannian manifold with doubling and Poincaré inequality, the operator T is
bounded on H1

CW (X) (not just bounded into L1(X)). This is a better result than the one
here because Proposition 5.4 applies (see [2]) so

H1
ato(X) ⊂ H1

ǫ,mol(X) ⊂ H1
CW (X) ⊂ L1(X).

But the H1
CW -boundedness is using stronger hypotheses than ours in a specific situation.
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