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Abstract

Numerical methods for solving Markov chains are in general inefficient if the state space of
the chain is very large (or infinite) and lacking a simple repeating structure. One alternative to
solving such chains is to construct models that are simple to analyze and that provide bounds for
a reward function of interest. We present a new bounding method for Markov chains inspired by
Markov reward theory; our method constructs bounds by redirecting selected sets of transitions,
facilitating an intuitive interpretation of the modifications on the original system. We show that
our method is compatible with strong aggregation of Markov chains; thus we can obtain bounds
for the initial chain by analyzing a much smaller chain. We illustrate our method on a problem
of order fill rates for an inventory system of service tools.

1 Introduction

In Markov chain modeling, one often faces the problem of combinatorial state space explosion:
modeling a system completely requires an unmanageable - combinatorial - number of states. Many
high-level formalisms, such as queueing networks or stochastic Petri nets, have been developed to
simplify the specification and storage of the Markov chain. However, these models only rarely
have closed-form solutions, and numerical methods are inefficient when the size of the state space
becomes very large or for models with infinite state space that do not exhibit special repeating
structure that admits a matrix analytic approach [16]. Typically, the latter approach is quite
limited if the state space is infinite in more than one dimension. An alternative approach to cope
with state space explosion is to design new models that (i) provide bounds for a specific measure
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of interest (for instance the probability of a failure in a complex system); and (ii) are simpler to
analyze than the original system.

Establishing (i): the bounding relationship between the original and new (bounding) systems
may be based on different arguments. Potentially the most general way of obtaining bounds is
by stochastic comparison, which gives bounds for a whole family of reward functions (for instance
increasing or convex functions). Furthermore, stochastic comparison provides bounds for both
the steady-state and transient behavior of the studied model. Many results have been obtained
using strong stochastic order (i.e. generated by increasing functions) and coupling arguments [11].
Recently, an algorithmic approach has been proposed in [8] to construct stochastic bounds, based on
stochastic monotonicity; this stochastic monotonicity provides simple algebraic sufficient conditions
for stochastic comparison of Markov chains. Ben Mamoun et al. showed in [3] that an algorithmic
approach is also possible using increasing convex ordering that allows one to compare variability.
The clear advantage of stochastic comparison is its generality: it provides bounds for a whole family
of rewards, both for the steady-state and transient behavior of the studied system. Its drawback is
that in its generality, it may not apply to the system of interest. For more details on the theoretical
aspects of stochastic comparison we refer the reader to [14, 18].

For this reason more specialized methods than stochastic comparison have also been developed,
which apply only to one specific function, and only in the steady-state. Muntz et al. [15] proposed
an algebraic approach to derive bounds of steady-state rewards without computing the steady-state
distribution of the chain, founded on results of Courtois and Semal on eigenvectors of non-negative
matrices [5, 6]. This approach was specially designed for reliability analysis of highly reliable
systems, and requires special constraints on the structure of the underlying Markov chain. This
approach was further improved and generalized by various authors [12, 17, 4, 13], but the primary
assumption for its applicability is still that there is a very small portion of the state space that has
a very high probability of occurrence, while the other states are almost never visited.

Similarly, Van Dijk and van der Wal [21, 22] proposed a different method for comparing two
chains in terms of a particular reward function, often referred to as the Markov reward approach.
This method allows the comparison of mean cumulated and stationary rewards for two given chains.
A simplified version of the Markov reward approach, called the precedence relation method, was
proposed by van Houtum et al. in [24]. The origin of the precedence relation method dates
back to Adan et al. [1], and it has been successfully applied to various problems [23, 20, 10]. The
advantage of this method is its straightforward description of the modifications of the initial model.
The precedence relation method consists of two steps. Precedence relations are first established on
the states of the system, based on the reward function (or familly of functions) one wants to study.
Then an upper (resp. lower) bound for the initial model can be obtained simply by redirecting the
transitions to greater (resp. smaller) states with respect to the precedence relations established in
the first step. A significant drawback of the precedence relation method is that it can be applied
only to derive bounding models obtained by replacing one transition by another with the same
probability: the method does not allow the modification of the probability of a transition, nor the
replacement of one transition by more than one new transition. Such a modification is typically
needed, for example, if one wants to keep the mean behavior of a part of the system (for instance
arrivals to a queue), but change its variability. (One small example of such a system is given in
Section 3.)

We propose a generalization of precedence relations to sets of states. This significantly increases
the applicability of the precedence relation method, by allowing the replacement of one set of
transitions by another set. The modification of the probability of a transition can also be seen as
replacement of one transition by two new transitions, one of which is a loop.

We now discuss point (ii): how to derive models that are simpler to solve. In the context of
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stochastic comparison, different types of bounding models have been used: models having closed
form solutions, models that are easier to analyze using numerical methods, and aggregation [8,
7]. To our knowledge, the precedence relation method has been combined only to the first two
simplifications. We show here that it is also compatible with aggregation. Thus we prove the
validity of applying the precedence relation method on sets of states, in concert with the simplifying
technique of aggregation.

To illustrate our new technique, we use as an example the service tool problem. This problem, in-
troduced by Vliegen and Van Houtum in [25], models a single-location multi-item inventory system
in which customers demand different sets of service tools, needed for a specific maintenance action,
from a stock point. Items that are available in stock are delivered immediately; items that are not
in stock are delivered via an emergency shipment, and lost for the location under consideration.
(This is called partial order service [19].) All non-emergency items are replenished (returned from
the customer) together after a stochastic replenishment time. The service level in this problem is
defined as the aggregate order fill rate, the percentage of orders for which all requested items can be
delivered from stock immediately. Vliegen and Van Houtum [25] developed an efficient and accu-
rate approximate evaluation model for this problem that combines two different evaluation models.
In their numerical study, one of their models (M1) always led to an overestimation of the order
fill rates compared to the original model, while the other (M2) always led to an underestimation.
Using the generalization of the precedence relation method in combination with aggregation, we
prove that these two models indeed provide analytical bounds for the original model.

This paper is organized as follows. In Section 2 we give an overview of precedence relation
method proposed in [24]. In Section 3 we show the limits of this method and we propose and
prove the validity of our generalization. Section 4 is devoted to aggregation and its connections
with our method. In Section 5 we illustrate our technique on the service tool problem, proving
that the approximations proposed in [25] do provide a lower and an upper bound for the original
model. These bounding models have a state space that is highly reduced compared to the original
system: its dimension is equal to the number of different types of tools (I), while the original model
has dimension 2I . Finally, Appendix A contains a supermodularity characterization on a discrete
lattice, that is used in the proof of supermodularity for order fill rates for the bounding models
(M1 and M2), given in Appendix B.

2 Precedence relations

Let {Xn}n≥0 be an irreducible, aperiodic and positive recurrent discrete time Markov chain (DTMC)
on a countable state space S. We will denote by P the corresponding transition matrix and by π
the stationary distribution. For a given reward (or cost) function r : S → R, the mean stationary
reward is given by:

a =
∑

x∈S

r(x)π(x).

Directly computing the stationary distribution π is often difficult if, for instance, the state space is
infinite in many dimensions or finite, but prohibitively large. The main idea of the precedence rela-
tion method proposed in [24] is to obtain upper or lower bounds for a without explicitly computing
π. By redirecting selected transitions of the original model, the graph of the chain is modified to
obtain a new chain that is significantly easier to analyze. For example, one might essentially trun-
cate the chain by blocking the outgoing transitions from a subset of states. Note that this might
produce a modified chain that is not irreducible. We will assume in this case that the modified
chain has only one recurrent class, which is positive recurrent. Then we can restrict our attention
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to this recurrent class S̃ ⊂ S, and thus the stationary distribution π̃ of the modified chain is still
well defined.

Some special care needs to be taken in order to ensure that the reward function of the new
chain provides bounds on the reward function of the original chain. We denote by vt(x) (resp. by
ṽt(x)) the expected cumulated reward over the first t periods for the original (resp. modified) chain
when starting in state x ∈ S:

vt(x) = r(x) +
∑

y∈S

P [x, y]vt−1(y), t ≥ 1, (1)

where v0(x) := 0, ∀x ∈ S. If we can show that

vt(x) ≤ ṽt(x),∀x, ∀t ≥ 0, (2)

then we have also the comparison of mean stationary rewards:

a = lim
t→∞

vt(x)

t
≤ lim

t→∞

ṽt(x)

t
= ã.

In order to establish (2), a precedence relation � is defined on state space S as follows:

x � y if vt(x) ≤ vt(y), ∀t ≥ 0.

When we are talking about rewards, we will often say that a state x is less attractive than y if
x � y.

The following theorem states that redirecting transitions to less (more) attractive states results
in an lower (upper) bound for mean stationary reward.

Theorem 1. [24, Theorem 4.1] Let {Xn} be a DTMC and let {Yn} be a chain obtained from {Xn}
by replacing some transitions (x, y) with transitions (x, y′) such that y � y′. Then:

vt(x) ≤ ṽt(x),∀x, ∀t ≥ 0.

If both chains have steady state distributions, then a ≤ ã.

The above theorem allows one to easily construct bounding models by redirecting possibly only
a few transitions. In [24] this approach is illustrated on the example of a system with the Join the
Shortest Queue routing. In the following section we illustrate some of the limits of the precedence
relation approach before proposing its generalization.

3 Precedence relations on sets of states

The precedence relation method allows one to redirect transitions: the destination of the transition
is modified, while its probability remains the same. The following simple example shows that we
cannot use the precedence relation method to compare models with the same average arrival rate,
but different variabilities.

Example 1 (Single queue with batch arrivals). We consider a single queue with two types of jobs:

• Class 1 jobs arrive individually following a Poisson process with rate λ1.

• Class 2 jobs arrive by batch of size 2, following a Poisson process with rate λ2.
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We assume a single exponential server with rate µ, and let x denote the number of jobs in the
system. Then the following events can occur in the system:

event rate transition condition

type 1 arrival λ1 x + 1 -

type 2 arrival λ2 x + 2 -

service µ x − 1 x > 0

Without loss of generality, we assume that λ1+λ2+µ = 1. Thus we can consider λ1, λ2 and µ as the
probabilities of the events in the corresponding discrete time (uniformized) chain. Suppose that we
are interested in the mean number of jobs. The appropriate reward function is thus r(x) = x, ∀x.
The corresponding t-period rewards satisfy:

vt+1(x) = r(x) + λ1vt(x + 1) + λ2vt(x + 2) + µvt(x − 1)1{x>0} + µvt(x)1{x=0}, x ≥ 0, t ≥ 0.

Denote respectively by A1, A2 and S the t-period rewards in new states after an arrival of type 1,
an arrival of type 2 and a service in state x:

• A1(x, t) = vt(x + 1),

• A2(x, t) = vt(x + 2),

• S(x, t) = vt(x − 1)1{x>0} + vt(x)1{x=0}.

Then:
vt+1(x) = r(x) + λ1A1(x, t) + λ2A2(x, t) + µS(x, t).

Now, suppose some class 1 jobs become class 2 jobs, keeping the total arrival rate constant.
This means that these jobs arrive less often (only half of the previous rate), but they arrive in
batches of size 2 (Figure 1). Then:

λ
′

1 = λ1 − ǫ and λ
′

2 = λ2 +
ǫ

2
,

where 0 < ǫ ≤ λ1. The total arrival rate is the same in both models, but the arrival process of the
second system is more variable.

1 

2

λ

λ

µ
µ

λ 2

− ε1 λ

+ ε/2

Figure 1: Batch arrivals.

Different transitions for both models are shown in Figure 2. Note that a part of the transition
rate that corresponds to the arrivals of type 1 is replaced by a new transition that corresponds to the
arrivals of type 2, but the rate is divided by two. This can be also seen as replacing one transition
with rate ǫ by two transitions, each with rate ǫ/2; we can consider a “fake” transition (x, x) with
rate ǫ/2 in the continuous time model, that is transformed into a strictly positive diagonal term in
the discrete time model, after uniformization. Thus we cannot directly apply Theorem 1, since it
allows neither replacing only a part of a transition, nor replacing one transition with two new ones.

In the following we propose a more general method, that allows us to replace a transition or
more generally a set of transitions by another set of transitions having the same aggregate rate.
Also, only a part of some transitions might be redirected.
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Figure 2: Batch arrivals: redirecting transitions.

3.1 Generalization of precedence relations

To aid intuition, we will introduce the main ideas by considering a single state x ∈ S. (The general
result will be proved later, in Theorem 3.) Assume we want to replace (redirect) the outgoing
transitions from x to a subset A by transitions to another subset B. For instance, in Figure 3
we want to replace transitions to A = {a1, a2} (blue transitions on the left) by transitions to
B = {b1, b2, b3} (red transitions on the right). We might also have some transitions from x to states
that are not in A and that we do not want to redirect (transitions to states u and v in Figure 3).
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Figure 3: Redirecting the sets of transitions.

Furthermore, we might want to redirect transitions only partially: in Figure 4 only the half
of probability of transitions to A is replaced by transitions to B. Thus in order to describe the
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Figure 4: Partial redirection of transitions.

redirection of a set of transitions we will need to provide:

• the set A (resp. B) and the probabilities of transitions to each state in A (resp. B);

• the weight factor ∆ (the amount of each transition to be redirected; the same scalar ∆ is
applied to all transitions to states in A).

Information on sets A and B and the corresponding transition probabilities will be given by two
vectors α = (α(z))z∈S and β = (β(z))z∈S . Since the information on the amount to be redirected will
be given by a weight factor, we only need the relative probabilities of transitions to the respective
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sets A and B. Therefore it is convenient to renormalize the vectors α and β. The modifications in
Figures 3 and 4 can now be described by vectors α = 0.5δa1

+0.5δa2
and β = 0.2δb1 +0.2δb2 +0.6δb3 ,

where δa denotes the Dirac measure in a:

δa(z) =

{
1, z = a,
0, z 6= a

, z ∈ S.

The weight factor ∆ is equal to 0.5 in Figure 3 and to 0.25 in Figure 4.
We now formally generalize the previous example. Let α and β be two stochastic vectors:

α(z) ≥ 0, β(z) ≥ 0, ∀z ∈ S and ||α||1 = ||β||1 = 1 (where ||α||1 :=
∑

z∈S α(z) is the usual 1-norm).
Let {Xn} be an irreducible, aperiodic and positive recurrent DTMC with transition probability
matrix P and t-period reward functions vt, satisfying the following relation:

∑

z∈S

α(z)vt(z) ≤
∑

z∈S

β(z)vt(z), t ≥ 0. (3)

Let A and B denote the supports of vectors α and β respectively:

A = supp(α) = {z ∈ S : α(z) > 0}, B = supp(β) = {z ∈ S : β(z) > 0}.

If (3) holds, we will say that the set of states A is less attractive than the set B with respect to
probability vectors α and β, and we will denote this:

A �α,β B.

We will show that if A �α,β B, replacing the outgoing transitions to A (with probabilities α) by the
outgoing transitions to B (with probabilities β) leads to an upper bound for t-period rewards (and
thus also for the mean stationary reward, when it exists). Before giving this result in Theorem 3,
note that relation (3) is indeed a generalization of precedence relations of states:

Remark 1. Suppose x � y, for some x, y ∈ S. Set α = δx and β = δy. Then (3) becomes:

vt(x) ≤ vt(y), t ≥ 0,

which is equivalent to x � y by definition.
To see that (3) indeed is more general than the method in [24], let α = δx and β = 1

2δy + 1
2δz,

x, y, z ∈ S. Then (3) becomes:

vt(x) ≤
1

2
vt(y) +

1

2
vt(z), t ≥ 0.

We can write this {x} �δx, 1
2
δy+ 1

2
δz

{y, z}. By taking y = x + 1 and z = x − 1 this is exactly the

relation we need to prove in Example 1. The proof of this relation for Example 1 will be given in
Section 3.2.

Replacing the outgoing transitions that correspond to the set A and probabilities α by the tran-
sitions that correspond to the set B and probabilities β (called (α, β)-redirection in the following),
can be also represented in matrix form. The matrix Tα,β(x) defined as:

Tα,β(x)[w, z] =

{
β(z) − α(z), w = x,
0, w 6= x,
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describes the (α, β)-redirection of the outgoing transitions from state x ∈ S. The transition matrix
of the modified chain after (α, β)-redirection of the outgoing transitions from state x ∈ S is then
given by:

P̃ = P + ∆α,β(x)Tα,β(x),

with the weight factor ∆α,β(x), 0 ≤ ∆α,β(x) ≤ 1. (Note that if ∆α,β(x) = 0, we do not modify the

chain.) In order for P̃ to be a stochastic matrix, the weight factor ∆α,β(x) must satisfy:

0 ≤ P [x, y] + ∆α,β(x)(β(y) − α(y)) ≤ 1, y ∈ S, (4)

which can be also written as:

∆α,β(x) ≤ min

{
min

y : α(y)>β(y)

{
P [x, y]

α(y) − β(y)

}
, min

y : α(y)<β(y)

{
1 − P [x, y]

β(y) − α(y)

}}
.

Without loss of generality, we can assume that the supports of α and β are disjoint: A∩B = ∅.
Indeed, if there exists y ∈ S such that α(y) > 0 and β(y) > 0, then we can define new vectors
α′ = 1

1−c
(α−cey) and β′ = 1

1−c
(β−cey), where c = min{α(y), β(y)}. Relation (3) is then equivalent

to: ∑

z∈S

α′(z)vt(z) ≤
∑

z∈S

β′(z)vt(z), t ≥ 0.

Assuming A and B are disjoint, relation (4) has an intuitive interpretation given as Proposition 2:
one can only redirect the existing transitions.

Proposition 2. For vectors α and β with supports A ∩ B = ∅ condition (4) is equivalent to:

α(y)∆α, β(x) ≤ P [x, y], y ∈ S. (5)

Proof. Relation (5) follows trivially from (4) as α(y) > 0 and A ∩ B = ∅ imply β(y) = 0. In order
to see that (5) implies (4), we will consider the following cases for an arbitrary y ∈ S:

• α(y) > 0. Then β(y) = 0 so relation (4) becomes: 0 ≤ P [x, y] − ∆α,β(x)α(y) ≤ 1. As we
assumed that 0 ≤ ∆α,β(x) ≤ 1, and 0 ≤ α(y) ≤ 1, the right inequality is trivial and the left
one is simply relation (5).

• β(y) > 0. Then α(y) = 0 so relation (4) becomes: 0 ≤ P [x, y] + ∆α,β(x)β(y) ≤ 1. The left
inequality is trivial. For the right one we have, using the fact that P is a stochastic matrix
and β(y) ≤ 1:

P [x, y] + ∆α,β(x)β(y) ≤ 1 −
∑

z 6=y

P [x, z] + ∆α,β(x)

≤ 1 −
∑

z 6=y

∆α,β(x)α(z) + ∆α,β(x)

= 1 + ∆α,β(x)


1 −

∑

z 6=y

α(z)




= 1 + ∆α,β(x)α(y) = 1,

where the second inequality follows from (5).

• Finally the case α(y) = β(y) = 0 is trivial.
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Until now we have considered only one state x and only one relation (α, β). Typically, we will
redirect outgoing transitions for a subset of the state space. For any state x ∈ S, we might use more
than one relation: we will denote by Rx the set of all relations that will be used for a state x ∈ S.
(If the outgoing transitions for a state x ∈ S do not change, we will set Rx := ∅.) Note that the
same relation (α, β) could be applied to different states x and x′ (i.e. (α, β) ∈ Rx ∩ Rx′). In that
case the corresponding weight factors ∆(α,β)(x) and ∆(α,β)(x

′) need not to be equal. Also, there
could be different relations (α, β) and (α′, β′) that have the same supports A and B; we might even
have that A �(α,β) B, but B �(α′,β′) A (if supp(α) = supp(β′) = A and supp(β) = supp(α′) = B).
Thus our method can be made arbitrarily general. The following theorem states that under similar
conditions as (3) and (4) (for all states and for a family of precedence relations), the t-period
rewards ṽt of the modified chain satisfy:

vt(x) ≤ ṽt(x), x ∈ S, t ≥ 0.

Theorem 3. Let {Xn} be an irreducible, aperiodic and positive recurrent DTMC with transition
probability matrix P and a reward r that is bounded from below:

∃m ∈ R, r(x) ≥ m, ∀x ∈ S. (6)

Denote by vt, t ≥ 0, the corresponding t-period rewards. Let R be a set of couples of stochastic
vectors such that for all pairs (α, β) ∈ R:

∑

y∈S

α(y)vt(y) ≤
∑

y∈S

β(y)vt(y), t ≥ 0. (7)

Let Rx ⊂ R, x ∈ S (the precedence relations that will be applied to a state x ∈ S). Let {Yn} be a
DTMC with transition probability matrix P̃ given by:

P̃ = P +
∑

x∈S

∑

(α,β)∈Rx

∆α,β(x)Tα,β(x),

where the factors ∆α,β(x), x ∈ S, (α, β) ∈ Rx, satisfy:

0 ≤ P [x, y] +
∑

(α,β)∈Rx

∆α,β(x)(β(y) − α(y)) ≤ 1, x, y ∈ S (8)

(i.e. 0 ≤ P̃ [x, y] ≤ 1, x, y ∈ S).
Then the t-period rewards ṽt of the modified chain satisfy:

vt(x) ≤ ṽt(x), x ∈ S, t ≥ 0. (9)

Symmetrically, if (7) is replaced by:

∑

y∈S

α(y)vt(y) ≥
∑

y∈S

β(y)vt(y), t ≥ 0, (10)

for all (α, β) ∈ R, then the t-period rewards ṽt of the modified chain satisfy:

vt(x) ≥ ṽt(x), x ∈ S, t ≥ 0. (11)
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Proof. We will prove (9) by induction on t. For t = 0 we have v0(x) = ṽ0(x) := 0, x ∈ S, so (9) is
trivially satisfied. Suppose (9) is satisfied for t ≥ 0. Then for t + 1 we have:

ṽt+1(x) = r(x) +
∑

y∈S

P̃ [x, y]ṽt(y)

≥ r(x) +
∑

y∈S

P̃ [x, y]vt(y)

≥ r(x) +
∑

y∈S


P [x, y] +

∑

(α,β)∈Rx

∆α,β(x)Tα,β(x)[x, y]


 vt(y).

Relation (8) implies that for all y ∈ S the series absolutely converges (in R+ ∪ {+∞}) if vt is
bounded from below. (Note that if r is bounded from below then vt is positive or bounded from
below for each t.) Thus, simplifying and interchanging summation:

ṽt+1(x) ≥ vt+1(x) +
∑

(α,β)∈Rx

∆α,β(x)
∑

y∈S

(β(y) − α(y)) vt(y)

≥ vt+1(x).

Corollary 4. Under the same conditions as in Theorem 3, the mean stationary reward (when it
exists) of the modified chain {Yn} is an upper bound (a lower bound in case of (10)) for the mean
stationary reward of the original chain {Xn}.

3.2 Proving the relations

Thus the steps in order to prove a bound are to first identify the set R, and then to prove the
corresponding relations for the t-period rewards. We will illustrate this steps on our simple example
of a queue with batch arrivals, discussed in Example 1.

Example 2. Consider again the two models from Example 1. We will show that:

vt(x) ≤ ṽt(x), x ≥ 0, t ≥ 0, (12)

where vt denotes the t-period rewards for the original chain and ṽt for the modified chain for reward
function r(x) = x, ∀x. For each x ≥ 0, we want to replace a part of the transition that goes to
x + 1 by two new transitions that go to x and x + 2. We will define vectors αx and βx as follows:

αx(y) = δx+1(y), βx(y) =
1

2
(δx(y) + δx+2(y)) , y ∈ S.

Let Rx = {(αx, βx)}, x ∈ S. Then R = ∪x∈SRx = {(αx, βx) : x ∈ S}. Furthermore, let:

∆(x) := ∆αx,βx
(x) = ǫ, x ∈ S,

with 0 < ǫ ≤ λ1. Let P be the transition probability matrix of the original discrete time model.
The transition matrix of the modified chain is then given by:

P̃ = P +
∑

x∈S

∑

(α,β)∈Rx

∆α,β(x)Tα,β(x) = P +
∑

x∈S

ǫTαx,βx
(x).

10



Relation (7) for (αx, βx), x ≥ 0, is equivalent to convexity of functions vt, t ≥ 0:

vt(x + 1) ≤
1

2
vt(x + 2) +

1

2
vt(x), x ≥ 0, t ≥ 0.

Thus, if we prove that vt, t ≥ 0 are convex, then Theorem 3 implies (12), as our reward function r
is positive, and (8) holds from the definition of ǫ.

In the proof of convexity of vt, t ≥ 0, we will also use an additional property. We will show by
induction on t that for each t ≥ 0, the function vt is:

1. Non-decreasing: vt(x) ≤ vt(x + 1), x ≥ 0.

2. Convex: 2vt(x + 1) ≤ vt(x + 2) + vt(x), x ≥ 0.

Assume this holds for a given t ≥ 0 (for t = 0, v0 := 0 is obviously non-decreasing and convex).
Then for t + 1 we have:

vt+1(x) = r(x) + λ1vt(x + 1) + λ2vt(x + 2) + µvt(x − 1)1{x>0} + µvt(x)1{x=0}, x ≥ 0.

We consider separately one period rewards, arrivals of each type, and service.

• One period rewards. v1 = r is obviously non-decreasing and convex.

• Type 1 arrivals.

– Non-decreasing. For x ≥ 0, A1(x + 1, t) − A1(x, t) = vt(x + 2) − vt(x + 1) ≥ 0, since vt

is non-decreasing.

– Convex. For x ≥ 0, A1(x+2, t)+A1(x, t)−2A1(x+1, t) = vt(x+3)+vt(x+1)−2vt(x+2) ≥
0, since vt is convex.

• Type 2 arrivals.

– Non-decreasing. For x ≥ 0, A2(x + 1, t) − A2(x, t) = vt(x + 3) − vt(x + 2) ≥ 0, since vt

is non-decreasing.

– Convex. For x ≥ 0, A2(x+2, t)+A2(x, t)−2A2(x+1, t) = vt(x+4)+vt(x+2)−2vt(x+3) ≥
0, since vt is convex.

• Service.

– Non-decreasing. For x ≥ 0, S(x+1, t)−S(x, t) = vt(x)−vt(x−1)1{x>0}−vt(x)1{x=0} =
(vt(x) − vt(x − 1))1{x>0} ≥ 0, since vt is non-decreasing.

– Convex. For x ≥ 0, S(x + 2, t) + S(x, t) − 2S(x + 1, t) = vt(x + 1) + vt(x − 1)1{x>0} +
vt(x)1{x=0}−2vt(x) = 1{x>0}(vt(x+1)+vt(x−1)−2vt(x))+1{x=0}(vt(x+1)−vt(x)) ≥ 0,
since vt is non-decreasing and convex.

Thus vt+1 is non-decreasing and convex.

Applying Theorem 3 we have vt(x) ≤ ṽt(x), x ≥ 0, t ≥ 0, that is the number of jobs in the system
increases if we have more variable arrivals.

Remark 2. The goal of this example is only to illustrate the generalization of precedence relation
method. Note that the above result can be also obtained by using stochastic recurrences and
icx-order (see for instance [2]).

A primary use of precedence relations is to enable bounds to be established by analyzing simpler
(smaller) systems. As mentioned in the introduction, one common simplification of a chain is to
reduce its state space using aggregated bounds. We examine this technique next.
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4 Aggregation

In this and the following sections we assume that the state space of the chain is finite, as we will
use results in [9] on the aggregation of finite Markov chains. Let C = {Ck}k∈K be a partition of
the state space S into macro-states:

∪k∈KCk = S, Ci ∩ Cj = ∅, ∀i 6= j.

Definition 1. [9] A Markov chain X = {Xn}n≥0 is strongly aggregable (or lumpable) with respect
to partition C if the process obtained by merging the states that belong to the same set into one
state is still a Markov chain, for all initial distributions of X0.

There are necessary and sufficient conditions for a chain to be aggregable:

Theorem 5 (Matrix characterization [9, Theorem 6.3.2]). A DTMC X = {Xn}n≥0 with probability
transition matrix P is strongly aggregable with respect to C if and only if :

∀i ∈ K,∀j ∈ K,
∑

y∈Cj

P [x, y] is constant for all x ∈ Ci. (13)

Then we can define a new (aggregated) chain Y = {Yn}n≥0 with transition matrix Q. For all
i, j ∈ K:

Q[i, j] =
∑

y∈Cj

P [x, y], x ∈ Ci.

There are many results on aggregation of Markov chains, however they primarily consider the
steady state distribution. Surprisingly, we were not able to find the following simple property, so
we provide it here with a proof.

Proposition 6. Let X = {Xn}n≥0 be a Markov chain satisfying (13) and Y = {Yn}n≥0 the
aggregated chain. Let r : S → R be a reward function that is constant within each macro-state, i.e.
there exist rk ∈ R, k ∈ K such that for all k ∈ K:

r(x) = rk, ∀x ∈ Ck.

Denote by vt and wt the t-period rewards for chains X and Y . Then for all k ∈ K:

vt(x) = wt(k), x ∈ Ck, t ≥ 0. (14)

Proof. We will show (14) by induction on t.
Suppose that (14) is satisfied for t ≥ 0 (for t = 0 this is trivially satisfied). Then for t + 1 and

k ∈ K:
vt+1(x) = r(x) +

∑

y∈S

P [x, y]vt(y) = rk +
∑

j∈K

∑

y∈Cj

P [x, y]vt(y).

By the induction hypothesis vt(y) = wt(j), j ∈ K, y ∈ Cj , and from Theorem 5, for x ∈ Ck,∑
y∈Cj

P [x, y] = Q[k, j], j ∈ K. Thus:

vt+1(x) = rk +
∑

j∈K

Q[k, j]wt(j) = wt+1(k).

12



By taking the limit, the above result also gives us the equality of mean stationary rewards.

Corollary 7. Let X and Y be two Markov chains satisfying the assumptions of Proposition 6. If
both chains are irreducible and aperiodic, then the mean stationary rewards a = limt→∞

vt(x)
t

, x ∈ S

and ã = limt→∞
wt(k)

t
, k ∈ K satisfy: a = ã.

5 An inventory system of service tools

In this section we illustrate our analytical technique - applying precedence relations on sets of states
- on the example of an inventory system of service tools, introduced in [25]. We consider a multi-
item inventory system; we denote by I the number of different item types. For each i ∈ {1, . . . , I},
Si denotes the maximal stock level for item type i: a total of Si items of type i are always either
in stock or being used for a maintenance action at one of the customers. Demands occur for set of
items. Let A be any subset of {1, . . . , I}. We assume that demands of set A follow a Poisson process
with rate λA. When a demand occurs, items that are available in stock are delivered immediately,
any others are delivered via an emergency shipment with a considerably higher cost. Items that
are delivered together from stock return together after an exponential amount of time with rate
µ: we have joint returns to stock. The service level in this problem is defined as the aggregate
order fill rate, the percentage of orders for which all requested items can be delivered from stock
immediately.

As the items that are delivered together return together, we need to keep track of the sets of
items delivered together. Consider a very simple case of two different item types. Then the state
of the system is given by a vector (n{1}, n{2}, n{1,2}) where n{1} (resp. n{2}) is the number of items
of type 1 (resp. 2) at the customer that were delivered individually, and n{1,2} is the number of
sets {1, 2} at the customer that were delivered together and that will return together. Given, for
example stock levels S1 = 1, S2 = 2, all possible states of the system are: (0, 0, 0), (1, 0, 0), (0, 1, 0),
(1, 1, 0), (0, 0, 1), (0, 2, 0), (1, 2, 0) and (0, 1, 1). Note that if set {1, 2} is demanded, and item type
2 is out of stock, this becomes a demand for item type 1 (and similarly if item 1 is out of stock).
The Markov chain for this case is given in Figure 5.

0,1,0

0,2,0

1,1,0

1,0,0

0,0,0

1,2,0

0,0,1

0,1,1

Figure 5: Markov chain for the original model for I = 2, S1 = 1 and S2 = 2.

For the general I-item case, the state of the system is given by a vector n = (nA)∅6=A⊂{1,...,I}

where nA ≥ 0 is the number of sets A at the customer that were delivered together. For each
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i ∈ {1, . . . , I}, we denote by ξi(n) the total number of items of type i at the customer:

ξi(n) =
∑

A⊂{1,...,I}, i∈A

nA. (15)

The state space of the model is then:

S =
{
n = (nA)∅6=A⊂{1,...,I} : ξi(n) ≤ Si, ∀i ∈ {1, . . . , I}

}
.

For each A ⊂ {1, . . . , I}, A 6= ∅, we will denote by eA the state n = (nB)∅6=B⊂{1,...,I} ∈ S such that
nA = 1 and nB = 0, B 6= A.

We will consider the uniformized chain: without loss of generality, throughout the paper we
assume that:

∑

∅6=A⊂{1,...,I}

λA +

(
I∑

i=1

Si

)
µ = 1.

Then for a state n ∈ S we have the following transitions:

• Demands. For all the subsets A ⊂ {1, . . . , I}, A 6= ∅:

– Probability: λA.

– Destination: dA(n). For all i 6∈ A the amount of items of type i at the customer stays
the same. For i ∈ A, we can deliver an item of type i only if ξi(n) < Si. Thus:

dA(n) = n + e{i∈A : ξi(n)<Si}.

• Returns. For all the subsets A ⊂ {1, . . . , I} such that nA > 0:

– Probability: µnA.

– Destination: rA(n) = n − eA.

• Uniformization.

– Probability: µ(
∑I

i=1 Si −
∑

∅6=A⊂{1,...,I} nA).

– Destination: n.

We will refer to this (original) model as M0. Though its state space is finite, its dimension is
equal to 2I − 1, thus the Markov chain becomes numerically intractable even for small values of I
and Si, i ∈ {1, . . . , I}. For example, for I = 5 and Si = 5, ∀i, the cardinality of the state space is
|S| = 210 832 854.

5.1 Models M1 and M2

The complexity of the original model in [25] comes from the need to track which items were delivered
together. We will consider two extreme, simplifying cases: model M1 assumes that all the items
return individually, while model M2 assumes returns of sets of maximal cardinality. Both of these
cases remove the need to track which items were delivered together. Thus the state of the system
for models M1 and M2 is fully described by the number of items at the customer for each item
type:

x = (x1, . . . , xI).

14



We have the following state space:

X = {x : 0 ≤ xi ≤ Si, i = 1, . . . , I},

and we will denote by ei the state x ∈ X such that xj = 0, j 6= i, and xi = 1. The cardinality of

X , |X | =
∏I

i=1(Si + 1), is considerably lower than for the original model. For example, for I = 5
and Si = 5, ∀i, we have |X | = 7776 (compared to |S| = 210 832 854).

Note that models M1 and M2 can be obtained from the original model in two steps:

1. By redirecting transitions that correspond to returns. We will denote by M ′
1 the model

obtained from the original by replacing all joint returns by individual returns (see Figure 6,
on the left). For example, in the original model in state (0, 1, 1) we have one joint return
of set {1, 2} and a uniformization loop; these are replaced by two new transitions: one to
state (0, 2, 0) (corresponding to an individual return of item 1) and one to state (1, 1, 0) (an
individual return of item 2). Similarly, we denote by M ′

2 the model in which the returns are
defined as follows : we greedily partition the set of items at the customers into disjoint sets;
we have a return with probability µ for each of these sets (see Figure 6, on the right). For
instance, in state (1, 2, 0) we have one item of type 1 and two items of type 2 at the customer.
The greedy partition gives the sets {1, 2} and {2}. Thus in state (1, 2, 0), we will have a
return of set {1, 2} and a return of set {2}, each with probability µ.

Note that in this case the destination of new transitions is not uniquely specified: for example
consider I = 3 and state n = (n{1}, n{2}, n{3}, n{1,2}, n{1,3}, n{2,3}, n{1,2,3}) = (0, 0, 0, 1, 1, 0, 0).
Then in model M0 we have a return of set {1, 2} that goes to state (0, 0, 0, 0, 1, 0, 0), and a
return of set {2, 3} that goes to state (0, 0, 0, 1, 0, 0, 0). In M ′

2 we will have one return of the
set of maximal cardinality {1, 2, 3}, and one return of set {1} (left over after considering the
return of {1, 2, 3}). The return of set {1, 2, 3} goes to state (1, 0, 0, 0, 0, 0, 0), but the return
of the set {1} can go to (0, 1, 0, 0, 1, 0, 0), (0, 0, 1, 1, 0, 0, 0), or (1, 1, 1, 0, 0, 0, 0): we can choose
any state m such that ξ(m) = (1, 1, 1), see (15). To simplify the notation in Section 5.2, where
the formal description of the transformation of the chain and the proof of the bounds will be
given, we will assume that in model M ′

2 all the returns go to states with only individual items
at the customer. In Figure 6 (on the right), the transition from state (0, 1, 1) to (0, 0, 1) is
thus replaced by a transition to state (1, 1, 0).

2. Noticing that the obtained models M ′
1 and M ′

2 are lumpable with respect to the partition of
the state space induced by function ξ = (ξi)i∈{1,...,I}, see (15). The model M1 is the lumped
version of M ′

1 and M2 is the lumped version of M ′
2. We now need not track the history of

joint demands, only the total number of items of each type at the customer.

We describe now in detail the transitions in models M1 and M2. Note that transitions corre-
sponding to demands are the same in both models. Markov chains for case I = 2, S1 = 1 and
S2 = 2 are given in Figure 7.

Model M1. For a state x ∈ X we have the following transitions:

• Demands. For all the subsets A ⊂ {1, . . . , I}, A 6= ∅:

– Probability: λA.
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0,1,0

0,2,0

1,1,0

1,0,0

0,0,0

1,2,0

0,0,1

0,1,1

0,1,0

0,2,0

1,1,0

1,0,0

0,0,0

1,2,0

0,0,1

0,1,1

Figure 6: Markov chains M ′
1 (left) and M ′

2 (right) for I = 2, S1 = 1 and S2 = 2. The blue (dashed)
transitions represent the transitions of the original model that have been replaced by red (bold)
transitions. To simplify the figures, the (uniformization) loops are not shown when they are not
a part of redirected transitions. See Section 5.2 for more formal description of the corresponding
transformation of the chain.

1,00,0

0,1 1,1

0,2 1,2

1,00,0

0,1 1,1

0,2 1,2

Figure 7: Markov chains for models M1 (left) and M2 (right) for I = 2, S1 = 1 and S2 = 2.

– Destination: d′A(x). For all i 6∈ A the amount of items of type i at the customer stays
the same: (d′A(x))i = xi, i 6∈ A. For i ∈ A, we can deliver an item of type i only if
xi < Si: (d′A(x))i = min{xi + 1, Si}, i ∈ A. We can write the both cases together as:

d′A(x) = x +
∑

i∈A

1{xi<Si}ei.

• Returns. We have only individual returns. Thus for each item type i, 1 ≤ i ≤ I we have the
following transition:

– Probability: µxi.

– Destination: r′i(x) = x − 1{xi>0}ei.

• Uniformization.

– Probability: µ
∑I

i=1(Si − xi).

– Destination: x.
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Model M2. For a state x ∈ X we have the following transitions:

• Demands. Same as in model M1. For all the subsets A ⊂ {1, . . . , I}, A 6= ∅:

– Probability: λA.

– Destination: d′′A(x) = d′A(x) = x +
∑

i∈A 1{xi<Si}ei.

• Returns. We consider joint returns : we greedily partition the set of items at the customer
into disjoint sets; each set corresponds to a return with probability µ. For example, if I = 3,
S1 = S2 = S3 = 5, then in state x = (1, 5, 3) we have the following joint returns:

– return of set {1, 2, 3} with probability µ (remaining items at the customer: (0, 4, 2)),

– return of set {2, 3} with probability 2µ (remaining items at the customer: (0, 2, 0)),

– return of item 2 with probability 2µ.

Generally, for all the subsets B ⊂ {1, . . . , I}, B 6= ∅:

– Probability: µ[mink∈B xk − maxk 6∈B xk]
+ (with max ∅ := 0).

– Destination: r′′B(x) = x −
∑

k∈B 1{xk>0}ek.

• Uniformization.

– Probability: µ(
∑I

k=1 Sk − maxk=1...I xk).

– Destination: x.

In the following, we will show that model M1 gives a lower bound and model M2 an upper bound
for the aggregate order fill rate of the original model.

5.2 Proof of the bounds

5.2.1 Model M1

Let us first consider model M1. It is obtained from the original model by replacing the returns of
set of items by individual returns. In order to describe this transformation formally, for each n ∈ S
and each A ⊂ {1, . . . , I} such that |A| > 1 and nA > 0 we will define probability vectors αn,A and
βn,A as follows:

αn,A =
1

|A|
(δn−eA

+ (|A| − 1)δn) , βn,A =
1

|A|

∑

i∈A

δn−eA+eA\{i}
,

and the weight factor ∆n,A:
∆n,A = µnA|A|.

Let P be the transition matrix of the original chain. The transition matrix P ′
1 of the chain M ′

1 is
then given by:

P ′
1 = P +

∑

n∈S

∑

A⊂{1,...,I} : nA>0

µnA|A|Tαn,A,βn,A
(n).

For example, if I = 2 and S1 = 1, S2 = 2 (as in Figure 6, on the left), then for state n = (0, 0, 1)
and A = {1, 2}:

α(0,0,1),{1,2} =
1

2

(
δ(0,0,1)−e{1,2}

+ δ(0,0,1)

)
=

1

2

(
δ(0,0,0) + δ(0,0,1)

)
,

β(0,0,1),{1,2} =
1

2

(
δ(0,0,1)−e{1,2}+e{2}

+ δ(0,0,1)−e{1,2}+e{1}

)
=

1

2

(
δ(0,1,0) + δ(1,0,0)

)
,
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and ∆(0,0,1),{1,2} = 2µ. Vectors α(0,0,1),{1,2} and β(0,0,1),{1,2} formally describe redirection of outgoing
transitions from state (0, 0, 1) (see Figure 6, on the left): old (blue) transitions to states (0, 0, 0)
(joint return of set {1, 2}) and (0, 0, 1) (uniformization loop) are replaced by new (red) transitions to
states (0, 1, 0) (individual return of item type 1) and (1, 0, 0) (individual return of item type 2). The
corresponding weight factor ∆(0,0,1),{1,2} = 2µ states that the redirected amount of the transitions
should be equal to α(0,0,1),{1,2}∆(0,0,1),{1,2} = P(0,0,1),(0,0,0). Intuitively, we redirect entirely the
transitions corresponding to joint returns. Note that after applying the above modification we still
have a loop at state (0, 0, 1), but with a modified probability: the new probability of the loop
transition is now equal to µ, compared to 2µ in the original chain.

Let r : S → R be any reward function and let vt, t ≥ 0, denote the t-period rewards for the
original model:

vt+1(n) = r(n) +
∑

∅6=A⊂{1,...,I}

λAvt(dA(n)) +
∑

B⊂{1,...,I} : nB>0

µnBvt(rB(n))

+µ




I∑

k=1

Sk −
∑

∅6=A⊂{1,...,I}

nA


 vt(n), ∀n ∈ S,

where v0(n) := 0, n ∈ S. Similarly, denote by v′t the t-period rewards for model M ′
1. If we show

that for all n ∈ S and for all A ⊂ {1, . . . , I} such that nA > 0, functions vt satisfy:

∑

k∈S

αn,A(k)vt(k) ≥
∑

k∈S

βn,A(k)vt(k), t ≥ 0, (16)

then by Theorem 3 it follows that:

vt(n) ≥ v′t(n), n ∈ S, t ≥ 0. (17)

For n ∈ S and A ⊂ {1, . . . , I} such that nA > 0, relation (16) is equivalent to:

vt(n − eA) + (|A| − 1)vt(n) ≥
∑

i∈A

vt(n − eA + eA\{i}), t ≥ 0. (18)

Due to the complex structure of the state space S, relation (18) is difficult to check (and might
even not hold). However, (18) is only a sufficient condition for (17). The “dual” sufficient condition
for (17) it to show that for all n ∈ S and for all A ⊂ {1, . . . , I}, A 6= ∅, functions v′t satisfy:

v′t(n − eA) + (|A| − 1)v′t(n) ≥
∑

i∈A

v′t(n − eA + eA\{i}), t ≥ 0. (19)

Intuitively, instead of starting with model M0 as the original model, we can start with model M ′
1.

Then the transformation of model M ′
1 to model M0 can be described using probability vectors

α′
n,A = βn,A and β′

n,A = αn,A, and the weight factor ∆′
n,A = ∆n,A, for each n ∈ S and each

A ⊂ {1, . . . , I} such that |A| > 1 and nA > 0. Transition matrices P (model M0) and P ′
1 (model

M ′
1) clearly satisfy:

P = P ′
1 +

∑

n∈S

∑

A⊂{1,...,I} : nA>0

µnA|A|Tα′
n,A

,β′
n,A

(n).

Furthermore, relation (19) is clearly equivalent to:

∑

k∈S

α′
n,A(k)v′t(k) ≤

∑

k∈S

β′
n,A(k)v′t(k), t ≥ 0. (20)
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So proving (19), and using Theorem 3, we will show that model M0 gives an upper bound for model
M ′

1, which is equivalent to showing that M ′
1 gives a lower bound for model M0.

The advantage of (19) is the lumpability of model M ′
1. Let r be a reward that is constant within

every macro-state Cx = ξ−1(x), x ∈ X , and denote this common value by r̃(x), x ∈ X :

r(n) = r̃(x), ∀n ∈ Cx.

Let vt and v′t be as before, the t-period rewards for original model and model M ′
1, and let wt be

the t-period reward for model M1:

wt+1(x) = r̃(x) +
∑

∅6=A⊂{1,...,I}

λAwt(d
′
A(x)) +

I∑

k=1

µxkwt(r
′
k(x)) + µ

(
I∑

k=1

(Sk − xk)

)
wt(x), (21)

for all x ∈ X , t ≥ 0, where w0(x) := 0, x ∈ X . Now by Proposition 6, for all x ∈ X :

v′t(n) = wt(x), ∀n ∈ Cx. (22)

This property allows us to consider the relations for model M1, instead of M ′
1: relations (19) and

(22) imply that to show (17), it is sufficient to show that for all x ∈ S and for all A ⊂ {1, . . . , I},
A 6= ∅, functions wt satisfy:

wt(x −
∑

i∈A

ei) + (|A| − 1)wt(x) ≥
∑

i∈A

wt(x − ei), t ≥ 0. (23)

Relation (23) is equivalent to the supermodularity of functions wt, t ≥ 0 (see Proposition 13 in
Appendix A).

Proposition 8. Let r : X → R be any supermodular reward function and let wt denote the
corresponding t-period reward for model M1. Then wt is supermodular for all t ≥ 0.

The proof is given in Appendix B.

Theorem 9. Let r : S → R be a reward function that is constant within every macro-state Cx =
ξ−1(x), x ∈ X , and define by:

r̃(x) = r(n), n ∈ Cx.

Let vt : S → R and wt : X → R, t ≥ 0 be t-period rewards respectively for the original model and
model M1. If the reward function r̃ is supermodular, then:

vt(n) ≥ wt(x), n ∈ Cx, t ≥ 0,

and the mean stationary rewards satisfy:

a = lim
t→∞

vt(n)

t
≥ lim

t→∞

wt(x)

t
= ã.

Proof. Let r : S → R be a reward function that satisfies the assumptions of the theorem. Then
Proposition 8 and Proposition 13 (in Appendix A) imply that the t-period rewards wt, t ≥ 0, for
model M1 satisfy (23). By (22), this is equivalent to (19) and to (20). The result now follows from
Theorem 3 and its Corollary 4.
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5.2.2 Model M2

The proof for model M2 is similar to, yet more technical than, the proof for model M1, as we need
to compare individual and joint returns with the returns of maximal cardinality. Let w̃t denote the
t-period reward for model M2:

w̃t+1(x) = r̃(x) +
∑

∅6=A⊂{1,...,I}

λAw̃t(d
′′
A(x)) +

∑

∅6=B⊂{1,...,I}

µ[min
k∈B

xk − max
k 6∈B

xk]
+w̃t(r

′′
B(x))

+µ

(
I∑

k=1

Sk − max
k=1...I

xk

)
w̃t(x), x ∈ X , t ≥ 0, (24)

where w̃0(x) := 0, x ∈ X .

Proposition 10. Let r : X → R be any supermodular reward function and let w̃t denote the
corresponding t-period reward for model M2. Then w̃t is supermodular for all t ≥ 0.

The proof is given in Appendix B. By following similar steps as for model M1, we obtain the
following result for model M2:

Theorem 11. Let r : S → R be a reward function that satisfies the same conditions as in Theorem 9
and denote by r̃ the corresponding reward function on X : r̃(x) = r(n), n ∈ Cx. Let vt : S → R and
w̃t : X → R, t ≥ 0 be t-period rewards respectively for the original model and model M2. If the
reward function r̃ is supermodular, then:

vt(n) ≤ w̃t(x), n ∈ Cx, t ≥ 0,

and the mean stationary rewards satisfy:

a = lim
t→∞

vt(n)

t
≤ lim

t→∞

w̃t(x)

t
= ã.

Proof. We consider model M ′
2 with a state space S, defined as follows (see Figure 6, on the right):

• Demands. Demands are defined in the same way as the original model: for every n ∈ X and
every set A ⊂ {1, . . . , I}, A 6= ∅, there is a transition to state:

n + e{i∈A : ξi(n)<Si},

with probability λA.

• Returns. For each equivalence class of states Cx, x ∈ X define as a representative state nx ∈ Cx

that has only individual items at the customer. Formally, for sets of items A such that |A| > 1,
nx

A = 0 and for sets A = {i}, i ∈ {1, . . . , I}, nx
{i} = xi:

nx =

I∑

i=1

xie{i}.

Returns in model M ′
2 from any state n ∈ S go only to the representative states {nx, x ∈ X}.

Let x ∈ X . For every state n ∈ Cx and every set B ⊂ {1, . . . , I}, B 6= ∅, there is a transition
to state:

nx−
P

k∈B 1{xk>0}ek ,

with probability µ[mink∈B xk − maxk 6∈B xk]
+ (with max ∅ := 0).
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• Uniformization. For x ∈ X and a state n ∈ Cx, the probability of the uniformization loop is
equal to: µ(

∑I
k=1 Sk − maxk=1...I xk).

Then model M ′
2 is obviously aggregable and its aggregated model is exactly model M2.

As before, we will start from model M ′
2 and show that model M0 gives a lower bound for the

aggregate order fill rate of model M ′
2. Model M0 can be obtained from M ′

2 by modifying the
transitions that correspond to returns and uniformization. Denote by ṽ′t t-period rewards for model
M ′

2. We will show that for any x ∈ S and any n ∈ Cx:

∑

∅6=B⊂{1,...,I}

[min
k∈B

xk − max
k 6∈B

xk]
+ṽ′t(n

x−
P

k∈B 1{xk>0}ek) +


 ∑

∅6=A⊂{1,...,I}

nA −
I

max
k=1

xk


 ṽ′t(n) ≥

∑

∅6=A⊂{1,...,I}

nAṽ′t(n − 1{nA>0}eA), t ≥ 0. (25)

The first term on the left-hand side of (25) corresponds to returns in M ′
2, and the second term

is the difference in uniformization terms between model M ′
2 and M0. The right-hand side of (25)

corresponds to returns in M0.
Relation (25) corresponds to the following probability vectors αn, βn:

αn =
1∑

∅6=A⊂{1,...,I} nA


 ∑

∅6=B⊂{1,...,I}

[min
k∈B

xk − max
k 6∈B

xk]
+δ

n
x−

P

k∈B 1{xk>0}ek

+


 ∑

∅6=A⊂{1,...,I}

nA −
I

max
k=1

xk


 δn


 , x ∈ X , n ∈ Cx,

βn =
1∑

∅6=A⊂{1,...,I} nA

∑

∅6=A⊂{1,...,I}

nAδn−1{nA>0}eA
, x ∈ X , n ∈ Cx,

and weight factors ∆n:

∆n = µ
∑

A⊂{1,...,I}

nA, x ∈ X , n ∈ Cx.

If we denote the transition matrix of model M ′
2 by P ′

2, then the transition matrix P of model M0

can be obtained as:
P = P ′

2 +
∑

x∈X

∑

n∈Cx

∆nTαn,βn
(n).

Therefore, if we show that (25) holds, then Theorem 3 implies that model M0 gives a lower bound
for model M ′

2, which is equivalent to show that M ′
2 gives an upper bound for model M0.

By Proposition 6, for any x ∈ S and any n ∈ Cx relation (25) is equivalent to:

∑

∅6=B⊂{1,...,I}

[min
k∈B

xk − max
k 6∈B

xk]
+w̃t(x −

∑

k∈B

1{xk>0}ek) +


 ∑

∅6=A⊂{1,...,I}

nA −
I

max
k=1

xk


 w̃t(x) ≥

∑

∅6=A⊂{1,...,I}

nAw̃t(x −
∑

i∈A

ei), t ≥ 0. (26)

We will show next that the above relation follows from supermodularity of w̃t, t ≥ 0 (Proposition
10), which will end the proof.
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As w̃t, t ≥ 0, is supermodular, Proposition 13, relation (35), implies that for all K ∈ N,
A1, . . . , AK ⊂ {1, . . . , n} and for all x ∈ S such that x −

∑K
k=1 eAk

∈ S:

K∑

j=1

w̃t

(
x − e

∪1≤i1<...<ij≤K(∩j
l=1

Ail
)

)
≥

K∑

k=1

w̃t(x − eAk
), t ≥ 0, (27)

where eA :=
∑

i∈A ei. For x ∈ S and any n ∈ Cx, let K =
∑

∅6=A⊂{1,...,I} nA and choose sets
A1, . . . , AK in (27) such that for each subset A ⊂ {1, . . . , I}, A 6= ∅, there are nA subsets among
A1, . . . , AK that are equal to A. For example, if I = 2, x = (3, 5) and n = (n{1}, n{2}, n{1,2}) =
(1, 3, 2), we set K = 6 and A1 = {1}, A2 = A3 = A4 = {2}, and A5 = A6 = {1, 2}.

For this collection of sets A1, . . . , AK , the right-hand side in (27) is obviously equal to the
right-hand side in (26), thus:

K∑

j=1

w̃t

(
x − e

∪1≤i1<...<ij≤K(∩j
l=1

Ail
)

)
≥

∑

∅6=A⊂{1,...,I}

nAw̃t(x − eA), t ≥ 0.

We will show that the left-hand side in (27) is also equal to the left-hand side in (26). Denote by
Hj = ∪1≤i1<...<ij≤K(∩j

l=1Ail), 1 ≤ j ≤ K, the set of items that appear in at least j sets among
A1, . . . , AK . Clearly, H1 ⊃ H2 ⊃ . . . ⊃ HK . Consider now an arbitrary subset B ⊂ {1, . . . , I}, and
denote by h(B) the number of sets Hj , 1 ≤ j ≤ K, that are equal to B: h(B) =

∑K
j=1 1{Hj=B}.

Then:
K∑

j=1

w̃t

(
x − e

∪1≤i1<...<ij≤K(∩j
l=1

Ail
)

)
=

∑

B⊂{1,...,I}

h(B)w̃t(x − eB), t ≥ 0,

with e∅ := (0, . . . , 0). We will show that:

h(B) = [min
k∈B

xk − max
k 6∈B

xk]
+, B 6= ∅, (28)

and
h(∅) =

∑

∅6=A⊂{1,...,I}

nA −
I

max
k=1

xk. (29)

Relation (29) follows from the fact that there are in total K =
∑

∅6=A⊂{1,...,I} nA sets Hj , 1 ≤

j ≤ K, and the sets Hj , 1 ≤ j ≤ maxI
k=1 xk are non empty (they contain at least the items

i ∈ {1, . . . , I} such that xi = maxI
k=1 xk).

For B 6= ∅, denote by G(B) = {C ⊂ {1, . . . , I} : B ⊂ C} the family of all subsets of items that
contain set B. Then clearly

∑
C∈G(B) h(C) = mink∈B xk. We have two cases:

• If B = ∪K
k=1Ak, then (28) follows from the fact that

∑
C∈G(B) h(C) = h(B) = mink∈B xk, and

maxk 6∈B xk = 0.

• If B 6= ∪K
k=1Ak. For each i 6∈ B,

∑
C∈G(B∪{i}) h(C) = mink∈B∪{i} xk, and

∑

C∈G(B)

h(C) = h(B) + max
i6∈B





∑

C∈G(B∪{i})

h(C)



 .

Thus:

h(B) = min
k∈B

xk − max
i6∈B

{
min

k∈B∪{i}
xk

}
= min

k∈B
xk − min

{
min
k∈B

xk, max
i6∈B

xi

}

= [min
k∈B

xk − max
i6∈B

xi]
+,
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so (28) holds.

Therefore (26) holds, and so does (25). In other words, model M ′
2 is an upper bound for the original

model, and so is the aggregated model M2 by Proposition 6.

It remains for us to show that the aggregate order fill rate is indeed a function satisfying the
conditions of Theorems 9 and 11. The aggregated order fill rate is a linear combination of order
fill rates for individual demand streams. Denote by OFRA : S → {0, 1} order fill rate for stream
of set of items A ⊂ {1, . . . , I}, A 6= ∅:

OFRA(n) =
∏

i∈A

1{ξi(n)<Si}, n ∈ S.

Reward function OFRA is clearly constant within every macro-state and we will denote also by
OFRA : X → {0, 1} its aggregated version:

OFRA(x) =
∏

i∈A

1{xi<Si}, x ∈ X . (30)

Lemma 12. Reward function OFRA is supermodular for all A ⊂ {1, . . . , I}, A 6= ∅.

Proof. Let A ⊂ {1, . . . , I}, A 6= ∅, and i, j ∈ {1, . . . , I}, i 6= j. We need to show that for all x ∈ X
such that x − ei − ej ∈ X (see Proposition 13):

OFRA(x − ei − ej) + OFRA(x) ≥ OFRA(x − ei) + OFRA(x − ej). (31)

Suppose first that i, j ∈ A. We have 4 different cases:

• There is k ∈ A\{i, j} such that xk = Sk. Then OFRA(x− ei − ej) = OFRA(x) = OFRA(x−
ei) = OFRA(x − ej) = 0, and relation (31) clearly holds.

• For all k ∈ A\{i, j}, xk < Sk, xi = Si and xj = Sj . Then OFRA(x − ei − ej) = 1 and all the
other terms are equal to 0, thus relation (31) holds.

• For all k ∈ A\{i, j}, xk < Sk, xi = Si and xj < Sj (xi < Si and xj = Sj is symmetrical).
Then OFRA(x− ei − ej) = OFRA(x− ei) = 1 and the other two terms are equal to 0, so the
both sides of relation (31) are equal to 1.

• Finally, if xk < Sk, ∀k ∈ A, then the both sides of (31) are equal to 2.

If i 6∈ A, then OFRA(x− ei − ej) = OFRA(x− ej) and OFRA(x) = OFRA(x− ei) so (31) clearly
holds.

Thus the aggregated order fill rate is supermodular as an linear combination of supermodular
functions.

6 Conclusions

We have established a new method to compare Markov chains: a generalization of the precedence
relation method to sets of states, which we have shown is compatible with aggregation. The
precedence relation method on sets of states, combined with aggregation, is then used to prove the
bounds for the service tools problem, conjectured in [25].
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The core advantage of precedence relations is still preserved: the modifications of the original
model are easy to understand and allow intuitive interpretation. On the other hand, establishing
precedence relations for sets of states allows one to construct bounding chains by replacing one set
of transitions with another set. As illustrated on the example of a queue with batch arrivals, this
can be used, for example, to compare systems with arrivals that have the same mean but different
variability.

One can expect that our technique could be applied to derive bounds by replacing a part
of the system with a simplified version having the same mean behavior. Note that this is not
typically possible using some classical methods for Markov chain comparison, for example strong
stochastic ordering or the classical precedence relation method. Along this line, the generalization
of precedence relations to sets of states can be, to some extent, compared with the generalization
of strong stochastic order to other integral orders, such as convex or increasing convex order.
One possible future research direction is to compare the method presented here with comparison
techniques based on stochastic monotonicity and different integral stochastic orders. One could
expect, for selected families of functions and under certain conditions, that the two methods would
be equivalent. If true, such an equivalence could allow on one hand the definition of a model-driven
family of functions for which the precedence relations hold, and on the other hand enable the use
of arguments of integral stochastic orders that allow both steady-state and transient comparison of
Markov chains.

The second major contribution of the paper is showing that our new method is compatible with
strong aggregation. This property allows the construction of bounding chains with a state space
of significantly reduced cardinality. This much smaller chain is then used to derive bounds on the
reward function. We have also shown that the precedence relations can be established both on
the original or the aggregated bounding chain; in some cases the latter may be much easier. For
example, in the service tools problem, we have shown that the precedence relations we need to
compare the two chains are equivalent to the supermodularity property of cumulated rewards for
the aggregated chain.

Finally, we studied here the service tools model in which all the returns have equal rates, which
is a natural assumption in our application. It may be interesting to study a generalization of this
model to allow different return rates. Note that the bounding models M1 and M2 strongly rely on
the assumption of equal return rates. These models may still be used as bounds if the difference in
rates are not too high. Otherwise, they will give very loose bounds and it is reasonable to expect
that more accurate bounding models might need to be found.
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A Supermodularity and its characterization

Definition 2. Let (S,�) be a lattice and f a real function on S. Then f is said to be supermodular
if

f(x ∧ y) + f(x ∨ y) ≥ f(x) + f(y), ∀x, y ∈ S. (32)

In Proposition 13 we will give a characterization of supermodularity for the case of a finite-
dimensional lattice. Without loss of generality, we will assume the set (S,�) to be a subset of
(Nn,≤). In that case, the ∧ (meet) and ∨ (join) operators are defined componentwise:

(x1, x2, . . . , xn) ∧ (y1, y2, . . . , yn) = (x1 ∧ y1, x2 ∧ y2, . . . , xn ∧ yn),

(x1, x2, . . . , xn) ∨ (y1, y2, . . . , yn) = (x1 ∨ y1, x2 ∨ y2, . . . , xn ∨ yn),

where xi ∧ yi = min{xi, yi} and xi ∨ yi = max{xi, yi}, for all i.
Before stating the proposition, we introduce some additional notation that will be used. We

recall that ei, 1 ≤ i ≤ n, denotes the vector with all the coordinates equal to 0, except the
coordinate i that is equal to 1. Similarly, we will denote by eA the vector with all the coordinates
equal to 0, except the coordinates that belong to the set A: eA :=

∑
i∈A ei, A ⊂ {1, . . . , n},

A 6= ∅, and e∅ := (0, . . . , 0). Finally, let A1, . . . , AK be any collection of sets such that K ∈ N,
A1, . . . , AK ⊂ {1, . . . , n}, and Ai 6= ∅, 1 ≤ i ≤ K. Then for each j, 1 ≤ j ≤ K, the set
Hj := ∪1≤i1<...<ij≤K(∩j

l=1Ail) is the set of the elements in {1, . . . , n} that appear in at least j sets
among the sets A1, . . . , AK . For example, if n = 5, K = 3, A1 = {1, 2, 4}, A2 = {2, 3, 4}, and
A3 = {3, 5}, then:

H1 = A1 ∪ A2 ∪ A3 = {1, 2, 3, 4, 5},

H2 = (A1 ∩ A2) ∪ (A1 ∩ A3) ∪ (A2 ∩ A3) = {2, 3, 4},

H3 = (A1 ∩ A2 ∩ A3) = ∅.

Proposition 13. Let (S,�) be a subspace of (Nn,≤) and f : S → R. The following statements
are equivalent:

1. f is supermodular.
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2. For all i, j ∈ {1, . . . , n}, i 6= j, and for all x ∈ S such that x − ei − ej ∈ S:

f(x − ei − ej) + f(x) ≥ f(x − ei) + f(x − ej). (33)

3. For all A ⊂ {1, . . . , n}, A 6= ∅, and for all x ∈ S such that x −
∑

i∈A ei ∈ S:

f(x −
∑

i∈A

ei) + (|A| − 1)f(x) ≥
∑

i∈A

f(x − ei). (34)

4. For all K ∈ N, A1, . . . , AK ⊂ {1, . . . , n}, Ai 6= ∅, 1 ≤ i ≤ K, and for all x ∈ S such that
x −

∑K
k=1 eAk

∈ S:

K∑

j=1

f

(
x − e

∪1≤i1<...<ij≤K(∩j
l=1

Ail
)

)
≥

K∑

k=1

f(x − eAk
). (35)

Proof. • 1) ⇒ 4). We will show this implication by induction on K. For K = 1 relation (35) is
trivially satisfied: f(x − eA1

) ≥ f(x − eA1
). In order to better understand relation (35), we

will write it explicitly also for K = 2:

f(x − eA1∪A2
) + f(x − eA1∩A2

) ≥ f(x − eA1
) + f(x − eA2

).

This follows trivially from supermodularity of f , as (x − eA1
) ∧ (x − eA2

) = x − eA1∪A2
and

(x − eA1
) ∨ (x − eA2

) = x − eA1∩A2
.

Assume now that relation (35) holds for some K ≥ 2. Then for K +1 by induction hypothesis
we have:

K+1∑

k=1

f(x − eAk
) ≤

K∑

j=1

f

(
x − e

∪1≤i1<...<ij≤K(∩j
l=1

Ail
)

)
+ f(x − eAK+1

).

Since:

(i) f is supermodular,

(ii)
(
x − e∪1≤i1≤KAi1

)
∧
(
x − eAK+1

)
= x − e∪1≤i1≤K+1Ai1

, and

(iii)
(
x − e∪1≤i1≤KAi1

)
∨
(
x − eAK+1

)
= x − e(∪1≤i1≤KAi1

)∩AK+1
= x − e∪1≤i1≤K(Ai1

∩AK+1),

we obtain:

K+1∑

k=1

f(x − eAk
) ≤

K∑

j=2

f

(
x − e

∪1≤i1<...<ij≤K(∩j
l=1

Ail
)

)
+ f(x − e∪1≤i1≤K+1Ai1

)

+f
(
x − e∪1≤i1≤K(Ai1

∩AK+1)

)
. (36)

Assume now that for some 1 ≤ m < K we have shown (for m = 1 this is equivalent to (36)):

K+1∑

k=1

f(x − eAk
) ≤

K∑

j=m+1

f

(
x − e

∪1≤i1<...<ij≤K(∩j
l=1

Ail
)

)
+

m∑

j=1

f

(
x − e

∪1≤i1<...<ij≤K+1(∩j
l=1

Ail
)

)

+f
(
x − e∪1≤i1<...<im≤K((∩m

l=1
Ail

)∩AK+1)

)
. (37)

27



As

(
∪1≤i1<...<im+1≤K(∩m+1

l=1 Ail)
)
∪ (∪1≤i1<...<im≤K((∩m

l=1Ail) ∩ AK+1))

= ∪1≤i1<...<im+1≤K+1(∩
m+1
l=1 Ail)

and

(
∪1≤i1<...<im+1≤K(∩m+1

l=1 Ail)
)
∩ (∪1≤i1<...<im≤K((∩m

l=1Ail) ∩ AK+1))

=
(
∪1≤i1<...<im+1≤K(∩m+1

l=1 Ail)
)
∩ (∪1≤i1<...<im≤K(∩m

l=1Ail)) ∩ AK+1

=
(
∪1≤i1<...<im+1≤K(∩m+1

l=1 Ail)
)
∩ AK+1 = ∪1≤i1<...<lm+1≤K((∩m+1

l=1 Ail) ∩ AK+1),

we have:
(
x − e∪1≤i1<...<im+1≤K(∩m+1

l=1
Ail

)

)
∧
(
x − e∪1≤i1<...<im≤K((∩m

l=1
Ai1

)∩AK+1)

)

= x − e∪1≤i1<...<im+1≤K+1(∩m+1

l=1
Ail

)

and
(
x − e∪1≤i1<...<im+1≤K(∩m+1

l=1
Ail

)

)
∨
(
x − e∪1≤i1<...<im≤K((∩m

l=1
Ai1

)∩AK+1)

)

= x − e∪1≤i1<...<lm+1≤K((∩m+1

l=1
Ail

)∩AK+1).

Supermodularity of f and (37) thus imply:

K+1∑

k=1

f(x − eAk
) ≤

K∑

j=m+2

f

(
x − e

∪1≤i1<...<ij≤K(∩j
l=1

Ail
)

)
+

m+1∑

j=1

f

(
x − e

∪1≤i1<...<ij≤K+1(∩j
l=1

Ail
)

)

+f
(
x − e∪1≤i1<...<lm+1≤K((∩m+1

l=1
Ail

)∩AK+1)

)
,

so (37) is valid for any m ≤ K. Finally, for m = K (37) gives:

K+1∑

k=1

f(x − eAk
) ≤

K∑

j=1

f

(
x − e

∪1≤i1<...<ij≤K+1(∩j
l=1

Ail
)

)
+ f

(
x − e(∩K

k=1
Ak)∩AK+1

)

=

K+1∑

j=1

f

(
x − e

∪1≤i1<...<ij≤K+1(∩j
l=1

Ail
)

)
,

which is exactly what we needed to show.

• 4) ⇒ 3). Consider an arbitrary but fixed subset A ⊂ {1, . . . , n}, A 6= ∅, and a state x ∈ S
such that x −

∑
i∈A ei ∈ S. Let K = |A|, and denote by i1, . . . , iK the elements of A.

Define Ak = {ik}, k = 1, . . . ,K. Sets Ak, k = 1, . . . ,K are disjoint so for j > 1 we have:
∩j

l=1Ail = ∅, for all i1, . . . , ij ∈ A such that i1 6= . . . 6= ij , and for j = 1: ∪K
i1=1Ai1 = A. Thus

(35) becomes:

f (x − eA) +
K∑

j=2

f(x) ≥
K∑

k=1

f(x − eik),

which is precisely (34).

• 3) ⇒ 2) follows directly by taking A = {i, j}.
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• 2) ⇒ 1). Consider arbitrary two states x, y ∈ S. Then y can be written as:

y = x +
∑

i∈A

αiei −
∑

i∈B

βiei,

where A, B ⊂ {1, . . . , n} and A ∩ B = ∅. Then:

x ∧ y = x −
∑

i∈B

βiei, and x ∨ y = x +
∑

i∈A

αiei.

If B = ∅, then x ≤ y, which implies x ∧ y = x and x ∨ y = y. Therefore relation (32) is
trivially satisfied. The case A = ∅ is similar. We consider now the non-trivial case where both
A 6= ∅ and B 6= ∅. We will first show the following relation for arbitrary i ∈ B and j ∈ A:

f(x − βiei) + f(x + ej) ≥ f(x) + f(x + ej − βiei). (38)

Indeed, the above relation can be obtained by adding the following relations (relation (33)
for states x + ej − mei, 0 ≤ m ≤ (βi − 1)):

f(x − ei) + f(x + ej) ≥ f(x) + f(x + ej − ei)

f(x − 2ei) + f(x + ej − ei) ≥ f(x − ei) + f(x + ej − 2ei)

...

f(x − βiei) + f(x + ej − (βi − 1)ei) ≥ f(x − (βi − 1)ei) + f(x + ej − βiei)

Denote the elements of B by B = {b1, b2, . . . , b|B|}. Then adding the following relations

(obtained by applying relation (38) for k = 1, . . . , |B| to state x −
∑k−1

l=1 βbl
ebl

, with i = bk

and j ∈ A):

f(x − βb1eb1) + f(x + ej) ≥ f(x) + f(x + ej − βb1eb1)

f(x − βb1eb1 − βb2eb2) + f(x + ej − βb1eb1) ≥ f(x − βb1eb1) + f(x + ej − βb1eb1 − βb2eb2)

...

f(x −

|B|∑

l=1

βbl
ebl

) + f(x + ej −

|B|−1∑

l=1

βbl
ebl

) ≥ f(x −

|B|−1∑

l=1

βbl
ebl

) + f(x + ej −

|B|∑

l=1

βbl
ebl

)

gives:

f(x −

|B|∑

l=1

βbl
ebl

) + f(x + ej) ≥ f(x) + f(x + ej −

|B|∑

l=1

βbl
ebl

), j ∈ A. (39)

By adding the following equations (obtained by applying relation (39) for k = 0, . . . , αj − 1
to state x + kej , j ∈ A):

f(x −

|B|∑

l=1

βbl
ebl

) + f(x + ej) ≥ f(x) + f(x + ej −

|B|∑

l=1

βbl
ebl

)

f(x + ej −

|B|∑

l=1

βbl
ebl

) + f(x + 2ej) ≥ f(x + ej) + f(x + 2ej −

|B|∑

l=1

βbl
ebl

)

...

f(x + (αj − 1)ej −

|B|∑

l=1

βbl
ebl

) + f(x + αjej) ≥ f(x + (αj − 1)ej) + f(x + αjej −

|B|∑

l=1

βbl
ebl

)
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we obtain:

f(x −

|B|∑

l=1

βbl
ebl

) + f(x + αjej) ≥ f(x) + f(x + αjej −

|B|∑

l=1

βbl
ebl

), j ∈ A. (40)

Denote the elements of A by A = {a1, a2, . . . , a|A|}. Then adding the following relations

(obtained by applying relation (40) for k = 1, . . . , |A| to state x +
∑k−1

l=1 αal
eal

, with j = ak):

f(x −

|B|∑

l=1

βbl
ebl

) + f(x + αa1
ea1

) ≥ f(x) + f(x + αa1
ea1

−

|B|∑

l=1

βbl
ebl

)

f(x + αa1
ea1

−

|B|∑

l=1

βbl
ebl

) + f(x +

2∑

l=1

αal
eal

) ≥ f(x + αa1
ea1

)

+f(x +
2∑

l=1

αal
eal

−

|B|∑

l=1

βbl
ebl

)

...

f(x +

|A|−1∑

l=1

αal
eal

−

|B|∑

l=1

βbl
ebl

) + f(x +

|A|∑

l=1

αal
eal

) ≥ f(x +

|A|−1∑

l=1

αal
eal

)

+f(x +

|A|∑

l=1

αal
eal

−

|B|∑

l=1

βbl
ebl

)

gives:

f(x −

|B|∑

l=1

βbl
ebl

) + f(x +

|A|∑

l=1

αal
eal

) ≥ f(x) + f(x +

|A|∑

l=1

αal
eal

−

|B|∑

l=1

βbl
ebl

),

what we needed to show.

B Supermodularity proof for models M1 and M2

Proof of Proposition 8. After Proposition 13, proving supermodularity of wt is equivalent to showing
that for all i, j ∈ {1, . . . , I}, i 6= j, and for all x ∈ X such that x − ei − ej ∈ X :

wt(x − ei − ej) + wt(x) ≥ wt(x − ei) + wt(x − ej), ∀t ≥ 0. (41)

Recall that (relation (21)):

wt+1(x) = r̃(x) +
∑

∅6=A⊂{1,...,I}

λAwt(d
′
A(x)) +

I∑

k=1

µxkwt(r
′
k(x)) + µ

(
I∑

k=1

(Sk − xk)

)
wt(x), (42)

for all x ∈ X , t ≥ 0, where w0(x) := 0, x ∈ X .
We will show relation (41) by induction on t. Suppose that relation (41) holds for a given t ≥ 0

(the case t = 0 is trivial). We will show that then it also holds for t+1. Let i, j ∈ {1, . . . , I}, i 6= j,
be arbitrary and fixed. We need to show that for all x ∈ X such that x − ei − ej ∈ X :

wt+1(x − ei − ej) + wt+1(x) ≥ wt+1(x − ei) + wt+1(x − ej). (43)

To simplify the discussion, we will consider demands separately.
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• Demands. Consider a demand of an arbitrary and fixed subset A ⊂ {1, . . . , I}, A 6= ∅. We
will show that for all x ∈ X such that x − ei − ej ∈ X :

wt(d
′
A(x − ei − ej)) + wt(d

′
A(x)) ≥ wt(d

′
A(x − ei)) + wt(d

′
A(x − ej)). (44)

Denote by C ⊂ A the subset of item types that are out of stock in state x:

C = {j ∈ A : xj = Sj}.

We have 3 different cases:

1. i 6∈ C and j 6∈ C. Then (44) becomes:

wt(x−ei−ej +
∑

k∈A\C

ek)+wt(x+
∑

k∈A\C

ek) ≥ wt(x−ei+
∑

k∈A\C

ek)+wt(x−ej +
∑

k∈A\C

ek),

which holds, by induction hypothesis, from relation (41) for state x +
∑

k∈A\C ek.

2. i ∈ C and j 6∈ C (case i 6∈ C and j ∈ C is symmetrical). Then (44) becomes:

wt(x − ej +
∑

k∈A\C

ek) + wt(x +
∑

k∈A\C

ek) ≥ wt(x +
∑

k∈A\C

ek) + wt(x − ej +
∑

k∈A\C

ek),

which is trivialy satisfied.

3. Finally, if i ∈ C and j ∈ C, then (44) becomes:

wt(x +
∑

k∈A\C

ek) + wt(x +
∑

k∈A\C

ek) ≥ wt(x +
∑

k∈A\C

ek) + wt(x +
∑

k∈A\C

ek),

which is also trivialy satisfied.

• Returns and uniformization. Denote by Rk(x), 1 ≤ k ≤ I, the terms corresponding to returns
of item type k in state x, and by U(x) the uniformization term in state x (without the scalar
factor µ):

Rk(x) = xkwt(r
′
k(x)), 1 ≤ k ≤ I, U(x) =

I∑

k=1

(Sk − xk)wt(x).

We will show that the function
∑I

k=1 Rk + U is supermodular, i.e. that for all x ∈ X such
that x − ei − ej ∈ X :

I∑

k=1

Rk(x − ei − ej) + U(x − ei − ej) +

I∑

k=1

Rk(x) + U(x)

≥
I∑

k=1

Rk(x − ei) + U(x − ei) +
I∑

k=1

Rk(x − ej) + U(x − ej). (45)
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For uniformization terms we have:

U(x − ei − ej) + U(x) − U(x − ei) − U(x − ej)

=
I∑

k=1

(Sk − xk + 1{k∈{i,j}})wt(x − ei − ej) +

I∑

k=1

(Sk − xk)wt(x)

−
I∑

k=1

(Sk − xk + 1{k=i})wt(x − ei) −
I∑

k=1

(Sk − xk + 1{k=j})wt(x − ej)

=

(
I∑

k=1

(Sk − xk)

)
(wt(x − ei − ej) + wt(x) − wt(x − ei) − wt(x − ej))

+2wt(x − ei − ej) − wt(x − ei) − wt(x − ej).

Relation (41) gives wt(x − ei − ej) + wt(x) − wt(x − ei) − wt(x − ej) ≥ 0, thus:

U(x−ei−ej)+U(x)−U(x−ei)−U(x−ej) ≥ 2wt(x−ei−ej)−wt(x−ei)−wt(x−ej). (46)

For returns of type k we have two cases:

– For k 6∈ {i, j}:

Rk(x − ei − ej) + Rk(x) − Rk(x − ei) − Rk(x − ej)

= xkwt(x − ei − ej − 1{xk>0}ek) + xkwt(x − 1{xk>0}ek)

−xkwt(x − ei − 1{xk>0}ek) − xkwt(x − ej − 1{xk>0}ek)

= xk

(
wt(x − ei − ej − 1{xk>0}ek) + wt(x − 1{xk>0}ek)

−wt(x − ei − 1{xk>0}ek) − wt(x − ej − 1{xk>0}ek

)
.

Relation (41) for state x−1{xk>0}ek implies wt(x−ei−ej−1{xk>0}ek)+wt(x−1{xk>0}ek)−
wt(x − ei − 1{xk>0}ek) − wt(x − ej − 1{xk>0}ek) ≥ 0, thus:

Rk(x − ei − ej) + Rk(x) − Rk(x − ei) − Rk(x − ej) ≥ 0, k 6∈ {i, j}. (47)

– For k = i (case k = j is symmetrical):

Ri(x − ei − ej) + Ri(x) − Ri(x − ei) − Ri(x − ej)

= (xi − 1)wt(x − ei − ej − 1{xi>1}ei) + xiwt(x − ei)

−(xi − 1)wt(x − ei − 1{xi>1}ei) − xiwt(x − ei − ej).

For xi = 1, the above equation becomes:

Ri(x − ei − ej) + Ri(x) − Ri(x − ei) − Ri(x − ej) = wt(x − ei) − wt(x − ei − ej),

and for xi > 1 we have:

Ri(x − ei − ej) + Ri(x) − Ri(x − ei) − Ri(x − ej)

= (xi − 1)
(
wt(x − 2ei − ej) + wt(x − ei) − wt(x − 2ei) − wt(x − ei − ej)

)

+wt(x − ei) − wt(x − ei − ej).
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Relation (41) for state x − ei implies:

wt(x − 2ei − ej) + wt(x − ei) − wt(x − 2ei) − wt(x − ei − ej) ≥ 0,

thus for k = i:

Ri(x − ei − ej) + Ri(x) − Ri(x − ei) − Ri(x − ej) ≥ wt(x − ei) − wt(x − ei − ej). (48)

By symmetry, for k = j:

Rj(x − ei − ej) + Rj(x) − Rj(x − ei) − Rj(x − ej) ≥ wt(x − ej) − wt(x − ei − ej). (49)

Now from (46), (47), (48) and (49) it follows that:

I∑

k=1

Rk(x − ei − ej) + U(x − ei − ej) +
I∑

k=1

Rk(x) + U(x)

−
I∑

k=1

Rk(x − ei) − U(x − ei) −
I∑

k=1

Rk(x − ej) − U(x − ej)

≥ 2wt(x − ei − ej) − wt(x − ei) − wt(x − ej)

+wt(x − ei) − wt(x − ei − ej) + wt(x − ej) − wt(x − ei − ej) = 0.

Thus relation (45) holds.

Relation (43) follows follows now easily from relations (42), (44), (45) and supermodularity
of reward function r̃. �

Proof of Proposition 10. The proof is similar to the proof of Proposition 8. We will show, by
induction on t, that for all i, j ∈ {1, . . . , I}, i 6= j, and for all x ∈ X such that x − ei − ej ∈ X :

w̃t(x − ei − ej) + w̃t(x) ≥ w̃t(x − ei) + w̃t(x − ej), ∀t ≥ 0. (50)

Recall that (relation (24)):

w̃t+1(x) = r̃(x) +
∑

∅6=A⊂{1,...,I}

λAw̃t(d
′′
A(x)) +

∑

∅6=B⊂{1,...,I}

µ[min
k∈B

xk − max
k 6∈B

xk]
+w̃t(r

′′
B(x))

+µ

(
I∑

k=1

Sk − max
k=1...I

xk

)
w̃t(x), x ∈ X , t ≥ 0, (51)

where w̃0(x) := 0, x ∈ X . Suppose that relation (50) holds for a given t ≥ 0 (the case t = 0 is
trivial). We will show that then it also holds for t + 1. Let i, j ∈ {1, . . . , I}, i 6= j, be arbitrary and
fixed. We need to show that for all x ∈ X such that x − ei − ej ∈ X :

w̃t+1(x − ei − ej) + w̃t+1(x) ≥ w̃t+1(x − ei) + w̃t+1(x − ej). (52)

• Demands. Demands in model M2 have the same rate and destination as in model M1,
therefore the same arguments as in proof of Proposition 8 can be used to show the equivalent
of relation (44) for the M2 model: for all A ⊂ {1, . . . , I}, A 6= ∅, and for all x ∈ X such that
x − ei − ej ∈ X :

w̃t(d
′′
A(x − ei − ej)) + w̃t(d

′′
A(x)) ≥ w̃t(d

′′
A(x − ei)) + w̃t(d

′′
A(x − ej)). (53)
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• Returns and uniformization. Similar to the proof of Proposition 8, we denote by R̃B(x), B ⊂
{1, . . . , I}, B 6= ∅, the term corresponding to joint returns of set B in state x, and by Ũ(x)
the uniformization term in state x (without the scalar factor µ):

R̃B(x) = [min
k∈B

xk − max
k 6∈B

xk]
+w̃t(r

′′
B(x)), B 6= ∅, Ũ(x) =

(
I∑

k=1

Sk − max
k=1...I

xk

)
w̃t(x).

We will show that the function
∑I

k=1 R̃k + Ũ is supermodular, i.e. that for all x ∈ X such
that x − ei − ej ∈ X :

∑

∅6=B⊂{1,...,I}

R̃B(x − ei − ej) + Ũ(x − ei − ej) +
∑

∅6=B⊂{1,...,I}

R̃B(x) + Ũ(x)

≥
∑

∅6=B⊂{1,...,I}

R̃B(x − ei) + Ũ(x − ei) +
∑

∅6=B⊂{1,...,I}

R̃B(x − ej) + Ũ(x − ej). (54)

For uniformization terms we have:

Ũ(x − ei − ej) + Ũ(x) − Ũ(x − ei) − Ũ(x − ej)

=

(
I∑

k=1

Sk − max
k=1...I

{xk − 1k∈{i,j}}

)
w̃t(x − ei − ej) +

(
I∑

k=1

Sk − max
k=1...I

xk

)
w̃t(x)

−
∑

r∈{i,j}

(
I∑

k=1

Sk − max
k=1...I

{xk − 1k=r}

)
w̃t(x − er). (55)

Denote by M(x) = maxk=1...I xk. Let C = {k | xk = M(x)}. We have 3 different cases:

– C 6⊂ {i, j}. Then (55) becomes:

Ũ(x − ei − ej) + Ũ(x) − Ũ(x − ei) − Ũ(x − ej)

=

(
I∑

k=1

Sk − M(x)

)
(
w̃t(x − ei − ej) + w̃t(x) − w̃t(x − ei) − w̃t(x − ej)

)
≥ 0,

by induction hypothesis (relation (50)).

– C = {i, j}. Then (55) becomes:

Ũ(x − ei − ej) + Ũ(x) − Ũ(x − ei) − Ũ(x − ej)

=

(
I∑

k=1

Sk − M(x)

)
(w̃t(x − ei − ej) + w̃t(x) − w̃t(x − ei) − w̃t(x − ej))

+w̃t(x − ei − ej) ≥ w̃t(x − ei − ej).

– C = {i} (case C = {j} is symmetrical). Then (55) becomes:

Ũ(x − ei − ej) + Ũ(x) − Ũ(x − ei) − Ũ(x − ej)

=

(
I∑

k=1

Sk − M(x)

)
(w̃t(x − ei − ej) + w̃t(x) − w̃t(x − ei) − w̃t(x − ej))

+w̃t(x − ei − ej) − w̃t(x − ei) ≥ w̃t(x − ei − ej) − w̃t(x − ei).
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All three cases can be now written together as:

Ũ(x − ei − ej) + Ũ(x) − Ũ(x − ei) − Ũ(x − ej)

≥ 1C⊂{i,j}w̃t(x − ei − ej) − 1C={i}w̃t(x − ei) − 1C={j}w̃t(x − ej). (56)

Let us consider now the returns. Let B ⊂ {1, . . . , I}, B 6= ∅, be arbitrary and fixed. Then
for returns of set B we have:

R̃B(x − ei − ej) + R̃B(x) − R̃B(x − ei) − R̃B(x − ej)

= [min
k∈B

(xk − 1k∈{i,j}) − max
k 6∈B

(xk − 1k∈{i,j})]
+w̃t(x − ei − ej −

∑

k∈B

1{xk>1{k∈{i,j}}}ek)

+[min
k∈B

xk − max
k 6∈B

xk]
+w̃t(x −

∑

k∈B

1{xk>0}ek)

−
∑

r∈{i,j}

[min
k∈B

(xk − 1k=r) − max
k 6∈B

(xk − 1k=r)]
+w̃t(x − er −

∑

k∈B

1{xk>1{k=r}}ek).

Note that:

x − ei − ej −
∑

k∈B

1{xk>1{k∈{i,j}}}ek = x −
∑

k∈B

1{xk>0}ek −
∑

r∈{i,j}

1{xr>1{r∈B}}er

and
x − er −

∑

k∈B

1{xk>1{k=r}}ek = x −
∑

k∈B

1{xk>0}ek − 1{xr>1{r∈B}}er, r ∈ {i, j}.

Let
x′ = x −

∑

k∈B

1{xk>0}ek.

Then the above relation becomes:

R̃B(x − ei − ej) + R̃B(x) − R̃B(x − ei) − R̃B(x − ej)

= [min
k∈B

(xk − 1k∈{i,j}) − max
k 6∈B

(xk − 1k∈{i,j})]
+w̃t(x

′ −
∑

r∈{i,j}

1{xr>1{r∈B}}er)

+[min
k∈B

xk − max
k 6∈B

xk]
+w̃t(x

′)

−
∑

r∈{i,j}

[min
k∈B

(xk − 1k=r) − max
k 6∈B

(xk − 1k=r)]
+w̃t(x

′ − 1{xr>1{r∈B}}er).

For an arbitrary subset D ⊂ {1, . . . , I} we define l(D) (resp. u(D)) to be the minimal (resp.
maximal) value of components of state x that belong to the set D:

l(D) = min
k∈D

xk and u(D) = max
k∈D

xk.

We also denote by L(D) (resp. U(D)) the components for which x reaches the minimal (resp.
maximal) value:

L(D) = {k ∈ D : xk = l(D)} and U(D) = {k ∈ D : xk = u(D)}.
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Let B = {k : 1 ≤ k ≤ I, k 6∈ B} denote the complement of set B. Then:

[min
k∈B

xk − max
k 6∈B

xk]
+ = [l(B) − u(B)]+, (57)

[min
k∈B

(xk − 1k∈{i,j}) − max
k 6∈B

(xk − 1k∈{i,j})]
+

=





[l(B) − 1 − u(B)]
+
, L(B) ∩ {i, j} 6= ∅, U(B) 6⊂ {i, j}

[l(B) − u(B) + 1]
+
, L(B) ∩ {i, j} = ∅, U(B) ⊂ {i, j}

[l(B) − u(B)]
+
, otherwise

(58)

For r ∈ {i, j}:

[min
k∈B

(xk − 1k=r) − max
k 6∈B

(xk − 1k=r)]
+ =





[l(B) − 1 − u(B)]
+
, r ∈ L(B)

[l(B) − u(B) + 1]
+
, U(B) = {r}

[l(B) − u(B)]
+
, otherwise

(59)

Note first that if l(B) < u(B), then (57), (58) and (59) become all equal to 0 and therefore:

R̃B(x − ei − ej) + R̃B(x) − R̃B(x − ei) − R̃B(x − ej) = 0.

If l(B) = u(B), then we have:

[min
k∈B

xk − max
k 6∈B

xk]
+ = [l(B) − u(B)]+ = 0,

[min
k∈B

(xk − 1k∈{i,j}) − max
k 6∈B

(xk − 1k∈{i,j})]
+ =

{
1, L(B) ∩ {i, j} = ∅, U(B) ⊂ {i, j}
0, otherwise

and for r ∈ {i, j},

[min
k∈B

(xk − 1k=r) − max
k 6∈B

(xk − 1k=r)]
+ =

{
1, U(B) = {r}
0, otherwise

Therefore, if l(B) = u(B):

R̃B(x − ei − ej) + R̃B(x) − R̃B(x − ei) − R̃B(x − ej)

= 1{L(B)∩{i,j}=∅, U(B)⊂{i,j}}w̃t(x
′ −

∑

r∈{i,j}

1{xr>1{r∈B}}er)

−
∑

r∈{i,j}

1{U(B)={r}}w̃t(x
′ − 1{xr>1{r∈B}}er).

The second term is non-zero only if U(B) = {r} for r ∈ {i, j}, that is:

R̃B(x − ei − ej) + R̃B(x) − R̃B(x − ei) − R̃B(x − ej)

= 1{L(B)∩{i,j}=∅, U(B)⊂{i,j}}w̃t(x
′ −

∑

r∈{i,j}

1{xr>1{r∈B}}er)

−1{U(B)={r}⊂{i,j}}w̃t(x
′ − er), (60)

36



where
x′ = x −

∑

k∈B

1{xk>0}ek.

Finally, we consider the case l(B) > u(B). We have:

R̃B(x − ei − ej) + R̃B(x) − R̃B(x − ei) − R̃B(x − ej)

= (l(B) − u(B) − 1{L(B)∩{i,j}6=∅, U(B) 6⊂{i,j}}

+1{L(B)∩{i,j}=∅, U(B)⊂{i,j}})w̃t(x
′ −

∑

r∈{i,j}

1{xr>1{r∈B}}er)

+(l(B) − u(B))w̃t(x
′)

−
∑

r∈{i,j}

(l(B) − u(B) − 1{r∈L(B)} + 1{U(B)={r}})w̃t(x
′ − 1{xr>1{r∈B}}er). (61)

We will first show the following relation:

w̃t(x
′ −

∑

r∈{i,j}

1{xr>1{r∈B}}er) + w̃t(x
′) −

∑

r∈{i,j}

w̃t(x
′ − 1{xr>1{r∈B}}er) ≥ 0. (62)

– If r ∈ B and xr = 1, for r ∈ {i, j}, then relation (62) becomes:

w̃t(x
′) + w̃t(x

′) − 2w̃t(x
′) ≥ 0,

which is trivially satisfied.

– If (i ∈ B and xi = 1) and (j 6∈ B or xj > 1), then relation (62) becomes:

w̃t(x
′ − ej) + w̃t(x

′) − w̃t(x
′) − w̃t(x

′ − ej) ≥ 0,

which is also trivially satisfied. The case (i 6∈ B or xi > 1) and (j ∈ B and xj = 1) is
symmetrical.

– If r 6∈ B or xr > 1, for r ∈ {i, j}, then relation (62) becomes:

w̃t(x
′ − ei − ej) + w̃t(x

′) − w̃t(x
′ − ei) − w̃t(x

′ − ej) ≥ 0,

which is satisfied by the induction hypothesis for state x′.

Therefore, relation (62) holds.

Let us now go back to relation (61). We have the following cases:

– L(B) ∩ {i, j} = ∅. Then:

R̃B(x − ei − ej) + R̃B(x) − R̃B(x − ei) − R̃B(x − ej)

= (l(B) − u(B) + 1{U(B)⊂{i,j}})w̃t(x
′ −

∑

r∈{i,j}

1{xr>1{r∈B}}er) + (l(B) − u(B))w̃t(x
′)

−
∑

r∈{i,j}

(l(B) − u(B) + 1{U(B)={r}})w̃t(x
′ − 1{xr>1{r∈B}}er)

= (l(B) − u(B))

(
w̃t(x

′ −
∑

r∈{i,j}

1{xr>1{r∈B}}er) + w̃t(x
′)

−
∑

r∈{i,j}

w̃t(x
′ − 1{xr>1{r∈B}}er)

)
+ 1{U(B)⊂{i,j}}w̃t(x

′ −
∑

r∈{i,j}

1{xr>1{r∈B}}er)

−1{U(B)={r}⊂{i,j}}w̃t(x
′ − er).
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Then from relation (62) it follows that:

R̃B(x − ei − ej) + R̃B(x) − R̃B(x − ei) − R̃B(x − ej)

≥ 1{U(B)⊂{i,j}}w̃t(x
′ −

∑

r∈{i,j}

1{xr>1{r∈B}}er) − 1{U(B)={r}⊂{i,j}}w̃t(x
′ − er).

– L(B) ∩ {i, j} 6= ∅. Then:

R̃B(x − ei − ej) + R̃B(x) − R̃B(x − ei) − R̃B(x − ej)

= (l(B) − u(B) − 1{U(B) 6⊂{i,j}})w̃t(x
′ −

∑

r∈{i,j}

1{xr>1{r∈B}}er)

+(l(B) − u(B))w̃t(x
′)

−
∑

r∈{i,j}

(l(B) − u(B) − 1{r∈L(B)} + 1{U(B)={r}})w̃t(x
′ − 1{xr>1{r∈B}}er)

= (l(B) − u(B) − 1)

(
w̃t(x

′ −
∑

r∈{i,j}

1{xr>1{r∈B}}er) + w̃t(x
′)

−
∑

r∈{i,j}

w̃t(x
′ − 1{xr>1{r∈B}}er)

)

+1{U(B)⊂{i,j}}w̃t(x
′ −

∑

r∈{i,j}

1{xr>1{r∈B}}er) + w̃t(x
′)

−
∑

r∈{i,j}

(1 − 1{r∈L(B)} + 1{U(B)={r}})w̃t(x
′ − 1{xr>1{r∈B}}er).

Then from relation (62) it follows that:

R̃B(x − ei − ej) + R̃B(x) − R̃B(x − ei) − R̃B(x − ej)

≥ 1{U(B)⊂{i,j}}w̃t(x
′ −

∑

r∈{i,j}

1{xr>1{r∈B}}er) + w̃t(x
′)

−
∑

r∈{i,j}

(1 − 1{r∈L(B)} + 1{U(B)={r}})w̃t(x
′ − 1{xr>1{r∈B}}er).

Therefore, if we put the both cases together we obtain:

R̃B(x − ei − ej) + R̃B(x) − R̃B(x − ei) − R̃B(x − ej)

≥ 1{U(B)⊂{i,j}}w̃t(x
′ −

∑

r∈{i,j}

1{xr>1{r∈B}}er) + 1{L(B)∩{i,j}6=∅}w̃t(x
′)

−1{L(B)∩{i,j}6=∅}

∑

r∈{i,j}\L(B)

w̃t(x
′ − 1{xr>1{r∈B}}er)

−1{U(B)={r}⊂{i,j}}w̃t(x
′ − er), (63)

where
x′ = x −

∑

k∈B

1{xk>0}ek.
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In order to show relation (54), we need to consider together uniformization terms (relation
(56)) and returns (relations (60) and (63)). Without loss of generality we can assume that:

x1 ≤ x2 ≤ . . . ≤ xI .

Consider the partition {G1, . . . , Gn} of set {1, . . . , I} into sets of components having equal
values:

1. For all 1 ≤ k ≤ n, xi = xj , ∀i, j ∈ Gk.

2. For 1 ≤ k < l ≤ n, xi < xj , ∀i ∈ Gk, ∀j ∈ Gl.

Furthermore, for all 1 ≤ k ≤ n, we will denote by gk the value of components in Gk:

xi = gk, ∀i ∈ Gk.

For a given set B we will denote by s(B) the index of the component set in B for which x
has the minimal value:

s(B) = min{k : Gk ∩ B 6= ∅}.

Then for a fixed value of s(B) = s the non-trivial sets B for returns are given by:

l(B) ≥ u(B) ⇔ B = ∪k>sGk ∪ F,

where
∅ 6= F = L(B) ⊂ Gs.

In other words, B must contain all elements of sets Gk with index k larger than s and some
subset of Gs.

Now returns and uniformization term can be written as:

R̃U(x) =
∑

∅6=B⊂{1,...,I}

R̃B(x − ei − ej) + Ũ(x − ei − ej) +
∑

∅6=B⊂{1,...,I}

R̃B(x) + Ũ(x)

−
∑

r∈{i,j}


 ∑

∅6=B⊂{1,...,I}

R̃B(x − er) + Ũ(x − er)




=
n∑

s=1

∑

∅6=F⊂Gs


R̃∪k>sGk∪F (x − ei − ej) + R̃∪k>sGk∪F (x) −

∑

r∈{i,j}

R̃∪k>sGk∪F (x − er)




+Ũ(x − ei − ej) + Ũ(x) − Ũ(x − ei) − Ũ(x − ej).

We have two different types of sets B:

1. Sets for which Gs(B) 6⊂ B (i.e. F 6= Gs(B)). Then

L(B) = F $ Gs(B), U(B) = Gs(B)\F,

and
l(B) = u(B) = gs(B).

For returns of this type we use relation (60).
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2. Sets for which Gs(B) ⊂ B (i.e. F = Gs(B)). Then

L(B) = F = Gs(B), U(B) = Gs(B)−1 (G0 := ∅),

and
l(B) = gs(B), u(B) = gs(B)−1 (g0 := 0).

For returns of this type we use relation (63).

Finally, for uniformization term we use relation (56). Note that we have here I ∈ C = Gn.
Then from (60) for the first three lines, (63) for the next four lines, and (56) for the last line,
it follows:

R̃U(x) ≥
n∑

s=1

(
∑

∅6=F$Gs

(
1{F∩{i,j}=∅, Gs\F⊂{i,j}}w̃t

(
x −

∑

m∈∪k>sGk∪F

1{xm>0}em

−
∑

r∈{i,j}

1{xr>1{r∈∪k>sGk∪F}}er

)

−
∑

r∈{i,j}

1{Gs\F={r}}w̃t(x −
∑

m∈∪k>sGk∪F

1{xm>0}em − er)
)

+1{∅6=Gs−1⊂{i,j}}w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em −
∑

r∈{i,j}

1{xr>1{r∈∪k≥sGk}}er)

+1{Gs∩{i,j}6=∅}w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em)

−1{Gs∩{i,j}6=∅}

∑

r∈{i,j}\Gs

w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em − 1{xr>1{r∈∪k≥sGk}}er)

−
∑

r∈{i,j}

1{Gs−1={r}}w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em − er)

)

+1{Gn⊂{i,j}}w̃t(x − ei − ej) − 1{Gn={I}⊂{i,j}}w̃t(x − eI).

Now we can rewrite the terms that contain Gs−1 as follows:

n∑

s=1

1{∅6=Gs−1⊂{i,j}}w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em −
∑

r∈{i,j}

1{xr>1{r∈∪k≥sGk}}er)

=
n−1∑

s=1

1{Gs⊂{i,j}}w̃t(x −
∑

m∈∪k≥s+1Gk

1{xm>0}em −
∑

r∈{i,j}

1{xr>1{r∈∪k≥s+1Gk}}er)

=

n−1∑

s=1

1{Gs⊂{i,j}}w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em −
∑

r∈{i,j}\Gs

1{xr>1{r∈∪k≥s+1Gk}}er)
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and

n∑

s=1

∑

r∈{i,j}

1{Gs−1={r}}w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em − er)

=

n−1∑

s=1

∑

r∈{i,j}

1{Gs={r}}w̃t(x −
∑

m∈∪k≥s+1Gk

1{xm>0}em − er)

=

n−1∑

s=1

∑

r∈{i,j}

1{Gs={r}}w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em).

Note that for s = n:

1{Gn⊂{i,j}}w̃t(x − ei − ej) = 1{Gn⊂{i,j}}w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em −
∑

r∈{i,j}\Gn

1{xr>0}er)

and
1{Gn={I}⊂{i,j}}w̃t(x − eI) =

∑

r∈{i,j}

1{Gn={r}}w̃t(x −
∑

m∈∪k≥nGk

1{xm>0}em)

Therefore:

R̃U(x) ≥
n∑

s=1

(
∑

∅6=F$Gs

(
1{F∩{i,j}=∅, Gs\F⊂{i,j}}w̃t

(
x −

∑

m∈∪k>sGk∪F

1{xm>0}em (64)

−
∑

r∈{i,j}

1{xr>1{r∈∪k>sGk∪F}}er

)

−
∑

r∈{i,j}

1{Gs\F={r}}w̃t(x −
∑

m∈∪k>sGk∪F

1{xm>0}em − er)
)

(65)

+1{Gs⊂{i,j}}w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em −
∑

r∈{i,j}\Gs

1{xr>1{r∈∪k≥s+1Gk}}er)(66)

+1{Gs∩{i,j}6=∅}w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em)

−1{Gs∩{i,j}6=∅}

∑

r∈{i,j}\Gs

w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em − 1{xr>1{r∈∪k≥sGk}}er)

−
∑

r∈{i,j}

1{Gs={r}}w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em)

)
. (67)

Consider now terms (64) and (66) in the above relation. First, if F ∩ {i, j} = ∅ and Gs\F ⊂
{i, j}, then:

x −
∑

m∈∪k>sGk∪F

1{xm>0}em −
∑

r∈{i,j}

1{xr>1{r∈∪k>sGk∪F}}er

= x −
∑

m∈∪k≥sGk

1{xm>0}em −
∑

r∈{i,j}\Gs

1{xr>1{r∈∪k≥sGk}}er.
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Now (66) can be seen as a special case of (64) for F = ∅. Similarly, for Gs\F = {r},

x −
∑

m∈∪k>sGk∪F

1{xm>0}em − er = x −
∑

m∈∪k≥sGk∪F

1{xm>0}em.

Now (67) is a special case of (65) for F = ∅. Therefore,

R̃U(x) ≥
n∑

s=1

(
∑

F$Gs

(
1{F∩{i,j}=∅, Gs\F⊂{i,j}}w̃t

(
x −

∑

m∈∪k≥sGk

1{xm>0}em

−
∑

r∈{i,j}\Gs

1{xr>1{r∈∪k≥sGk}}er

)

−
∑

r∈{i,j}

1{Gs\F={r}}w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em)
)

+1{Gs∩{i,j}6=∅}w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em)

−1{Gs∩{i,j}6=∅}

∑

r∈{i,j}\Gs

w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em − 1{xr>1{r∈∪k≥sGk}}er)

)
.

Note now that for F $ Gs,

1{F∩{i,j}=∅, Gs\F⊂{i,j}} = 1{Gs∩{i,j}6=∅, F=Gs\{i,j}}

and
1{Gs\F={r}} = 1{r∈Gs, F=Gs\{r}}, r ∈ {i, j}.

Therefore, in the above summation over all F $ Gs, the first term is non-zero only for
F = Gs\{i, j} and the second one is non-zero only for F = Gs\{r}, which gives:

R̃U(x) ≥
n∑

s=1

(
1{Gs∩{i,j}6=∅}w̃t

(
x −

∑

m∈∪k≥sGk

1{xm>0}em −
∑

r∈{i,j}\Gs

1{xr>1{r∈∪k≥sGk}}er

)

−
∑

r∈{i,j}

1{r∈Gs}w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em)

+1{Gs∩{i,j}6=∅}w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em)

−1{Gs∩{i,j}6=∅}

∑

r∈{i,j}\Gs

w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em − 1{xr>1{r∈∪k≥sGk}}er)

)
.

In order to show that R̃U(x) ≥ 0, will show that for each s ∈ {1, . . . , n}:

1{Gs∩{i,j}6=∅}

(
w̃t

(
x −

∑

m∈∪k≥sGk

1{xm>0}em −
∑

r∈{i,j}\Gs

1{xr>1{r∈∪k≥sGk}}er

)

−
∑

r∈{i,j}

1{r∈Gs}w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em) + w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em)

−
∑

r∈{i,j}\Gs

w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em − 1{xr>1{r∈∪k≥sGk}}er)

)
≥ 0. (68)
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For a fixed s ∈ {1, . . . , n}, we have the following cases:

1. Gs ∩ {i, j} = ∅. Then relation (68) trivially holds.

2. i ∈ Gs and j 6∈ Gs (the case j ∈ Gs and i 6∈ Gs is symmetrical). Then (68) becomes:

w̃t

(
x −

∑

m∈∪k≥sGk

1{xm>0}em − 1{xj>1{j∈∪k≥sGk}}ej

)

−w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em) + w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em)

−w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em − 1{xj>1{j∈∪k≥sGk}}ej) ≥ 0,

which clearly holds.

3. {i, j} ⊂ Gs. Then (68) becomes:

w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em) − 2w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em)

+w̃t(x −
∑

m∈∪k≥sGk

1{xm>0}em) + 0 ≥ 0,

which also holds.

Therefore, R̃U(x) ≥ 0, so we proved relation (54).

Now relation (52) follows directly from (51), (53), (54) and supermodularity of reward function r̃.
�
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