
Video TFRC 
 

Evan Tan+, Jing Chen*, Sebastien Ardon*, and Emmanuel Lochin# 
+University of New South Wales, Sydney, Australia 

*NICTA, Sydney, Australia 
#Université de Toulouse, DMIA, ISAE, France 

{evan.tan, jing.chen, sebastien.ardon}@nicta.com.au, emmanuel.lochin@isae.fr 
 
 

Abstract— TCP-friendly rate control (TFRC) is a congestion 
control technique that trade-offs responsiveness to the network 
conditions for a smoother throughput variation. We take 
advantage of this trade-off by calculating the rate gap between 
the theoretical TCP throughput and the smoothed TFRC 
throughput. Any rate gain from this rate gap is then 
opportunistically used for video coding. We define a frame 
complexity measure to determine the additional rate to be used 
from the rate gap and then perform a rate negotiation to 
determine the target rate for the encoder and the final sending 
rate. Results show that although this method has a more 
aggressive sending rate compared to TFRC, it is still TCP-
friendly, does not contribute too much to network congestion and 
achieves a reasonable video quality gain over the conventional 
method. 
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I.  INTRODUCTION 
With the proliferation of streaming multimedia applications 

used in the current best-effort Internet, congestion control 
techniques are crucial in regulating bandwidth greedy 
multimedia traffic to avoid a congestion collapse of the 
network. A widely used congestion control technique in the 
Internet is additive increase, multiplicative decrease (AIMD) 
that is provided by the transport control protocol (TCP) [4]. 
However, in most cases, AIMD is not suitable for streaming 
multimedia applications due to the large throughput variations 
and the possible delays incurred through retransmissions. 

In order to compete fairly with the majority TCP traffic in 
the Internet, the concept of “TCP-friendly” was created [2] 
where the generated network traffic has a behavior close 
enough to that of TCP traffic in similar conditions thus 
inheriting the congestion control properties of TCP. One such 
TCP-friendly technique is TCP-friendly Rate Control (TFRC) 
[1]. TFRC is an equation based congestion control technique 
for best effort networks that provides a smoother throughput 
variation over time, making it more suitable for streaming 
multimedia applications. A number of TFRC-like techniques 
for streaming multimedia applications have emerged. 

One such TFRC variant by Vieron and Guillemot [5] takes 
into account of the variable video packet sizes and 
synchronized the receiver feedback to the video frame rate. 
Kim et al [6] proposed another variant of TFRC that tradeoffs 
 

the smoothness of rate variation and network responsiveness by 
making use of weighted round-trip time (RTT) and 
retransmission time out (RTO). Shih et al [7] use the TFRC 
throughput in their rate control method to adjust the video 
source rate. Zhu et al [8] proposed a joint source rate control 
and congestion control technique that may temporarily violate 
the short-term TCP-friendliness to prevent a decoder buffer 
underflow at the receiver end. But a compensation factor for 
the calculation of future TFRC throughputs is used to maintain 
long-term TCP friendliness. Also, their rate calculation 
technique is driven by a virtual buffer model and does not 
opportunistically code at a higher rate. 

None of these techniques factored in the video bit rate 
characteristic for the calculation of the TCP-friendly 
transmission rate. The video bit rate tends to vary according to 
the complexity of the frame data, for example an I-frame would 
be more complex compared to a P-frame as it results in more 
bits after compression. The same also applies to scene changes 
and high motion scenes in a video sequence as they tend to 
incur a higher prediction error which results in a lower 
compression efficiency. Thus a typical video bit rate will have 
occasional ‘pulses’, a smoothed transmission rate will reduce 
these ‘pulses’ and ends up affecting the video quality. 

Furthermore, the aforementioned techniques tend to favor a 
smoothed rate more than a responsive rate, even though the 
difference between the two rates could possibly be exploited. 
To highlight this fact, we define the instantaneous transmission 
rate to be the upper-bound of the theoretical TCP rate. We then 
introduce notion of rate gap as the difference between the 
instantaneous transmission rate and a smoothed TFRC rate. 
Fig. 2 then illustrates a possible rate gap at the time instant t. 
Note that the shaded rate region contained between the two 
lines is a TCP-friendly rate region i.e. any rate that falls within 
the region is considered a TCP-friendly rate. 

In this paper, we propose a joint source rate control and 
congestion control method named Video TFRC (VTFRC) that, 
depending on the complexity of the frame and the rate gap, 
opportunistically encodes a frame at a higher bit rate and at the 
same time perform rate negotiation with the TFRC protocol to 
possibly transmit at a higher bit rate in order to meet the 
increased Quality-of-Service (QoS) requirement. The 
remainder of the paper is organized as follows: section II 
details the proposed VTFRC method, section III shows the 
results of our experiments and section IV concludes this paper. 
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II. THE PROPOSED VTFRC 

A. VTFRC architecture 

Fig. 1. The VTFRC architecture. 

Fig. 1 shows the architecture of VTFRC. Our 
implementation of TFRC protocol was modified to calculate 
the instantaneous rate in addition to the standard TFRC rate. 
The rate negotiator simultaneously receives the complexity of 
the current frame from the H.264 encoder as well as the current 
TFRC transmission rate and instantaneous rate from the TFRC 
protocol. Based on either of these inputs, the rate negotiator 
will then set a target rate for the H.264 encoder if required by 
the encoder and return a negotiated rate for the TFRC protocol 
to transmit at. 

B. Rate gap calculation 

Fig. 2. An illustration of a possible rate gap, the shaded region is the TCP-
friendly rate region. 

 

Fig. 2 illustrates how the rate gap is calculated. The TFRC 
rate (Rtrans(t)) at time t is calculated as per RFC3448 [1] with 
the average packet size used in the calculation as video packets 
tend to be of variable sizes. To calculate the instantaneous TCP 
rate (Rinstant), we make use of the theoretical TCP upper-bound 
[4]: 
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Where s is the average packet size, RTT(t) is the receiver 
reported RTT as at time t, RTO is the TCP retransmit timeout 
value and p is the loss event rate. Note that the RTT used for 
the TCP upper-bound calculation is the current RTT and is not 
smoothed in order to achieve a slightly more responsive rate. 

Since much of the smoothing effect of TFRC comes from 
the exponentially weighted moving average (EWMA) loss 
interval calculation for the loss event rate p. We reduce the 
number of loss intervals used for calculation to 2, so the 
average loss interval for time t becomes: 
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The corresponding loss event rate is then calculated as: 
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The loss interval calculation has been simplified to obtain a 
more responsive effect to recent loss intervals and thus can be 
used with equations (3) and (1) to obtain the instantaneous rate 
Rinstant(t). In short, TFRC is modified by using more recent 
measurements thus making its rate calculation more reactive to 
network changes. 

Given that at time t, the TFRC rate being transmitted is 
Rtrans(t), the rate gap is then: 

 )()()( instant tRtRtR transgap −= . (4) 

C. Rate negotiation 
1) Frame Complexity 

Given Rgap(t), we make use of the complexity of the current 
frame, i.e. the possible amount of bits it will take up, to control 
the amount of additional rate to use as using the whole rate gap 
might cause more network congestion and larger video quality 
fluctuations. 

Li et al [10] proposed calculating the frame complexity by 
estimating the mean absolute difference (MAD) of the current 
frame k based on a linear prediction of the previous frame’s (k-
1) MAD, where MAD is defined here as the difference between 
the encoded frame and the original frame. That is: 

 21 )1()( akMADakMAD actualpred +−= , (5) 
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where a1 and a2 are the linear model parameters that are 
updated via linear regression as described in [9]. 

The linearly predicted MAD value is then used to calculate 
the complexity value of frame k by: 
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This determines how much more complex the current frame 
is compared with the past n frames. n is calculated based on the 
sliding-window data-point selection as described in [9] (the 
maximum window size is also set to 20 in our implementation). 
The sliding-window data-point selection will increase the 
window size when the scene is less complex and decrease the 
window size when the scene is more complex in order to 
improve the detection of scene changes within the sequence. 

2) Additional TCP Friendly rate 
Given that frame k is about to be encoded at time t, the 

additional rate that can possibly be used for transmission and 
encoding is: 

 )()(),( tRkCtkR gapadd ×= , (7) 

Note that Radd(k) here is updated at the start of every frame 
period (i.e. just before the frame is being encoded) and thus 
Rgap(t) here is the rate gap at the start of the frame period. 

A frame period is used as the updating interval here 
because the synchronization of the TFRC receiver reports with 
the encoder frame rate on the test-bed is affected by delay jitter 
and is difficult to achieve, so we make no assumptions that the 
TFRC receiver reports will be synchronized. 

3) Target rate for encoder 
Given that the encoder is currently beginning to encode 

frame k at time t, the target rate for the encoder rate controller 
is then calculated by: 

 ),()(),( transtarget tkRtRtkR add+= , (8) 

4) Negotiated rate 
Given the current time t and the last frame period for frame 

k occurred at time t-i the negotiated rate to transmit at is: 

 ))(),,()(min()( instant tRitkRtRtR addtransneg −+= . (9) 

III. EXPERIMENTAL RESULTS 

A. VTFRC architecture 
We implemented our proposed method in the H.264/AVC 

Joint-Module (JM) 12.2 reference software [14]. The encoder 
had rate-distortion (RD) optimizations disabled and the rate 

control mode set to RC_MODE_0, which is the original JM 
rate control method proposed by Li et al [10]. We set a group-
of-pictures (GOP) size of 50 frames with a GOP structure of 
IPPP and the number of reference frames for motion estimation 
is set to 1. 

Fig. 3.  The test-bed used. 

The maximum packet size generated by the encoder is set 
by limiting the maximum slice size to 1400 bytes. The JM 12.2 
reference software puts each slice into one packet and currently 
does not combine multiple slices to meet a fixed packet size, 
thus, the packet sizes generated are still highly variable (which 
is why the average packet size was used in the TFRC rate 
calculation). At the decoder, we enabled frame copy error 
concealment. All of the sequences tested (see TABLE I) were 
of QCIF size (176x144) and a frame rate of 20Hz set for the 
experiments. 

Our experiments were performed on a small test bed with 
two computers at the endpoints (Fig. 3) emulating the senders 
and receivers. The middle computer acts as the core of the 
network with dummynet [11] pipes to emulate the bottleneck 
bandwidth and RTT. We set the bottleneck bandwidth to be 
1.5Mbits/s and the RTT to be 160ms. The buffer overflow of 
the dummynet queue is set to 100 packets and the simulated 
loss rate is set to 0%, i.e. any loss generated will be due to 
queue buffer overflow. 

An additional three TCP streams were generated at the 
sender using iperf [13] with the receiver set as the destination. 
These three streams therefore compete for buffer space at the 
core output interface. The TCP streams were given an initial 5 
second delay before transmitting, while the encoder transmits 
right from the start. 

TABLE I. NUMBER OF FRAMES FOR EACH SEQUENCE 

Sequence Frames 
Container 300 
Foreman 400 
Grandma 870 
Mother-Daughter 961 
Salesman 449 

 

Fig. 4.  JM-TFRC sender-end setup. 
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Our proposed method (VTFRC) is compared to a setup of 
the original JM rate control method [10] and the standard 
TFRC protocol which we call JM-TFRC here (see Fig. 4). In 
JM-TFRC, the rate controller sets the target bit-rate for each 
frame based solely on the rate given by the TFRC protocol. 

B. TCP-Friendliness Evaluation 
We first check that VTFRC emits TCP-friendly flows. To 

do this we used the TCP-friendliness ratio (F) metric by 
Padhye et al [12]. In our case, given the average throughput of 
the three competing TCP clients, TC1, TC2 and TC3. We 
calculate the average competing TCP client throughput by, 
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So given that the average throughput of VTFRC is TV, the 
TCP-friendliness ratio is: 
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Additionally, as was observed by Zhu et al [8], the 
multimedia flow here involves packets of variable sizes and the 
fairness of the flow is related to the packet size, we calculate 
the sending rate in packets per seconds to remove this bias. The 
results for TCP-friendliness are shown in TABLE II. The 
sending throughputs over time for Container and Foreman are 
shown in Fig. 5 and Fig. 6 respectively 

TABLE II. TCP-FRIENDLINESS RATIO (F) RESULTS 

Sequence VTFRC 
F 

JM-TFRC 
F 

Container 0.92 0.80 
Foreman 1.07 0.97 
Grandma 0.78 0.57 
Mother-Daughter 1.02 0.80 
Salesman 1.02 0.93 

 

Fig. 5.  The sending throughputs over time for Container. 

Fig. 6.  The sending throughputs over time for Foreman. 

It can be seen from the results that VTFRC is a slightly 
more aggressive transmitter compared to JM-TFRC as all its F 
values are larger. However, RFC 3448 [1] states that a flow 
competing with TCP is reasonably fair when its sending rate is 
within a factor of two of the sending rate of a TCP flow in the 
same conditions. As the F values of VTFRC are all relatively 
close to 1, this indicates that the traffic it generates is 
reasonably fair. 

This is expected as VTFRC only makes use of the TCP-
friendly rate region to send its additional rate thus it still 
produces a TCP-friendly sending rate. 

C. Video Quality Evaluation 
Next, we investigate the benefit of VTFRC in terms of 

video quality by measuring the peak signal-to-noise ratio 
(PSNR) values of the encoded video at the sender-end and the 
PSNR values of the decoded video at the receiver-end. We also 
take the difference between the PSNR of the encoded video 
prior to sending at the sender-end and the PSNR of the decoded 
video at the receiver-end. The results are shown in TABLE III. 
The breakdown of the Y PSNR for each frame for Container 
and Foreman at the sender-end is shown in Fig. 7 and Fig. 8 
respectively. 

 

 

Fig. 7.  The Y-PSNR of each frame for Container at the sender. 
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Fig. 8.  The Y-PSNR of each frame for Container at the sender. 

TABLE III. PSNR COMPARISONS 

Sequence VTFRC 
Mean  

Y-PSNR  
(dB) 

JM-TFRC  
Mean  

Y-PSNR  
(dB) 

PSNR  
Gain  
(dB) 

Sender-End 
Container 45.49 44.97 0.52 
Foreman 37.94 37.36 0.58 
Grandma 45.29 44.31 0.98 
Mother-Daughter 44.06 42.91 1.15 
Salesman 45.45 44.73 0.72 

Mean Overall PSNR Gain: 0.79 
Receiver-End 

Container 43.37 42.25 1.12 
Foreman 35.38 34.02 1.35 
Grandma 43.37 43.02 0.35 
Mother-Daughter 42.46 41.26 1.20 
Salesman 41.36 39.01 2.34 

Mean Overall PSNR Gain: 1.27 
PSNR Difference between Sender and Receiver ends 

(Sender-end PSNR – Receiver-end PSNR) 
Container 2.12 2.72 - 
Foreman 2.56 3.34 - 
Grandma 1.92 1.29 - 
Mother-Daughter 1.6 1.65 - 
Salesman 4.09 5.72 - 

 

From the sender-end results, it is shown that even though 
VTFRC encodes a frame at a higher rate opportunistically, it 
still produced an overall mean PSNR gain of 0.79dB over JM-
TFRC. And even after losing video packets due to congestion, 
from the receiver-end results, VTFRC had an overall mean 
PSNR gain of 1.27dB over JM-TFRC. 

The PSNR difference results show that even though 
VTFRC is in general more aggressive than JM-TFRC, it does 
not contribute much to the network congestion as the 
differences for VTFRC are comparable to that of JM-TFRC. 

IV. CONCLUSION 
This paper has proposed a joint source rate control and 

congestion control method that could opportunistically code 
video frames depending on the frame complexity and network 
conditions as interpreted by the TFRC protocol. Since only the 
TCP-friendly rate region is exploited to do this, the resulting 
flow is still TCP-friendly although it is slightly more 
aggressive. However, the video quality gains and the 
comparable congestion control justify this extra aggressiveness. 
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