
Video TFRC

Evan Tan+, Jing Chen*, Sebastien Ardon*, and Emmanuel Lochin#
+University of New South Wales, Sydney, Australia

*NICTA, Sydney, Australia
#Université de Toulouse, DMIA, ISAE, France

{evan.tan, jing.chen, sebastien.ardon}@nicta.com.au, emmanuel.lochin@isae.fr

Abstract— TCP-friendly rate control (TFRC) is a congestion
control technique that trade-offs responsiveness to the network
conditions for a smoother throughput variation. We take
advantage of this trade-off by calculating the rate gap between
the theoretical TCP throughput and the smoothed TFRC
throughput. Any rate gain from this rate gap is then
opportunistically used for video coding. We define a frame
complexity measure to determine the additional rate to be used
from the rate gap and then perform a rate negotiation to
determine the target rate for the encoder and the final sending
rate. Results show that although this method has a more
aggressive sending rate compared to TFRC, it is still TCP-
friendly, does not contribute too much to network congestion and
achieves a reasonable video quality gain over the conventional
method.

Keywords - complexity measure, congestion control, cross-layer
design, H.264/AVC, rate control, TCP-friendly, multimedia
streaming

I. INTRODUCTION
With the proliferation of streaming multimedia applications

used in the current best-effort Internet, congestion control
techniques are crucial in regulating bandwidth greedy
multimedia traffic to avoid a congestion collapse of the
network. A widely used congestion control technique in the
Internet is additive increase, multiplicative decrease (AIMD)
that is provided by the transport control protocol (TCP) [4].
However, in most cases, AIMD is not suitable for streaming
multimedia applications due to the large throughput variations
and the possible delays incurred through retransmissions.

In order to compete fairly with the majority TCP traffic in
the Internet, the concept of “TCP-friendly” was created [2]
where the generated network traffic has a behavior close
enough to that of TCP traffic in similar conditions thus
inheriting the congestion control properties of TCP. One such
TCP-friendly technique is TCP-friendly Rate Control (TFRC)
[1]. TFRC is an equation based congestion control technique
for best effort networks that provides a smoother throughput
variation over time, making it more suitable for streaming
multimedia applications. A number of TFRC-like techniques
for streaming multimedia applications have emerged.

One such TFRC variant by Vieron and Guillemot [5] takes
into account of the variable video packet sizes and
synchronized the receiver feedback to the video frame rate.
Kim et al [6] proposed another variant of TFRC that tradeoffs

the smoothness of rate variation and network responsiveness by
making use of weighted round-trip time (RTT) and
retransmission time out (RTO). Shih et al [7] use the TFRC
throughput in their rate control method to adjust the video
source rate. Zhu et al [8] proposed a joint source rate control
and congestion control technique that may temporarily violate
the short-term TCP-friendliness to prevent a decoder buffer
underflow at the receiver end. But a compensation factor for
the calculation of future TFRC throughputs is used to maintain
long-term TCP friendliness. Also, their rate calculation
technique is driven by a virtual buffer model and does not
opportunistically code at a higher rate.

None of these techniques factored in the video bit rate
characteristic for the calculation of the TCP-friendly
transmission rate. The video bit rate tends to vary according to
the complexity of the frame data, for example an I-frame would
be more complex compared to a P-frame as it results in more
bits after compression. The same also applies to scene changes
and high motion scenes in a video sequence as they tend to
incur a higher prediction error which results in a lower
compression efficiency. Thus a typical video bit rate will have
occasional ‘pulses’, a smoothed transmission rate will reduce
these ‘pulses’ and ends up affecting the video quality.

Furthermore, the aforementioned techniques tend to favor a
smoothed rate more than a responsive rate, even though the
difference between the two rates could possibly be exploited.
To highlight this fact, we define the instantaneous transmission
rate to be the upper-bound of the theoretical TCP rate. We then
introduce notion of rate gap as the difference between the
instantaneous transmission rate and a smoothed TFRC rate.
Fig. 2 then illustrates a possible rate gap at the time instant t.
Note that the shaded rate region contained between the two
lines is a TCP-friendly rate region i.e. any rate that falls within
the region is considered a TCP-friendly rate.

In this paper, we propose a joint source rate control and
congestion control method named Video TFRC (VTFRC) that,
depending on the complexity of the frame and the rate gap,
opportunistically encodes a frame at a higher bit rate and at the
same time perform rate negotiation with the TFRC protocol to
possibly transmit at a higher bit rate in order to meet the
increased Quality-of-Service (QoS) requirement. The
remainder of the paper is organized as follows: section II
details the proposed VTFRC method, section III shows the
results of our experiments and section IV concludes this paper.

NICTA is funded by the Australian Government's Backing Australia's Ability
initiative, in part through the Australian Research Council.

II. THE PROPOSED VTFRC

A. VTFRC architecture

Fig. 1. The VTFRC architecture.

Fig. 1 shows the architecture of VTFRC. Our
implementation of TFRC protocol was modified to calculate
the instantaneous rate in addition to the standard TFRC rate.
The rate negotiator simultaneously receives the complexity of
the current frame from the H.264 encoder as well as the current
TFRC transmission rate and instantaneous rate from the TFRC
protocol. Based on either of these inputs, the rate negotiator
will then set a target rate for the H.264 encoder if required by
the encoder and return a negotiated rate for the TFRC protocol
to transmit at.

B. Rate gap calculation

Fig. 2. An illustration of a possible rate gap, the shaded region is the TCP-
friendly rate region.

Fig. 2 illustrates how the rate gap is calculated. The TFRC
rate (Rtrans(t)) at time t is calculated as per RFC3448 [1] with
the average packet size used in the calculation as video packets
tend to be of variable sizes. To calculate the instantaneous TCP
rate (Rinstant), we make use of the theoretical TCP upper-bound
[4]:

)321()
8

33(
3

2)(
)(

2
instant

pppRTOptRTT

stR
++

= , (1)

Where s is the average packet size, RTT(t) is the receiver
reported RTT as at time t, RTO is the TCP retransmit timeout
value and p is the loss event rate. Note that the RTT used for
the TCP upper-bound calculation is the current RTT and is not
smoothed in order to achieve a slightly more responsive rate.

Since much of the smoothing effect of TFRC comes from
the exponentially weighted moving average (EWMA) loss
interval calculation for the loss event rate p. We reduce the
number of loss intervals used for calculation to 2, so the
average loss interval for time t becomes:

2

2

1
∑

== i
i

avg

s
s , (2)

The corresponding loss event rate is then calculated as:

avgs

p 1= , (3)

The loss interval calculation has been simplified to obtain a
more responsive effect to recent loss intervals and thus can be
used with equations (3) and (1) to obtain the instantaneous rate
Rinstant(t). In short, TFRC is modified by using more recent
measurements thus making its rate calculation more reactive to
network changes.

Given that at time t, the TFRC rate being transmitted is
Rtrans(t), the rate gap is then:

)()()(instant tRtRtR transgap −= . (4)

C. Rate negotiation
1) Frame Complexity

Given Rgap(t), we make use of the complexity of the current
frame, i.e. the possible amount of bits it will take up, to control
the amount of additional rate to use as using the whole rate gap
might cause more network congestion and larger video quality
fluctuations.

Li et al [10] proposed calculating the frame complexity by
estimating the mean absolute difference (MAD) of the current
frame k based on a linear prediction of the previous frame’s (k-
1) MAD, where MAD is defined here as the difference between
the encoded frame and the original frame. That is:

 21)1()(akMADakMAD actualpred +−= , (5)

H.264

Encoder

iperf client iperf server

H.264
Decoder Core

(dummynet)

Sender Receiver

where a1 and a2 are the linear model parameters that are
updated via linear regression as described in [9].

The linearly predicted MAD value is then used to calculate
the complexity value of frame k by:

 1
)(1

)(
)(

1

−
−

=
∑

=

ikMAD
n

kMAD
kC n

i
actual

pred , (6)

This determines how much more complex the current frame
is compared with the past n frames. n is calculated based on the
sliding-window data-point selection as described in [9] (the
maximum window size is also set to 20 in our implementation).
The sliding-window data-point selection will increase the
window size when the scene is less complex and decrease the
window size when the scene is more complex in order to
improve the detection of scene changes within the sequence.

2) Additional TCP Friendly rate
Given that frame k is about to be encoded at time t, the

additional rate that can possibly be used for transmission and
encoding is:

)()(),(tRkCtkR gapadd ×= , (7)

Note that Radd(k) here is updated at the start of every frame
period (i.e. just before the frame is being encoded) and thus
Rgap(t) here is the rate gap at the start of the frame period.

A frame period is used as the updating interval here
because the synchronization of the TFRC receiver reports with
the encoder frame rate on the test-bed is affected by delay jitter
and is difficult to achieve, so we make no assumptions that the
TFRC receiver reports will be synchronized.

3) Target rate for encoder
Given that the encoder is currently beginning to encode

frame k at time t, the target rate for the encoder rate controller
is then calculated by:

),()(),(transtarget tkRtRtkR add+= , (8)

4) Negotiated rate
Given the current time t and the last frame period for frame

k occurred at time t-i the negotiated rate to transmit at is:

))(),,()(min()(instant tRitkRtRtR addtransneg −+= . (9)

III. EXPERIMENTAL RESULTS

A. VTFRC architecture
We implemented our proposed method in the H.264/AVC

Joint-Module (JM) 12.2 reference software [14]. The encoder
had rate-distortion (RD) optimizations disabled and the rate

control mode set to RC_MODE_0, which is the original JM
rate control method proposed by Li et al [10]. We set a group-
of-pictures (GOP) size of 50 frames with a GOP structure of
IPPP and the number of reference frames for motion estimation
is set to 1.

Fig. 3. The test-bed used.

The maximum packet size generated by the encoder is set
by limiting the maximum slice size to 1400 bytes. The JM 12.2
reference software puts each slice into one packet and currently
does not combine multiple slices to meet a fixed packet size,
thus, the packet sizes generated are still highly variable (which
is why the average packet size was used in the TFRC rate
calculation). At the decoder, we enabled frame copy error
concealment. All of the sequences tested (see TABLE I) were
of QCIF size (176x144) and a frame rate of 20Hz set for the
experiments.

Our experiments were performed on a small test bed with
two computers at the endpoints (Fig. 3) emulating the senders
and receivers. The middle computer acts as the core of the
network with dummynet [11] pipes to emulate the bottleneck
bandwidth and RTT. We set the bottleneck bandwidth to be
1.5Mbits/s and the RTT to be 160ms. The buffer overflow of
the dummynet queue is set to 100 packets and the simulated
loss rate is set to 0%, i.e. any loss generated will be due to
queue buffer overflow.

An additional three TCP streams were generated at the
sender using iperf [13] with the receiver set as the destination.
These three streams therefore compete for buffer space at the
core output interface. The TCP streams were given an initial 5
second delay before transmitting, while the encoder transmits
right from the start.

TABLE I. NUMBER OF FRAMES FOR EACH SEQUENCE

Sequence Frames
Container 300
Foreman 400
Grandma 870
Mother-Daughter 961
Salesman 449

Fig. 4. JM-TFRC sender-end setup.

Container Throughput

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time (sec)

Th
ro

ug
hp

ut
 (p

kt
/s

)

VTFRC
JM-TFRC

Foreman Throughput

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time (sec)

Th
ro

ug
hp

ut
 (p

kt
/s

)

VTFRC
JM-TFRC

Container PSNR

0

10

20

30

40

50

60

70

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281

Frame

PS
N

R
 (d

B
)

VTFRC
JM-TFRC

Our proposed method (VTFRC) is compared to a setup of
the original JM rate control method [10] and the standard
TFRC protocol which we call JM-TFRC here (see Fig. 4). In
JM-TFRC, the rate controller sets the target bit-rate for each
frame based solely on the rate given by the TFRC protocol.

B. TCP-Friendliness Evaluation
We first check that VTFRC emits TCP-friendly flows. To

do this we used the TCP-friendliness ratio (F) metric by
Padhye et al [12]. In our case, given the average throughput of
the three competing TCP clients, TC1, TC2 and TC3. We
calculate the average competing TCP client throughput by,

 ∑
=

=
3

13
1

i
iC TCT (10)

So given that the average throughput of VTFRC is TV, the
TCP-friendliness ratio is:

C

V

T
TF = (11)

Additionally, as was observed by Zhu et al [8], the
multimedia flow here involves packets of variable sizes and the
fairness of the flow is related to the packet size, we calculate
the sending rate in packets per seconds to remove this bias. The
results for TCP-friendliness are shown in TABLE II. The
sending throughputs over time for Container and Foreman are
shown in Fig. 5 and Fig. 6 respectively

TABLE II. TCP-FRIENDLINESS RATIO (F) RESULTS

Sequence VTFRC
F

JM-TFRC
F

Container 0.92 0.80
Foreman 1.07 0.97
Grandma 0.78 0.57
Mother-Daughter 1.02 0.80
Salesman 1.02 0.93

Fig. 5. The sending throughputs over time for Container.

Fig. 6. The sending throughputs over time for Foreman.

It can be seen from the results that VTFRC is a slightly
more aggressive transmitter compared to JM-TFRC as all its F
values are larger. However, RFC 3448 [1] states that a flow
competing with TCP is reasonably fair when its sending rate is
within a factor of two of the sending rate of a TCP flow in the
same conditions. As the F values of VTFRC are all relatively
close to 1, this indicates that the traffic it generates is
reasonably fair.

This is expected as VTFRC only makes use of the TCP-
friendly rate region to send its additional rate thus it still
produces a TCP-friendly sending rate.

C. Video Quality Evaluation
Next, we investigate the benefit of VTFRC in terms of

video quality by measuring the peak signal-to-noise ratio
(PSNR) values of the encoded video at the sender-end and the
PSNR values of the decoded video at the receiver-end. We also
take the difference between the PSNR of the encoded video
prior to sending at the sender-end and the PSNR of the decoded
video at the receiver-end. The results are shown in TABLE III.
The breakdown of the Y PSNR for each frame for Container
and Foreman at the sender-end is shown in Fig. 7 and Fig. 8
respectively.

Fig. 7. The Y-PSNR of each frame for Container at the sender.

Foreman PSNR

0

10

20

30

40

50

60

1 21 41 61 81 101 121 141 161 181 201 221 241 261 281 301 321 341 361 381

Frame

PS
N

R
 (

dB
)

VTFRC
JM-TFRC

Fig. 8. The Y-PSNR of each frame for Container at the sender.

TABLE III. PSNR COMPARISONS

Sequence VTFRC
Mean

Y-PSNR
(dB)

JM-TFRC
Mean

Y-PSNR
(dB)

PSNR
Gain
(dB)

Sender-End
Container 45.49 44.97 0.52
Foreman 37.94 37.36 0.58
Grandma 45.29 44.31 0.98
Mother-Daughter 44.06 42.91 1.15
Salesman 45.45 44.73 0.72

Mean Overall PSNR Gain: 0.79
Receiver-End

Container 43.37 42.25 1.12
Foreman 35.38 34.02 1.35
Grandma 43.37 43.02 0.35
Mother-Daughter 42.46 41.26 1.20
Salesman 41.36 39.01 2.34

Mean Overall PSNR Gain: 1.27
PSNR Difference between Sender and Receiver ends

(Sender-end PSNR – Receiver-end PSNR)
Container 2.12 2.72 -
Foreman 2.56 3.34 -
Grandma 1.92 1.29 -
Mother-Daughter 1.6 1.65 -
Salesman 4.09 5.72 -

From the sender-end results, it is shown that even though
VTFRC encodes a frame at a higher rate opportunistically, it
still produced an overall mean PSNR gain of 0.79dB over JM-
TFRC. And even after losing video packets due to congestion,
from the receiver-end results, VTFRC had an overall mean
PSNR gain of 1.27dB over JM-TFRC.

The PSNR difference results show that even though
VTFRC is in general more aggressive than JM-TFRC, it does
not contribute much to the network congestion as the
differences for VTFRC are comparable to that of JM-TFRC.

IV. CONCLUSION
This paper has proposed a joint source rate control and

congestion control method that could opportunistically code
video frames depending on the frame complexity and network
conditions as interpreted by the TFRC protocol. Since only the
TCP-friendly rate region is exploited to do this, the resulting
flow is still TCP-friendly although it is slightly more
aggressive. However, the video quality gains and the
comparable congestion control justify this extra aggressiveness.

ACKNOWLEDGMENT
We thank Guillaume Jourjon from NICTA for his

assistance in this work.

REFERENCES
[1] M. Handley, S. Floyd, J. Pahdye, and J. Widmer, “TCP Friendly Rate

Control (TFRC): Protocol Specification,” IETF, Request For Comments
3448, Jan. 2003.

[2] Widmer, J.; Denda, R.; Mauve, M., "A survey on TCP-friendly
congestion control," Network, IEEE , vol.15, no.3, pp.28-37, May 2001

[3] S. Floyd and K. Fall. “Promoting the use of end-to-end congestion
control in the Internet”. IEEE/ACM Transactions on Networking,
7(4):458–472, 1999.

[4] Sally Floyd, Mark Handley, Jitendra Padhye, and Joerg Widmer,
“Equation-Based Congestion Control for Unicast Applications”,
SIGCOMM, August 2000.

[5] J. Vieron and C. Guillemot, “Real-time constrained TCP-compatible rate
control for video over the Internet,” IEEE Trans. Multimedia, vol. 6, no.
3, pp. 634–646, Aug. 2004.

[6] Y.-G. Kim, J. Kim, and C.-C Jay Kuo, “TCP-friendly Internet video with
smooth and fast rate adaptation and network-aware error control,” IEEE
Trans. Circuit Syst. Video Technol., vol. 14, no. 2, pp. 256–268, Feb.
2004.

[7] Shih, C.H.; Wang, J.Y.; Shieh, C.K.; Hwang, W.S., "An integrated rate
control scheme for TCP-friendly MPEG-4 video transmission," Circuits
and Systems, 2005. ISCAS 2005. IEEE International Symposium on ,
vol., no., pp. 2124-2127 Vol. 3, 23-26 May 2005

[8] Peng Zhu; Wenjun Zeng; Chunwen Li, "Joint Design of Source Rate
Control and QoS-Aware Congestion Control for Video Streaming Over
the Internet," Multimedia, IEEE Transactions on , vol.9, no.2, pp.366-
376, Feb. 2007

[9] Lee H. J., Chiang T., Zhang Y. Q.: Scalable rate control for MPEG-4
video. IEEE Trans. Circuits, System and Video Tech, Vol.10, Iss.6, Sep
2000, 878-894

[10] Li Z. G., Pan F., Lim K. P., Feng, G. N., Lin X., Rahardja S.: Adaptive
Basic Unit Layer Rate Control for JVT. JVT-G012, 7

th
JVT Meeting,

Pattaya, Thailand, March 2003
[11] L. Rizzo, “Dummynet: a simple approach to the evaluation of network

protocols,” ACM Computer Communications Review, vol. 27, no. 1, Jan.
1997.

[12] J. Padhye, J. Kurose, D. Towsley, and R. Koodli, “A Model Based TCP-
Friendly Rate Control Protocol”, NOSSDAV’99, 1999.

[13] Chung-Hsing Hsu and Ulrich Kremer, IPERF: A Framework for
Automatic Construction of Performance Prediction Models, 1998.

[14] H.264/AVC JM Reference Software, http://iphome.hhi.de/suehring/tml/.

