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ON THE SPECTRUM OF α-RIGID MAPS

E. H. EL ABDALAOUI

Abstract. It is shown that there exists an α-rigid transformation with α less
or equal to 1

2
whose spectrum has Lebesgue component. This answers the

question raised by Klemes and Reinhold in [30]. We exhibit also a large class
of α-rigid transformations with singular spectrum.

1. Introduction

In his 1980’s paper [27], A. Katok show that the interval exchange maps are not
mixing. The proof yields that the interval exchange maps are α-rigid. Later, Veech
in [41] investigated the spectral properties of interval exchange maps and showed
that almost every minimal interval exchange maps had singular simple spectrum.
Before, Oseledets in [21] proved that for an interval exchange transformation the
maximal spectral multiplicity is bounded above by r − 1 where r is the number of
intervals exchanged. Moreover he constructed the first example of a transformation
with continuous spectrum and finite multiplicity greater than 1. Since the example
is an exchange of 30 intervals, the maximal spectral multiplicity m satisfies 2 ≤
m ≤ 29. Robinson [35] constructed ergodic interval exchange transformations with
arbitrary finite maximal spectral multiplicity. It follows from [28] that all the
examples constructed by Oseledets and Robinson have singular spectrum. However
Katok’s result remains at the present time, the only universal result about the
spectrum of interval exchanges. Following Veech one may asked if there is any other
”universal” spectral property satisfied by interval exchange maps. More precisely
as in [1] one may asked the following

Question 1. Does any interval exchange map have singular spectral type?.

The answer to the above question is affirmative in the case of three interval ex-
change maps. In fact, using the result in [17] one may show that every ergodic
interval exchange transformation on three intervals has singular spectrum.

On the other hand, Klemes and Reinhold in [30] obtained that for any α ∈]0, 1[,
there exists an α-rigid rank one transformation with singular spectrum and asked

Question 2. Does any α-rigid transformation have singular spectral type?.

We point out that the positive answer to Klemes-Reinhold question yields a pos-
itive answer to the question 1. Unfortunately, in this paper we shall proved that

the Mathew-Nadkarni transformation is
1

2
-rigid. We recall that Mathew-Nadkarni

introduced this transformation in 1984 in [19] to answer the question raised by
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2 E. H. EL ABDALAOUI

Helson and Parry [18] of whether there exists an ergodic measure preserving trans-
formation which has a Lebesgue component in its spectrum with finite non-zero
multiplicity. Helson and Parry also mentioned the problem, attributed to Banach,
whether there exists an ergodic measure preserving transformation on a finite mea-
sure space whose spectrum is simple Lebesgue. In [36], Rokhlin mentioned the
problem of finding an ergodic measure preserving transformation on a finite mea-
sure space whose spectrum is of Lebesgue type with finite multiplicity. Another
contribution to the Banach-Rohklin question is due to M. Queffélec [32] who proved
that the spectrum of the Rudin-Shapiro substitution has Lebesgue component of

multiplicity two. It turns out that the Rudin-Shapiro substitution is
1

2
-rigid. We

will present other example of dynamical systems arising from substitutions with

Lebesgue component of multiplicity two whose rigidity constant is less than
1

2
.

It is an easy exercise to prove that α-rigid transformations are not mixing. Since
α-rigidity does not imply that the spectrum is singular as we shall see, the absence
of mixing does not imply that the spectrum is singular. Let us mention that any
aperiodic measure-preserving transformation can be realized as an exchange of an
infinite number of intervals [3].

Our work on the question of Klemes and Reinhold includes a survey of the results
of Dekking-Keane [8] and Queffélec [33]. F. M. Dekking and M. Keane showed that
the dynamical systems arising from substitutions are not mixing. The ingredients
of the proof established that the dynamical systems arising from substitutions are
α-rigid. The procedure to check the constant α will be presented in the last sec-
tion without proof. Queffélec showed that the substitution which gives rise to the
Rudin-Shapiro sequence has Lebesgue component of multiplicity two together with
a discrete component. (Kamae [25] had earlier shown that the correlation measure
of the Rudin-Shapiro sequence is Lebesgue).
In this paper we shall exhibit also a large class of α-rigid transformations with sin-
gular spectrum. More precisely we shall proved that the transformation satisfying
the restricted Beurling condition is singular. We say that the transformation T

satisfy the restricted Beurling condition if the following holds





∑

i∈Z

aiU
i
T : ai > 0 for some i and

∑

n≥0

log(
∑

k≤−n

a2
k)

n2
= −∞






⋂({
Un

T , n ∈ Z
}W

\
({

Un
T , n ∈ Z

}))
6= ∅.

Where UT is the operator define by UT f(x) = f(T−1x) and
{
Un

T , n ∈ Z
}W

is the
weak closure power of T .
We mention that the α-rigid rank one transformations constructed by Klemes &
Reinhold is contained in this class. Thus, our result can be considered as a gener-
alization of the Klemes-Reinhold result. There is another motivation of our work.
In 1979 D. Rudolph [37] introduced the notion of minimal self-joinings as the foun-
dation for a machinery that yields a wide variety of counterexamples in ergodic
theory. But the property of minimal self-joinings is meager with respect to the
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weak topology on the group of the all automorphisms. Later, in 1983 A. del Junco
and M. Lemańczyk in [9] show that these constructions, as well as many others in
[37], can be based on a much weaker property that is in fact generic (residual in
the weak topology). This property has as a special case of the property of κ-mixing
(see Katok [26], Stepin [40]) which implies the mutual singularity of the convolution
powers of the maximal spectral type of an automorphism T . We remark also that
the κ-mixing transformation is (1 − κ)-rigid.

Question 3. Are the convolution powers of the maximal spectral type of any non-
mixing transformation with minimal self-joinings property pairwise singular?.

Recently, some progress was obtained by Prikhod’ko and Ryzhikov in [24]. The
authors show that the well-known Chacon transformation [7] possesses this prop-
erty. It is well known that the Chacon transformation has the minimal self-joining
property [11]. This result can be extended easily to the case of staircase trans-
formations with bounded cutting parameter. These latter examples include as a
special case the Klemes-Reinhold examples of α-rigid rank one transformations.

We recall now some basic fact form the spectral theory. A nice account can be
found in the appendix of [22].

1.1. Spectral measures. Given T : X 7→ X a measure preserving invertible
transformation and denoting as above by UT f the operator UT f(x) = f(T−1x),
recall that to any f ∈ L2(X) there corresponds a positive measure σf on S1, the
unit circle, defined by σ̂f (n) =< Un

T f, f >.

Definition . The maximal spectral type of T is the equivalence class of Borel
measures σ on T (under the equivalence relation µ1 ∼ µ2 if and only if µ1 << µ2

and µ2 << µ1), such that σf << σ for all f ∈ L2(X) and if ν is another measure
for which σf << ν for all f ∈ L2(X) then σ << ν.

By the canonical decomposition of L2(X) into decreasing cycles with respect to
the operator UT , there exists a Borel measure σ = σf for some f ∈ L2(X), such
that σ is in the equivalence class defining the maximal spectral type of T . By abuse
of notation, we will call this measure the maximal spectral type measure. It can be
replaced by any other measure in its equivalence class. The reduced maximal type

σ
(0)
T is the maximal spectral type of UT on L2

0(X)
def
= {f ∈ L2(X) :

∫
fdµ = 0}.

the spectrum of T is said to be discrete (resp. continuous, resp. singular, resp.

absolutely continuous , resp. Lebesgue ) if σ
(0)
T is discrete ( resp. continuous,

resp. singular, resp. absolutely continuous with respect to the Lebesgue measure
or equivalent to the Lebesgue measure). We write

Z(h)
def
= span{Un

T h, n ∈ Z}.

T is said to have simple spectrum, if there exist h ∈ L2(X) such that

Z(h) = L2(X).

Two dynamical systems (X,A, µ, T ) and (Y,B, ν, S) are spectrally disjoint if σ
(0)
T

and σ
(0)
S are mutually singular.
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1.2. α-rigid transformations.

Definition . A measure-preserving transformation T on the probability space
(X,B, µ) is said to be α-rigid where α ∈]0, 1] if there exists a sequence of integers
{nk}k∈N such that

lim
k→∞

µ(T nkA ∩ A) ≥ αµ(A), ∀A ∈ B.

The α-rigidity has been formulated in 1987 by N. Friedman in [14]. Besides this,
in 1969 J. Baxter in [5] proved

Theorem 4 (Baxter). The spectrum of any α-rigid transformation is singular

if α >
1

2
.

Proof. (due to Ryzhikov.) We shall prove more, namely we show that the α-rigid

transformation T , α >
1

2
, is spectrally disjoint from any mixing transformation S.

By assumption, there exist a sequence of integers and a Markov operator P such
that (Uni

T ) converges weakly to αI + (1 − α)P . Let J be any operator such that

UT J = JUS ,

then, for any f ∈ L2
0(X) we have

αJf + (1 − α)PJf = 0.

Since the norme of P is equal to 1, the operator αI + (1−α)P is invertible; hence,
Jf must be 0, thus J ≡ 0. We deduce that T is spectrally disjoint from S and the
proof of the theorem is complete. �

Remark 1. The proof above gives more, namely if the weak closure of the powers
of the operator UT contains any invertible operator, then T is spectrally disjoint
from any mixing maps. In fact, Assume that there exist a invertible operator V

in the weak closure of the power of T which means that there exists a sequence of
interger (ni) such that, for any f ∈ L2

0(X) we have

lim
i−→+∞

(Uni

T f, f) = (V f, f).

Let S any mixing maps. By the Lebesgue decomposition of σ
(0)
T with respect to

the maximal spectral type of S we have

σ
(0)
T = σs + σa.

It is well known that there exists a function f ∈ L2
0(X) such that σf = σa. But for

any function g ∈ L2
0(X) we have

lim
j−→+∞

lim
i−→+∞

(U
ni−nj

T g, g) = (V g, V g).

We deduce from the Riemann-Lebesgue theorem that

(V f, V f) = 0,

therefore f = 0 and the proof is complete.
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1.3. Joinings. Let T be any ergodic automorphism of a Lebesgue space (X,B, µ).
The centralizer of T , C(T ), is the semi-group of all endomorphisms S : (X,B, µ) →
(X,B, µ) such that ST = TS. Denote by J(T, · · · , T ) the space of all n-joinings of
T :

λ ∈ J(T, · · · , T ) if

λ is a T⊗n − invariant probability measure on

B⊗n, such that λB = µ.

Where T⊗n def
= T × T · · · × T.

A standard example of ergodic 2-joinings comes from the centralizer of T. More
precisely, if S ∈ C(T ) then the measure given by

∆S(A × B) = µ(A ∩ S−1B)

is a 2-joining. For S = T n, n ∈ Z, we put

∆n
def
= ∆T n and

∆
def
= ∆0.

Following [10], [42] we call T is 2−fold simple if each ergodic 2-joining of T either
is on the graph of some S ∈ C(T ) or is the product measure µ × µ. It is an easy
observation that 2-fold simplicity implies that C(T ) is a group (consider µS(A ×
B) = µ(S−1A ∩ B)).
Now, for n > 1 and any Si ∈ C(T ), i = 1, · · · , n, the measure (n-joining) µS1,··· ,Sn

given by

µS1,··· ,Sn
(A1 × · · · × An) = µ(S−1

1 A1 ∩ · · · ∩ S−1
n An).

is said to be off-diagonal.
T is said to be simple if C(T ) is a group and if for every n ≥ 2 and every ergodic
n−joining λ the set {1, · · · , n} can be split into subsets s1, · · · , sk such that λ|Bsi

is a off-diagonal and λ is the product of these off-diagonals [D-R]. If T is 2-fold
simple and C(T ) is trivial i.e. C(T ) = {T i : i ∈ Z}, then T is said to have
the property of minimal self-joining of order 2 (T ∈ MSJ(2)). T is said to have
a minimal self-joinings of any order if T is simple and C(T ) is trivial. The class
of MSJ(2) transformations is contains in the class of transformations with finite
joining rank. The joining rank of any ergodic transformation T , written jrk(T),
is defined as the minimum of r ∈ N for which each ergodic r−fold self-joining ν

has some pair i < j such that the two-dimensional marginal νB(i)×B(j) is trivial
(i.e. νB(i)×B(j) ∈ {µ × µ} ∪ {∆n}n∈Z). The standard examples of transformations
with finite joining rank great then 2 is given by the powers of any weak mixing
transformation T in MSJ(2). In addition, a non-mixing transformation with the
minimal self-joining property is α−rigid. Indeed, we have the following

Lemma 1 ([38]). Let T be a non-mixing map in MSJ(2). Then T is α-rigid for
some α ∈]0, 1[.

Proof. Since the set J(T, T ) is compact and T is not mixing, there is a sequence
nk → ∞ such that the sequence of diagonal measures ∆nk

converges to some
measure λ ∈ J(T, T ), where λ 6= µ × µ. Since T ∈ MSJ(2), by the ergodic



6 E. H. EL ABDALAOUI

decomposition, we have

λ = βµ × µ +
∑

i∈Z

ai∆i, (1.1)

where ai ≥ 0 and
∑

i∈Z

ai = 1 − β.

Hence, for some i we have

λ ≥ ai∆i, ai > 0.

Thus, for the sequence mk = nk − i we have

lim
k→∞

µ(T mkA ∩ A) ≥ αµ(A)

where α
def
= ai. The proof is complete. �

Remark 1. It is well known and it is easy to see that for any joining λ between
two dynamical systems (X,A, T , µ) and (Y,B;S, ν) there exists a Markov operator,
J : L2

0(X, µ) −→ L2
0(Y, ν) such that

(1) J ◦ UT = US ◦ J,

(2) JχX = χY and J∗χY = χX ,

(3) f > 0 and g > 0 implies Jf > 0 and J∗g > 0,

(4) for any f ∈ L2
0(X, µ) and g ∈ L2

0(Y, ν) we have
∫

X×Y

f(x)g(y)dλ(x, y) =

∫

Y

Jf(y)g(y)dν(y).

(Here J∗ is the adjoint of J defined by (Jf, g) = (f, J∗g) for f ∈ L2
0(X, µ) and

g ∈ L2
0(Y, ν). Moreover, the correspondence is one-to-one. The systems (X,A, T , µ)

and (Y,B;S, ν) are disjoint (in the sens of Furstenberg) if J is trivial which means
Jf =

∫
fdµ, for any f ∈ L2

0(X, µ). With this in mind, Ryzhikov [39] and [12] shows
that the α-rigid maps with α > 0 is disjoint from all mixing maps. Indeed, Let λ

any joining between a α-rigid maps T and mixing maps S and let J be a associated
Markov operator. By the α-rigidity of T it is easy to see that there exists a sequence
of integers (nk)k∈N and a Markov operator P such that (Unk

T )converge weakly to
αId+ (1−α)P . It follows that J ◦Unk

T converge weakly to αJ + (1−α)J ◦P . But

J ◦ Unk

T = Unk

S J,

and since S is mixing, we have

(Unk

S Jf, g) = 0,

for each f ∈ L2
0(X, µ) and g ∈ L2

0(Y, ν). We deduce that

α(Jf, g) + (1 − α)(JPf, g) = 0

for each f ∈ L2
0(X, µ) and g ∈ L2

0(Y, ν). Hence,

Jf = 0, ∀f ∈ L2
0(X, µ).

In the following we shall prove the connection between the old problem of Banach
on the existence of dynamical system with simple Lebesgue spectrum and the MSJ
property. For that, we recall the following conjecture.
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Conjecture 5. ([22],pp. 50) If a reduced maximal spectral type of some transforma-
tion with simple spectrum is absolutely continuous then it is
Lebesgue.

Theorem 6. If T is a transformation with finite joining rank and simple
Lebesgue spectrum then the conjecture 5 implies that T is in the class MSJ.

Proof. By the King-Thouvenot theorem [29], T is the e-extension (e ∈ N∗) of the
power (say p) of some transformation S with MSJ property. But Sp is a factor of T .
It follows that Sp and S have simple Lebesgue spectrum and since the multiplicity
of Sp is p this implies that p = 1. We get that T is an e-extension of S and the
classical spectral decomposition of the group extension yields that e = 1. �

2. Beurling condition.

In this section we shall prove the following

Theorem 7. Assume that the map T satisfy the following Beurling condition





∑

i∈Z

aiU
i
T : ai 6= 0 for some i and

∑

n≥0

log(
∑

k≤−n

a2
k)

n2
= −∞






⋂({
Un

T , n ∈ Z
}W

\
({

Un
T , n ∈ Z

}))
6= ∅.

Then T is singular.

We shall need the following lemma. The proof of it follows word by word the
proof given in [34, pp. 66] in the case of Lebesgue measure.

Lemma 2 (Translation lemma). Suppose µ is a probability measure on T and
(nk)k∈N is a sequence of distinct integers. Define µk by

µk = einkθdµ(θ), k = 1, 2, 3, · · ·

If (µk)k∈Z converges in the weak* topology to σ, then σ is singular with respect to
any Rajchman measure ν (a measure ν on the circle is called a Rajchman measure
if lim

n→∞
ν̂(n) = 0). In fact, if µ = µs + µa is the Lebesgue decomposition of µ with

respect to the Rajchman measure ν on T, then

|σ|(E) ≤ µs(E), for every Borel set E in T.

Theorem 8 (Beurling’s Theorem [4]). Let f be a function on torus T define by

f(θ) =
∑

j∈Z

aje
ijθ.

and assume that the following condition holds

∑

n≥0

log(
∑

k≤−n a2
k)

n2
= −∞,

Then, f = 0 on the set of positive measure implies that f = 0 a.e. on T.
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Proof. Let σ
def
= σh be the reduced maximal spectral type of T . Then from the

Beurling condition it follows that there exists a sequence of integers (nk)k∈N such
that

einkθdσ
w∗
→

∑

j∈Z

aje
ijθdσ. (2.2)

Let σ = σs + σa be the Lebesgue decomposition of σ with respect to the Lebesgue
measure m on T. Put

f(θ)
def
=

∑

j∈Z

aje
ijθ .

Then, by translation lemma, we have

σa{x : f(x) = 0} = σa(T). (2.3)

Now observe that Beurling’s theorem (Theorem 8) says that

f 6= 0 ⇒ m{x : f(x) = 0} = 0.

Hence σa = 0 and this completes the proof of theorem. �

As immediate consequence of our result we obtain the following

Corollary 1. If the map T satisfy the following restricted Beurling condition





∑

i∈Z

aiU
i
T : ai > 0 for some i and

∑

n≥0

log(
∑

k≤−n

a2
k)

n2
= −∞






⋂({
Un

T , n ∈ Z
}W

\
({

Un
T , n ∈ Z

}))
6= ∅.

Then T is α-rigid with singular spectrum.

Remark 2. Note that we have actually proved that T is spectrally disjoint from
any mixing maps S provided that

σ
(0)
S {x : f(x) = 0} = 0, (2.4)

and observe that (2.4) holds if f is a analytic function on the circle.

2.1. Applications. Using our result we shall give, in this section, a simple proof
of some well known results on the singularity of the spectrum of some special case
of rank one maps. More precisely, we shall give a simple proof of the singularity of
Chacon maps and the staircase maps with bounded cutting parameter. We recall
that for any ε > 0 one may construct a staircase maps with bounded cutting pa-
rameter say p such that the α-rigid constant is smaller that ε. In fact the α-rigid

constant is
1

p
.

Let us recall the definition of rank one maps and by the way the staircase maps.
Using the cutting and stacking method described in [15], [16], one can defines
inductively a family of measure preserving transformations, called rank one trans-
formations, as follows

Let B0 be the unit interval equipped with the Lebesgue measure. At stage one
we divide B0 into p0 equal parts, add spacers and form a stack of height h1 in the
usual fashion. At the kth stage we divide the stack obtained at the (k − 1)th stage
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into pk−1 equal columns, add spacers and obtain a new stack of height hk. If during
the kth stage of our construction the number of spacers put above the jth column

of the (k − 1)th stack is a
(k−1)
j , 0 ≤ a

(k−1)
j ≤ ∞, 1 ≤ j ≤ pk, then we have

hk = pk−1hk−1 +

pk−1∑

j=1

a
(k−1)
j .

Bk

︸ ︷︷ ︸
Bk−1

pk−1

6

a
(k−1)
1

a
(k−1)
2
· · · · · ·

a
(k−1)
j

· · · · · ·
a
(k−1)
pk−1

Figure 1 : kth–tower.

Proceeding in this way we get a rank one transformation T on a certain measure
space (X,B, ν) which may be finite or σ−finite depending on the number of spacers
added.
The construction of any rank one transformation thus needs two parameters, (pk)∞k=0

(parameter of cutting and stacking), and ((a
(k)
j )pk

j=1)
∞
k=0 (parameter of spacers). Put

T
def
= T

(pk,(a
(k)
j )

pk
j=1)∞

k=0

In the case of staircase maps the parameter of spacers is given by

a
(k)
j = j − 1, for j = 1 to pk − 1 and a(k)

pk
= 0.

The classical Chacon map [7] correspond to the case pk = 3, for every k ∈ N∗. It
easy to see that Chacon map is 1

3 -rigid. More generally it is easy to prove that the

staircase with bound cutting parameter (say p) is 1
p
-rigid (in fact, for any measur-

able set A we have lim inf µ(T hnA ∩ A) ≥ 1
p
µ(A).). Using the theorem 7. and the

remark 2. we have the following

Corollary 2. The staircase maps with bounded cutting parameter are spectrally
disjoint from any mixing maps.

Proof. By the definition of staircase maps it is easy to prove that the sequence T hn

converge weakly to

r−1∑

j=0

1

r − 1
T j where T 0 is a identity map. �
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One may apply our result also to the historically Chacon map [6]. The historically
Chacon map is given by

pk = 2, ∀k ∈ N∗ and a1 = 1, a2 = 0.

From the construction one may check that the sequence (T hk)k∈N∗ converge weakly

to
+∞∑

k=0

1

2k
T k.

Now, it easy to get from our result the following

Corollary 3. The historically Chacon map is spectrally disjoint from any mixing
maps.

Remark 2. Using the same methods and the continuous version of
Beurling theorem we can extend the theorem 7 to the case of the flows and by
the results of Fra̧czek-Lemańczyk [12], [13], we can give examples for which the
conditions of the theorem are satisfied.

3. Mathew-Nadkarni transformation

The Mathew-Nadkarni transformation is a Z2-extension of the odometer or von

Neumann-Kakutani adding machine τ 1, Z2
def
= {0, 1} endowed with its Haar

measure h
def
= 1

2δ0 + 1
2δ1. Explicitly, define Tφ : [0, 1) × Z2 7→ [0, 1) × Z2 by

Tφ(x, g) = (Tx, φ(x) + g), where T is the adding machine.
T is defined by mapping the interval [1 − 1

2n , 1 − 1
2n+1 ) linearly onto the interval

[ 1
2n+1 , 1

2n ), n = 0, 1, 2 · · · . T is a rank one transformation which is also easily de-
scribed using cutting and stacking. The cocycle φ is defined (inductively over all
”levels” of the tower associated to T except the last one) to be 0 on the intervals
[1− 1

2n , 1− 1
2n + 1

2n+2 ), and 1 on the intervals [1− 1
2n + 1

2n+2 , 1− 1
2n+1 ), n = 0, 1, 2 · · · ..

Theorem 9 (Mathew-Nadkarni [19]). The Mathew-Nadkarni transformation
has a spectrum consisting of a Lebesgue component with multiplicity 2, together
with discrete component.

Theorem 10. The Mathew-Nadkarni transformation is
1

2
-rigid.

Proof. Recall that the operator UTφ
: L2([0, 1)×Z2, µ⊗h) → L2([0, 1)×Z2, µ⊗h)

has a direct sum decomposition

L2([0, 1) × Z2, µ ⊗ h) = L0 ⊕ L1.

where L0 = {f ⊗ 1 : f ∈ L2([0, 1))} and L1 = {f ⊗χ : f ∈ L2([0, 1)) and χ(g) =
(−1)g, for g ∈ Z2}.
Let A be a Borel set and ε ∈ Z2 then

IA×{ε} = f1 + χ f2.

where f1 =
1

2
IA, f2 = χ(ε)f1. Observe that the discrete part σd of the spectral

measure σIA×{ε}
verify that there exists a sequence of integers (nk) such that

lim
k→∞

∧
σA×{ε} (nk) = lim

k→∞

∧
σd (nk) = (f1, f1) =

1

2
m ⊗ h(A × {ε}).

1see [23], [15] or [20].
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Hence by a standard argument, for any Borel set B in the σ-algebra of [0, 1) × Z2

we have

lim inf
k→∞

∧
σB (nk) ≥

1

2
m ⊗ h(B).

and this completes the proof of the theorem. �

Remark 3. The Mathew-Nadkarni transformation is not weakly mixing but using
the Ageev’s construction [2] one can produce an α-rigid transformations with con-
tinuous spectrum and Lebesgue component of even multiplicity. Let us remark also
that Mathew-Nadkarni’s construction contains continuum pairwise non-isomorphic
dynamical system [31]. It follows that one can produce a continuum of α-rigid
transformations with 2-fold Lebesgue spectrum. Moreover, M. Lemańczyk pointed
out to us that one can generalize the above result as follows :
If T is rigid and the cocyle φ : X −→ Z2 gives Lebesgue spectrum for Tφ (such φ

exists over each rigid maps by Helson-Parry [18]), then Tφ is 1
2 -rigid.

4. Substitution examples

A vast literature is devoted to substitutions, whose Bible is [33]. They appear as
symbolic systems defined on a finite alphabet A = {0, 1, · · · , k − 1}; a substitution
ξ is a mapping from A to the set A∗ of all finite words of A. It extends naturally
into a morphism of A∗ by concatenation. We restrict ourselves to the case when
ξ(0) begins with 0 and the length of ξn(0) tends to infinity with n. The infinite
sequence u beginning with ξn(0) for all n is then called a fixed point of ξ and the
symbolic system associated to u is called the dynamical system associated to ξ.

When ξ is primitive, i.e. there exists n such that α appears in ξn(β) for all α, β ∈
A, the system is uniquely ergodic, and we can consider the measure-preserving
system associated to ξ, to which we refer in short, “the substitution ξ”. The
composition matrix M of the substitution ξ is the matrix whose entries are ℓij =
Oi(ξ(j)), where i, j ∈ A and Oi(ξ(j)) is the number of i′s occurring in ξ(j). If ξ is
primitive, it follows from the Perron-Frobenius theorem that M admits a strictly
positive simple eigenvalue θ, such that θ > |λ|, for any other eigenvalue λ and there
exists a strictly positive eigenvector corresponding to θ. It is any easy exercise (see
[33]) to see that, for any a ∈ A, the sequence of k-dimensional vector

(
O0(ξ

n(a))

θn
, · · · ,

Ok(ξn(a))

θn
),

converges to a strictly positive eigenvector v(a) corresponding to θ.
One classical result on primitive substitution we need to recall here is the result

of M. Keane and M. Dekking [8]. They proved that the dynamical system arising
from a primitive substitution is not mixing. Their proof, with the above notations,
contains the following.

Theorem 11. The dynamical system arising from a primitive substitution is
rρ-rigid. Where, r is the maximum of the measure of the cylinders set [aa], a ∈ A,
and ρ is the ℓ1-norm of the strictly positive eigenvector v(ar) corresponding to the
Perron-Frobenius eigenvalue θ of ξ, ar is a letter for which the measure of [arar]
is r.
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It is an easy exercise to compute the constant r. In fact, it is sufficient to com-
pute the normalized positive eigenvector corresponding to the dominant eigenvalue
of the composition matrix M2 of the substitution ξ2. The substitution ξ2 is defined
on the alphabet A2 = {(ab), a, b ∈ A} in the following way :

if ξ(ab) = ξ(a)ξ(b) = y0y1y2y3

we set

ξ2(ab) = (y0y1)(y1y2).

One of the classical examples of substitutions is the Rudin-Shapiro substitution.
The Rudin-Shapiro substitution is defined on the alphabet A = {0, 1, 2, 3} in the
following way

ξ(0) = 02, ξ(1) = 32,

ξ(2) = 01, ξ(3) = 31.

M. Queffélec in [32] shows that the continuous part of the Rudin-Shapiro dynamical
system is Lebesgue with multiplicity 2 and it is easy to prove that the Rudin-Shapiro

dynamical system is
1

2
-rigid. Another example of a substitution with Lebesgue

spectrum is given by the following substitution ξ on the alphabet A = {0, 1, 2}

ξ(0) = 001

ξ(1) = 122

ξ(2) = 210.

ξ has Lebesgue spectrum with multiplicity 2 in the orthocomplement of eigenfunc-
tions [33, p. 221], we point out that one may use the standard computer program to
compute approximatively the constant of α-rigidity of ξ which is approximatively
equal to 0.3104979673× 10−7.
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