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Abstract Biology is now an information-intensive science and various research areas,

like molecular biology, evolutionary biology or environmental biology, heavily depend on

the availability and the efficient use of information. Data mining, that regroups several

techniques for analyzing very large datasets, is used to solve problems in an increasing

number of biological applications. This article focuses on the analysis of transcriptome, that

reflects gene activity in a given cell population at a given time. We describe research themes

in transcriptomics related to domain knowledge in biology. We are particularly interested in

the way this knowledge can be efficiently combined and used during the various phases of a

data mining process, in the most acknowledged applications in transcriptomics.
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1 Introduction

Over the last decade, a great number of genomes, from different organisms have

been decoded. The knowledge of a genome sequence is an important step towards

understanding it. However, the sequence itself provides little information about the

role of genes contained within a genome. Old issues remain like: What are the

functions of the different genes? In what cellular processes do they participate? How

are genes regulated? In which cell types and depending on which conditions the genes

become active? How various diseases or treatments influence the activity of genes?

Or the reverse: How genes contribute to diseases?

Transcriptomics or global analysis of gene expression, also called genome-wide ex-

pression profiling, is a way to answer these questions. While the genome represents an

inventory of every available gene in an organism, the transcriptome reflects the genes
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that are being actively expressed at any given time. By studying the patterns of gene

expression in different experimental conditions, researchers can get an understand-

ing of genes and pathways involved in biological processes. A gene expression level

is a numerical value assessing how this gene was over-expressed (intensively active)

or under-expressed (weakly active) compared with his activity in normal conditions

(apart from the experiment). Transcriptomics aims at discovering genes involved

in similar biological processes using expression level measures. So called “in-silico”

annotations are deduced from overall gene expression measurements in particular ex-

perimental contexts.

There are several methods to profile the expression of thousands of genes in par-

allel. These include hybridization-based technologies, such as DNA microarrays[1],

and sequencing-based approaches like SAGE (Serial Analysis of Gene Expression)[2]

and MPSS (Massively Parallel Signature Sequencing)[3]. Based on different prin-

ciples, hybridization-based and sequencing-based technologies should be considered

complementary to each other, rather than competitive alternatives for measuring gene

expression, and currently, both are important tools for transcriptome profiling[4].

Several kinds of data mining techniques are currently used on biological data

to extract knowledge on differentially expressed genes or co-expressed genes or other

relevant patterns. To improve relevance and utility of extracted knowledge, most of

these applications require to extend existing techniques to adapt them to biological

data. The next challenge for this purpose is to integrate biological knowledge in all

phases of the data mining process to optimize existing knowledge profit[5]. Biological

knowledge refers to biological information describing known gene properties and rela-

tionships. This knowledge is spread over heterogeneous sources of information such as

research papers, biological ontologies or regulation networks for instance. In a more

general way, we call domain knowledge all information related to the domain studied

and we refer to it as background knowledge or apriori knowledge when it is used in the

data mining process.

Biological knowledge is widely available from public sources. Currently, most

of the information is stored in plain text format into millions of biological research

papers. However, a growing number of repositories make their data available in more

structured formats, sometimes organized with ontologies. A widely used source of an-

notations is the Gene Ontology (GO)[6]. GO is a controlled vocabulary developed by

a consortium of scientists that is used to describe (‘annotate’) a gene or a product of

a gene in regard to its molecular functions (its activities or abilities, i.e. the catalysis

of a biochemical reaction), cellular components (its localizations in the cell, i.e. in the

plasma membrane) and biological processes (the processes in which it participates, i.e.

the respiration). Other gene centric annotations include phenotypic annotations (the

measurable characteristics of an organism controlled by genes), disease annotations

(the propensity of genetic diseases associated with genes), tissue-expression patterns

(the association of genes with the tissues in which they are preferentially expressed)

and homology information (genes in different species that share a common ancestor).

However, as no gene operates in an isolated way, it is also important to consider in-

formation about the complex molecular networks orchestrating the activity of cells.

These networks and their constituents are depicted into compendia of pathways: Tran-

scriptional, translational and regulatory pathways describe protein biosynthesis and
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its regulation; Genetic and physical interactions describe the interactions occurring

between genes and between proteins respectively; Metabolic pathways describe the

series of chemical reactions occurring within a cell while signal transduction pathways

describe the system of communication between cells.

After an overview of the field of transcriptomics presented in Section 2, the

approaches for driving expression data analysis with background knowledge are pre-

sented in three main trends. These three trends correspond to different methods of

representation and use of background knowledge. Section 3 presents methodologies

using background knowledge as an a priori assumption on data to supervise the mining

process. In these methodologies, background knowledge is used to drive the dataset

preparation, by identifying and selecting relevant genes or experiments for instance,

or the search space traversal, by pruning irrelevant patterns for instance, during the

mining process. Section 4 shows how background knowledge can be used during the

post-processing phase to improve the relevance of extracted patterns and simplify

the end-user’s task. In these methods, extracted patterns are re-formated, compared,

evaluated or visualized according to background knowledge. These methods require

that background knowledge is represented in a format enabling comparisons with

extracted patterns. Section 5 is devoted to data mining methods that take into ac-

count expression data and background knowledge simultaneously to extract patterns

showing relationships between both. These methods integrate in a single framework

expression data and biological knowledge from several heterogeneous sources such as

bibliographic databases, research papers and texts, bio-ontologies or semantic net-

works for instance.

2 Bioinformatics and Transcriptomics

High throughput techniques used in biological research are routinely producing

an extraordinary amount of data. These data need to be stored, analyzed and inter-

preted to serve the progress of knowledge. Applying data management techniques to

handle biological data is challenging because data are spread over the web, hosted

in many independent, heterogeneous and highly focused data repositories. In addi-

tion, biological data are of diverse types, including experimental measures, digital

images, 3D structures or sequences. In conjunction with these raw data, produced by

biological experiments, researchers have access to a domain knowledge which is also

widely available from public sources. Most of the information is stored in millions of

biological research papers. Other sources of information include repositories of gene’s

functions, activities, similarities, interactions, mutations, homologies or implication

in diseases.

2.1 Biological data

To answer these questions, one needs to look at the activity of genes. Indeed,

a genome represents an inventory of every available gene in an organism but few of

them are active at a given time. When a gene is active, the gene’s information is

copied in a ribonucleic acid (RNA) in a process called transcription. Some RNA

fragments, called messenger RNA (mRNA), are translated in proteins, which are one

of the active compounds of cells. Other kinds of RNA, called non-coding RNA, can

be involved in the translation process, in the regulation of genes’ activity or may have
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a catalytic activity. Therefore, the activity of a gene can be assessed by measuring

the abundance of the matching RNA.

There are several methods to profile the expression of thousands of genes in

parallel. These include hybridization-based technologies, such as DNA microarrays,

and sequencing-based approaches like SAGE (Serial Analysis of Gene Expression) and

MPSS (Massively Parallel Signature Sequencing)[4].

The most commonly used technology is DNA microarrays[1]. A DNA microarray

works by using the ability of a given DNA molecule to bind specifically to, or hybridize

to, its original DNA coding sequence. Many DNA segments (also known as probes

or reporters), each one matching a specific RNA, are arrayed on a solid surface. The

expression levels of hundreds or thousands of genes within a cell are obtained by

measuring the amount of RNA bound to each site on the array.

The older sequencing based approach, which was developed in parallel with the

sequencing of the genome, consist in sequencing all cDNAs obtained from all RNAs

expressed in a tissue[7]. This technique produces small fragments (called Expressed

Sequence Tags or ESTs) of all expressed genes. ESTs are counted and mapped to

the DNA from which they are derived, allowing to estimate transcripts abundance.

The SAGE technique[2], which is derived from cDNA sequencing, is based on the

fact that, most of the time, a small part of a cDNA is sufficient to unambiguously

identify it. In this technique, small fragments (also called tags), are cut from the

cDNA sequences derived from RNA. These tags are linked together to form long se-

rial molecules that are cloned and sequenced. The abundance of transcripts is then

estimated by counting the number of sequenced tags. SAGE allows the sampling

of 12 to 20 transcripts per sequencing reaction, compared to one EST with cDNA

sequencing. MPSS technology[3] is another sequencing based approach. In this tech-

nique, cDNA sequences are placed on microbeads (with each microbead containing

only one cDNA) and sequenced in parallel. The abundance of transcript is evalu-

ated by counting the number of beads matching a specific sequence. With MPSS the

number of sequences obtained is much more larger than with SAGE as more than 1

million cDNA can be sequenced simultaneously[8].

2.2 Transcriptomics’ background knowledge

One crucial source of information that must be considered when dealing with

gene expression data is information about the way gene expression measures were

obtained. Information about the technology used and the way experiments were

performed is of the highest importance because it influences the pre-processing of

the data. Information about experimental contexts is also needed for analyzing gene

expression measurements. For example, comparing the activity of genes in a healthy

and cancerous tissue may give some hints about the genes that are involved in cancer.

However, this approach is very limited because many of the genes serve multiple

functions and changes in gene expression can be due to factors not directly connected

to the experiment under study[9]. Deeper and more accurate analyzes require the use

of other sources of information.

A widely used source of annotations is the Gene Ontology (GO)[6]. GO is a

controlled vocabulary developed by a consortium of scientists. It is used to describe

(‘nnotate’) a gene or a product of a gene in regard to its molecular functions (its activ-
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ities or abilities, i.e. the catalysis of a biochemical reaction), cellular components (its

localizations in the cell, i.e. in the plasma membrane) and biological processes (the

processes in which it participates, i.e. the respiration). Other gene centric annotations

include phenotypic annotations (the measurable characteristics of an organism con-

trolled by genes), disease annotations (the propensity of genetic diseases associated

with genes), tissue-expression patterns (the association of genes with the tissues in

which they are preferentially expressed) and homology information (genes in different

species that share a common ancestor).

However, no gene operates in an isolated way. The activity of a cell is orches-

trated by complex molecular networks consisting of entities such as proteins or RNAs

connected by different kind of interactions. Information about this network and its

constituents includes compendia of pathways describing different aspects of genes in-

teractions. Protein biosynthesis and its regulation are depicted in transcriptional,

translational and regulatory pathways. Genetic and physical interactions describe

the interactions occurring between genes and between proteins respectively. At the

cellular level, metabolic pathways describe the series of chemical reactions occurring

within the cell while signal transduction pathways describe the system of communi-

cation between cells.

3 Process Supervisation using Background Knowledge

3.1 Biological data preparation, filtering and selection

Background knowledge based approaches use domain knowledge to direct the

mining process during the dataset preparation phase, to select data that are relevant

to the mining task, or during the computation phase, to prune irrelevant results.

These approaches use gene expression measures to discover co-regulated genes, but

the task of interpreting these links from a biological viewpoint is left to the expert as

a post-processing phase[10, 11].

The use of analysis techniques for processing gene expression data must cope

with noise, or random variations, inherent to living systems[12]. Replication is the

key to produces more consistent and reliable findings despite such noise. Shortly

after the advent of microarrays, it was suggested that at least three replicates be

used in designing experiments[13]. Several techniques can be used to extract the

genes whose expression level varies significantly, from all replicates. One of the most

commonly used method, known as the “fold change method”, is straightforward: It

consists in selecting genes whose expression level varies by a predetermined threshold

(usually by a factor of 2). A method that relies on more statistically motivated

criteria is SAM (Significance Analysis of Microarrays). It uses the conventional t

tests to estimate the false discovery rate (FDR), which is the expected proportion of

false positive among all tests. This method allows to adjust the threshold in order

to correspond to an acceptable FDR. Some researchers use the analysis of variance

(ANOVA) to discriminate between the variability explained by experimental factors

and the variability due to random noise.

3.2 Gene expression data clustering

Gene-based clustering is the process of grouping genes into a set of classes (or
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clusters) according to their expression in given experimental conditions (samples or

time points). Each cluster intends to contain co-expressed genes that exhibit a com-

mon expression profile. Gene-based clustering was investigated to understand biolog-

ical processes since genes grouped in the same cluster are expected to be involved in

common biological processes. Most popular gene-based clustering algorithms are par-

titional, self-organized maps (SOM) and hierarchical. Although clustering techniques

proved to be useful for identifying co-expressed genes, interpreting gene co-expression

without ambiguity has remained a challenge since it depends on other sources of

knowledge such as expert knowledge of biologists[14]. While the seminal paper by

Eisen et al.[15] showed clusters which significance was demonstrated by common func-

tional categorization, other works concluded that further statistical analyzes were

required. Indeed, a microarray dataset contains numerous groups of co-expressed

genes. Then, a typical strategy for a biologist is to start from genes which are known

to be closely related to a biological function and to browse a preliminary rough clus-

tering result, to focus on a small subset of those genes which are supposed to play

a role. Thus, currently, biologists follow exploratory strategies by manually selecting

potential groups of genes according to their knowledge.

A first attempt to provide more automatic solutions for a relevant clustering

was background knowledge based approaches which integrate knowledge in a prelim-

inary stage of the clustering process. Prior knowledge of biologists may be brought

into gene-based clustering either by introducing assumptions or constraints, like in

semi-supervised analysis and bi-clustering, or by initiating the clustering with comple-

mentary data sources like ontological annotations. Semi-supervised clustering[16, 17]

uses existing domain knowledge to guide the clustering process either by constraints

or by specific distances. For instance, in Ref.[16] must-link and cannot-link constraints

are defined with associated costs of violation. A unified model for semi-supervised

clustering with constraints proposed by Segal et al.[18] combines a binary Markov

network derived from constraints on pairwise protein interaction data and a Naive

Bayes Markov network modeling gene expression data.

Bi-clustering techniques also referred as subspace clustering for microarray

data[19−22] enhance simple gene-based clustering by supplying knowledge for selecting

clusters as sub-matrices of the initial datasets. A bi-cluster is defined as a subset of

genes that exhibit compatible expression patterns over a subset of conditions (sam-

ples or time points). Bi-clustering reveals groups of genes that are co-regulated only

under specific conditions and are independent under other conditions. The under-

lying assumption that genes are active only over some, but not all, conditions has

been demonstrated as quite relevant for different organisms and datasets[23]. More

generally, subspaces of the gene expression dataset may be defined as submatrices

satisfying some constraints. In Ref.[24], the fluctuation and trend constraints require

that for all genes in a cluster the differences of expression levels between two conditions

are similar and the expression levels of two genes are correlated. Annotation-based

clustering build co-annotated gene groups sharing common genomic and biomedical

annotations in a first stage. Afterwards, they integrate the gene expression profiles

into co-annotated groups and highlight groups of co-expressed genes. Finally, the

statistical significance of co-annotated and co-expressed gene groups is tested. Anno-

tations generally come from public available knowledge bases. These approaches[25−28]
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depend mainly on the availability and completeness of the annotation bases.

3.3 Pattern extraction from gene expression data

Pattern extraction techniques aim at discovering correlations and links between

data that are represented as association rules and frequent patterns. For applicabil-

ity and performance reasons, most of these techniques work on categorical data and

require that numerical values are discretized during a pre-processing phase. Hence,

biostatistical methods are generally used to discretize numerical gene expression mea-

sures into gene expression levels indicating if a gene was under-expressed, unchanged

or over-expressed in the corresponding biological condition. In the resulting N×M

data matrix, each of the N lines corresponds to a gene and contains M expression

levels corresponding to the M experimental conditions.

Association rules are conditional rules expressing correlations between sets of at-

tribute values, called items, in data lines. An association rule A → C states that a

significant proportion of data lines containing items in A also contain items in C. The

frequent itemsets framework for association rule discovery (ARD) was introduced with

the seminal Apriori algorithm. Frequent itemsets are sets of items contained in a sig-

nificant proportion of data lines and association rules are straightforwardly generated

from them. Several extensions of Apriori, using optimized dataset representations,

data structures, search space traversals and redundant rules filtering methods, have

been proposed[29].

ARD was first applied to gene expression data for generating association rules be-

tween gene under- and over-expressions such as: gene1[↑] → gene2[↑], gene3[↑]. This

rule states that in a significant number of biological conditions, when gene1 is over-

expressed it is likely to observe an over-expression of gene2 and gene3. Applications

of the Apriori algorithm[30, 10] and its extensions[31, 32] for such global gene expres-

sion profiling pointed out co-regulated genes supported by recent biological literature.

These applications showed that methods for filtering and selecting rules are required

when using frequent itemset based approaches as a huge number of rules, containing

many redundant rules, are generated when data is dense. Different solutions were

investigated to address this problem: The use of post-processing techniques to fil-

ter and explore extracted rules[33], the selection of the top-k most interesting rules

according to a statistical criterium[34, 35], the fusion of rules according to gene co-

regulation significance[36] and the evaluation of rules significance using biostatistical

measures[37]. The frequent closed itemsets framework was introduced for ARD from

dense data. Frequent closed itemsets are a minimal representation for frequent item-

sets and consequently allow to reduce the search space of ARD. See[38] for an extensive

review of frequent closed itemset based approaches. Several of these approaches were

applied for mining association rules[39, 40], condensed representation of association

rules[30] and maximal sets of co-regulated genes[41] from gene expression data. These

applications showed that frequent closed itemset based approaches both improve ex-

traction efficiency and exclude redundant patterns when mining gene expression data

as they are dense[35, 40].

These applications showed several ARD features suggesting that association rules

can reveal patterns that might not have been revealed using clustering and vice versa.

First, the data pre-processing phase allows to address independently problems of noise
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in the data[42, 10] that is inherent to biological systems[12]. Second, a gene expression

can appear in any number of association rules and thus all its links with different sets

of genes can be enlighten during the same experiment[10, 41]. Third, association rules

are directed relationships and thus provide deeper insights into specific relationships

than clustering[33]. Fourth, association rules can integrate both numerical data such

as gene expression measures and categorical data such as gene annotations or bio-

logical condition information[42, 10]. These features suggest that ARD and clustering

are complementary methods which results should be combined to achieve biological

knowledge[30,10,11].

4 Background Knowledge Based Post-Processing

Since modeling step can extract lots of patterns (rules, clusters, decision trees),

a post-processing step is necessary to filter, to re-format and to evaluate them. Dur-

ing this step, domain experts have to assess how extracted knowledge meets business

objectives and success criteria. However, although some statistical indexes can mea-

sure accuracy or precision they cannot measure the real interestingness of discovered

knowledge for the domain expert. Consequently, the use of domain knowledge repre-

sentation is necessary to evaluate and to validate extracted knowledge.

4.1 Extracted pattern management

A main issue with pattern management is to deal with heterogeneous pattern

representation. Since extracted patterns could be trivial or irrelevant according to

domain knowledge, analyzing and accessing patterns is a laborious task and it is

necessary to store, query, compare and combine various patterns in a unified way.

4.1.1 Pattern representation

Several approaches define logical models for pattern representation, for example

the Predictive Model Markup Language (PMML), an XML representation language

for data mining and statistical model sharing, and the Common Warehouse Model for

Data Mining (CWM-DM), a specification for data mining metadata exchanges. Al-

though these approaches are well-suited for data model sharing they seem inadequate

to represent and handle different classes of patterns in a flexible, effective and coherent

way because predefined pattern types are considered. Rizzi et al. introduced Pattern

Base Management Systems (PBMS) to provide a new logical model for patterns de-

scribing a model structure, a measure evaluating pattern interestingness, a raw data

source and a formula to map raw data space to model space[43]. The main interest

of PBMS is to provide flexibility to incorporate novel pattern types and mechanisms

for constructing composite patterns. Although this approach improves heterogeneous

pattern management, it is necessary to use advanced semantic information in pattern

representation[44].

4.1.2 Management systems for querying and indexing patterns

From an architectural point of view, the next step after defining a model for

pattern representation is to consider storage, indexation and query aspects. There

are some standardization projects providing end-user tools: SQL/MM DM, a standard

which defines an Application Programming Interface (API) to access data and Java

Data Mining (JDM) API, offering a standard way to handle data and metadata
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supporting data mining models. However these standards are more centered on the

data mining process and they lack pattern management solutions.

Another approach is the use of Inductive Databases (IDB). In such databases

data and patterns are handled in the same way with an inductive query language.

This language is an extension of a database query language that allows us to select,

manipulate and query data or patterns satisfying some user-specified constraints.

Rizzi et al. developed an approach slightly different from IDB[43]. They argue

that a logical separation between database and pattern-base is needed to ensure effi-

cient handling of both raw data and patterns through dedicated management systems

and they defined PBMS. PBMS provides methods for representing and storing pat-

terns, but also for processing queries and for efficiently retrieving patterns. Kotsifakos

et al. improved PBMS architecture by enabling the support of domain ontologies[45].

They propose the integration of PBMS and ontologies as a solution to the need of

many scientific fields for efficient extraction of useful information from large databases.

Their ontology-enhanced PBMS is independent of any data mining engine and uses

XML to store patterns in the pattern base. Their PBMS provides pattern filtering

functionalities using ontologies to automate the pattern evaluation step. Thus, pat-

tern querying functionalities are greatly improved with the use of domain specific

knowledge. However, it is necessary to define semantic similarity between objects in

an ontology to validate the extracted patterns.

4.2 Extracted pattern validation

Issues in evaluating and interpreting results of the mining process are currently

major research challenges. Detailed studies have been devoted to interestingness

measures. A consensus among researchers is now established to consider objective

interestingness and subjective interestingness. Objective interestingness is tradition-

ally evaluated by various of statistical indexes[46] while subjective interestingness is

generally evaluated by comparing discovered patterns to user knowledge or a priori

convictions of domain experts. A way to improve subjective interestingness measures

is to deeply explore expert knowledge and source data in order to formalize them in

conceptual structures and exploit these structures for flexible model interpretation.

4.2.1 Subjective interestingness measures

Numerous works focus on indexes that measure the interestingness of a mined

pattern[47] and propose unexpectedness and actionability as subjective criteria. Ac-

cording to the actionability criteria, a model is interesting if the user can start some

action depending on it[48]. On the other hand, unexpected models are considered

interesting since they contradict user expectations which depend on his beliefs. User

expectations is a method developed by Liu[47]. The user has to specify a set of patterns

according to his previous knowledge and intuitive feelings, then the system matches

them against each discovered patterns using a fuzzy matching technique. Silberschatz

and Tuzhilin propose a method to define unexpectedness via belief systems[48]. A pat-

tern is said to be interesting relatively to some belief system if it “affects” this system,

and the more it “affects” it, the more interesting it is.

4.2.2 Ontology-Based validation methods

Subjective interestingness measures were developed in order to give an insight
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into real human interest. However, these measures lack semantic formalization, and

force the user to express all of his expectations. Consequently, the extracted pattern

validation process must involve not only the study of patterns and domain experts’

expectations but also the use of a domain ontology. Thus, rules expressed to filter

out noisy patterns or to select the most interesting ones will be relevant.

Kotsifakos et al. present an approach based on PBMS where a subgraph of the

ontology that contains the attributes under consideration is constructed[45]. Then,

if some of the attributes are not in the subgraph, rules containing them are marked

as “noisy”. Brisson and Collard propose the KEOPS methodology[49]. They suggest

comparing extracted rules with expert’s knowledge. By comparing coverage the most

informative rule is deduced, i.e. the rule predicting the largest consequence from the

smallest condition. Finally, the IMAK interestingness measure, both objective and

subjective, is applied.

An important issue in ontology-based validation methods is the definition of se-

mantic similarity measures between ontology concepts.There are two kinds of methods

in order to measure semantic similarity within an ontology: edge counting methods

and information-theoretic based methods. Edge counting methods involve calculating

the distance between concepts in the ontology, similarity decreasing while distance in-

creasing. Leacock and Chodorow measure semantic similarity by finding the shortest

method distance between two concepts and then scale the distance by the maximum

distance in the “is-a” hierarchy[50]. Zhong et al. define weights for the links accord-

ing to their position in the taxonomy[51]. Resnik introduces information-theoretic

measures[52] based on the information content of the lower common ancestor of two

concepts and demonstrates that such methods are less sensitive, and in some cases not

sensitive, to the problem of link density variability[52]. Lin improves Resnik’s mea-

sure considering how close the concepts are to their lower common ancestor[53]. Jiang

presents a combined approach that inherits the edge counting based approach, which

is enhanced by the node-based approach of the information content calculation[54].

Lord compares Resnik’s, Lin’s and Jiang’s measures in order to use them to explore

GO. His results suggest that all three measures show a strong correlation between

sequence similarity and molecular function semantic similarity[55]. He concluded that

none of the three measures has a clear advantage over the others, although each has

strengths and weakness. Schlicker et al. introduce a new measure of similarity be-

tween GO terms that is based on Resnik’s and Lin’s definitions[56]. This measure

takes into account how close these terms are to their lower common ancestor and a

uses a score allowing one to identify functionally related gene products from different

species that have no significant sequence similarity.

5 Expression Data and Biological Knowledge Integration

Integrating biological knowledge and expression data in a single framework is a

major challenge to improve relevance of mined patterns and simplify their interpreta-

tion by the biologists. This section reviews mining applications to datasets integrating

both expression data and biological knowledge from various knowledge bases such as

bio-ontologies, descriptions of regulation pathways and literature.
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5.1 Heterogeneous data integration

Although a large amount of information is accessible to researchers, it is often

difficult to use it because this information is spread over different sources, represented

under different formats and, most of the time, generated with different techniques that

make it hardly comparable. This is the case for gene expression measurements. Spe-

cial care is needed when gene expression measures are generated by different technolo-

gies because they cannot be easily merged. Hybridization-based technologies measure

the ratios of expression changes while sequencing-based approaches produce an esti-

mation of the number of transcripts. Several studies, comparing microarrays with

SAGE or MPSS conclude in a poor overlapping in the set of expressed genes revealed

by these technologies[57]. Hybridization-based technologies show greater consistency

across platforms than sequencing-based approaches. To ease the comparison among

different microarray experiments, public databases currently require that microarray

data be encoded in the MIAME format[58]. MIAME includes information about the

design of the experiment and microarray layout, the preparation of the biological

samples, the protocol used to hybridize the sample, the way intensities are quantified

and the method used to normalize data. Merging measurements based on abundance

is much more difficult because experimental conditions are not strictly described and

technology differences can have more impact on the results than biological differences

between samples and tissues[57].

Integrating domain knowledge is even more challenging. Classical approaches to

data integration[59] face difficulties which are amplified because of some specificities

of biological knowledge (see Ref.[60] for a detailed description). Because of these

specificities, biological knowledge integration is done, most of the time, on a case by

case basis. Excepted in the rare cases where all necessary information is gathered in

a dedicated database, hands-off data integration in life science is still impracticable.

Data integration approaches range from light solutions like link integration and

Web 2.0 mashups to heavyweight mechanisms like data warehousing and view inte-

gration. See Ref.[61] for a review of popular approaches to data integration for bioin-

formatics. It is envisioned that Semantic Web technologies, which provide a common

framework allowing data to be shared and reused between applications, might be well

suited for managing disseminated biological data. The Semantic Web Health Care

and Life Sciences Interest Group (HCLSIG) was launched to explore the application

of these technologies in various areas[62].

5.2 Co-Clustering techniques

As previously argued in this article, gene expression data are noisy and gene-based

clustering gains more reliability if other sources of knowledge are associated to the

process. Co-clustering techniques are solutions for clustering datasets combining gene

expression data and other kinds of data modeling knowledge. Generally, integrated

knowledge data are annotations from biological knowledge bases and informative data

on metabolic pathways or protein interactions. Standard clustering algorithms are

then applied to combined datasets and the effort focuses on distance functions and

cluster quality measures.

The application of a standard hierarchical clustering method to integrated meta-

bolic network knowledge and gene expression data is reported in Ref.[63]. A graph
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distance function was defined for metabolic networks and a correlation-based distance

was used for expression data. Clusters were evaluated according to three distances:

a distance on expression data only, a distance on networks only and a combined dis-

tance. The last one was able to yield clusters with low internal distances according

to both expressions and metabolic networks. In Ref.[64], clustering was applied to

different datasets to assess the value of gene annotation integration in the cluster-

ing process. The first dataset contained only expression data while other datasets

integrated expression data with enzyme classification annotations. Several SOM clus-

terings were performed and clusters were evaluated by measuring how genes in clus-

ters were correlated regarding functional and metabolic annotations. Experiments

showed that clusters mined from integrated expression data and annotations were

better, that is the correlation between genes was higher in clusters extracted from

combined datasets. Clustering was also applied to integrated gene expression data

and protein interaction data[65, 66]. In Ref.[65], an EM algorithm was used to extract

a unified probabilistic model for identifying pathways. Expression data were clustered

in a first step and each cluster, considered as defining a pathway, was the input of the

probabilistic algorithm for protein interactions. The biological coherence of clusters

was evaluated according to GO functional annotations. In Ref.[66], a graph-based

approach taking into account noise in data was used. Experimental results showed

interesting relations between co-expressed genes and interacting proteins.

5.3 Pattern extraction from heterogeneous data

Pattern extraction from integrated gene expression data and biological knowledge

(annotations or class information) aims at mining association rules or classification

rules describing relations between biological functions and co-regulated genes.

The application of a frequent itemset based algorithm, combined with a statis-

tical test of significance for pruning redundant rules, to mine association rule with

the form annotation → gene expressions from integrated gene expression data and

annotations was reported in Ref.[42]. The application of a frequent closed itemset

based approach to extract non-redundant association rules, not constrained in their

form, from integrated gene expression data and annotations was studied in Ref.[11].

In both applications, extracted association rules showed biologically meaningful rela-

tions between gene expressions and annotations supported by recent biological liter-

ature. They also confirmed that tackling the problem of redundant association rules

is necessary for better result’s quality and interpretability.

In classification, a model, called classifier, is built from a training dataset with

given class labels and then used to classify data of unknown class label. Several clas-

sification techniques, such as support vector machines, neural networks and decision

trees, were applied to gene expression data[67]. Recently, pattern based classifiers

constructed from association rules or frequent patterns were also applied. The use

of a frequent itemset based algorithm to generate classification rules with the form

gene expressions → class from gene expression data of cancerous and healthy tissues

(cancer data) was studied in Ref.[68]. Another study addressed the application of a

frequent closed itemset based algorithm to extract non-redundant association rules

with the same form and generate a rule based classifier from them. This approach

was extended in Ref.[34] by selecting the top-k first rules with maximal confidence to
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construct the classifier. Experiments conducted on cancer data showed that pattern

based classifiers are particularly accurate for such high-dimensional data as they do

not suffer from the single coverage constraint and the fragmentation problem[68].

Emerging patterns (EP) are patterns whose support varies significantly between

two sets of data. EP have been proposed to capture significant differences between

two classes of high dimensional data and construct classifiers from them. The appli-

cation of a frequent itemset based approach to cancer data for discovering itemsets

that are frequents in one tissue and not in the other is reported in Ref.[69]. Classifiers

constructed from these EP correctly predicted 57 of the 62 tissues tested. In Ref.[70],

a new approach combining EP extraction and a statistical test to evaluate the sig-

nificance of each EP is proposed. Application to gene expression data classification

showed the efficiency of the EP approach for classifiying high-dimensional data. The

application of EP classification to analyze a dataset integrating gene expression data

and phylogenetic profiles, reflecting whether a gene has a close homologue in the cor-

responding genome, was studied in Ref.[71]. These experiments showed that EP are

efficient for multi-source data classification and that they are, as classification and

association rules, easily understandable, a property that is especially important in

bioinformatics application problems[34,68−71].

6 Conclusion

After more than one decade of researches in data mining, efficient and scalable

techniques for mining relevant patterns from large datasets are available. In the

meantime, the development of high-throughput methods for quantitative monitoring

of gene expression has generated vast amounts of data about the activity of genes.

These gene expression data contain implicit knowledge on the biological role of genes

and data mining techniques are well-suited to extract this knowledge from such high-

dimensional data. To improve the relevance of extracted patterns, biological prior

knowledge about the genes (gene annotations, regulation pathways, biological con-

dition and homology information, protein interactions) should be integrated in the

mining process. However, integrating this knowledge is not an easy task since different

types of information are represented in various data formats (research papers, digital

images, raw or semantically rich data) and stored in heterogeneous data structures

(bio-ontologies, knowledge bases, relational databases and bibliographic repositories).

The value of combining prior knowledge and gene expression data is quite obvious in

each phase of the mining process (data preparation, mining and post-processing) ei-

ther to select and evaluate data and extracted patterns, or to enhance gene expression

datasets to form rich mining contexts and extract more predictive patterns.

In this paper, data mining techniques for gene expression data analysis are re-

viewed from the viewpoint of their usage of biological knowledge. In background

knowledge based approaches, prior knowledge is useful to prepare data to be mined

or to drive the mining process. In knowledge based post-processing techniques, this

knowledge is used to select the most interesting patterns and provide support to ex-

plore and evaluate them. In background knowledge and data integrated co-analysis

techniques, prior knowledge is integrated in the data to be mined to extend extracted

patterns and simplify their interpretation by the experts.

Several research issues remain to extract patterns that are more adequate to
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the biologists’ needs and to combine results from different analyzes. An important

issue is the use of text mining to extract more valuable knowledge from biological

literature. Since most of biological knowledge is represented in such biobliographic

sources, automatically extracting this knowledge to integrate it in the mining process

could substantially improve biological value of extracted patterns.

References

[1] Adams MD, Kelley J, Gocayne J, Dubnick M, Polymeropoulos M, Xiao H, Merril C, Wu A,

Olde B, Moreno R, Kerlavage A, McCombie W, Venter J. Complementary dna sequencing:

Expressed sequence tags and human genome project. Science, 1991, 252(5013): 1651–6.

[2] Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, Davis A, Dolinski K, Dwight

S, Eppig J, Harris M, Hill D, Issel-Tarver L, Kasarskis A, Lewis S, Matese J, Richardson J,

Ringwald M, Rubin G, Sherlock G. Gene ontology: Tool for the unification of biology. the gene

ontology consortium. Nat Genet, 2000, 25(1).

[3] Asyali MH, Colak D, Demirkaya O, Inan MS. Gene expression profile classification: A review.

Current Bioinformatics, January 2006, 1(1): 55–73.

[4] Becquet C, Blachon S, Jeudy B, Boulicaut JF, Gandrillon O. Strong-association-rule mining

for large-scale gene-expression data analysis: A case study on human sage data. Genome Biol,

2002, 3(12).

[5] BenYahia S, Hamrouni T, Mephu Nguifo E. Frequent closed itemset based algorithms: A

thorough structural and analytical survey. SIGKDD Explorations, 2006, 8(1): 93–104.

[6] Bilenko M, Basu S, Mooney RJ. Integrating constraints and metric learning in semi-supervised

clustering. In: Proc. ICML conference, 2004.

[7] Boulesteix AL, Tutz G, Strimmer K. A cart-based approach to discover emerging patterns in

microarray data. Bioinformatics, 2003, 19(18): 2465–2472.

[8] Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge

W, Ball CA, Causton HC, Gaasterland T, Glenisson P, Holstege FC, Kim IF, Markowitz V,

Matese JC, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo

J, Vingron M. Minimum information about a microarray experiment (miame)-toward standards

for microarray data. Nat Genet, 2001, 29(4): 365–71.

[9] Breitling R, Amtmann A, Herzyk P. Iterative group analysis (iga): A simple tool to enhance

sensitivity and facilitate interpretation of microarray experiments. BMC Bioinformatics, 2004,

5.

[10] Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M,

Ewan M, Roth R, George D, Eletr S, Albrecht G, Vermaas E, Williams SR, Moon K, Burcham

T, Pallas M, DuBridge RB, Kirchner J, Fearon K, Mao J, Corcoran K. Gene expression analysis

by massively parallel signature sequencing (mpss) on microbead arrays. Nat Biotechnol, 2000,

18(6): 630–4.

[11] Brisson L, Collard M. An ontology driven data mining process. In: Proc. ICEIS conference,

2008.
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