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ABSTRACT. We consider the consistency of the Bayes factor in goodness of fit testing

for a parametric family of densities against a nonparametric alternative. Sufficient con-

ditions for consistency of the Bayes factor are determined and demonstrated with priors

using certain mixtures of triangular densities.
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1. Introduction

A problem common to many statistical analyses is to determine if a sample of n inde-

pendent and identically distributed observations have been generated from a distribution

described by a finite dimensional parametric model. This problem may be stated formally

as a test of hypotheses on a density p∗;

H0 : p∗ ∈ F0 against H1 : p∗ ∈ F1\F0,

where F0 denotes a set of density functions with a particular finite dimensional parametric

representation and F1 is some encompassing set of density functions such as the set of

bounded and continuous densities. All densities are assumed to be with respect to the

same dominating measure µ.
1



2 BAYESIAN GOODNESS OF FIT TESTING

Central to the Bayesian approach to hypothesis testing is the Bayes factor which re-

quires the specification of a prior for p∗. Let the prior probabilities on H0 and H1 be

denoted by α and (1 − α), respectively, and let the prior distributions on the sets F0

and F1 be denoted by π0 and π1. It is assumed that π1 (F0) = 0 and we will con-

sider π1 as a prior on F1\F0. The overall prior for the density p∗ may be written as

π(A) = α · π0(A) + (1− α) · π1(A), for any A ⊂ F1. The Bayes factor is then defined by

Bn =
π (F0 | Y n)

π (F1 | Y n)
× π (F1)

π (F0)
,

where π(· | Y n) = π(· | Y1, . . . , Yn) is the posterior distribution formed with the prior π.

There have been some examinations of the asymptotic properties of the Bayes factor

for various F0,F1. Gelfand & Dey (1994) studied the case where both F0 and F1 have

a parametric representation, in the setup of model choice. In a goodness of fit setup

Verdinelli & Wasserman (1998) considered the case where F0 is a singleton and F1 is

nonparametric. Using an infinite dimensional exponential family prior on F1 they were

able to determine sufficient conditions for consistency. This problem was also studied by

Dass & Lee (2004) who, based on an application of Doob’s theorem, were able to give

sufficient conditions for consistency with a general prior π1. Walker et al. (2004) studied

the related problem where F0, F1 may be arbitrarily defined but the true density p∗ is

not contained in either set.

The objective of this paper is to study the case where F0 is parametric and F1 is

non-parametric, which is of considerable practical importance. The consistency of the

Bayes factor in this general framework is a more delicate problem than the consistency

of the Bayes factor in a goodness of fit problem where the null hypothesis is a singleton.

Very recently Ghosal et al. (2008) have provided sufficient conditions for consistency of

the Bayes factor when F0 is parametric. Their main condition given in equation (4.1)

is tighter than necessary as can be seen when applying it to nested parametric models.

In section 2 we provide weaker sufficient conditions for the Bayes factor to be consistent

in testing a parametric family against a nonparametric alternative and demonstrate that

they are close to being necessary.

In practice, the choice of the nonparametric prior is not only determined by theoreti-

cal properties but also by the ease of implementation. Various priors have been used for
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goodness of fit problems in the literature including Dirichlet processes (Carota & Parami-

giani, 1996), Polya trees (Berger & Guglielmi, 2001) and infinite dimensional exponential

families (Verdinelli & Wasserman, 1998). With priors such as these, verifying that the

general conditions given in section 2 hold is far from trivial. In order to overcome this

difficulty we consider in section 3 a class of priors based on certain mixtures of triangular

distributions which were proposed in Perron & Mengersen (2001). Using these priors, we

discuss in section 4 the consistency of the Bayes factor for testing a parametric family,

giving simple conditions on the parametric family for the Bayes factor to be consistent.

An example is provided where one of the conditions given in section 2 does not hold and

the Bayes factor is inconsistent. The rate of convergence for the Bayes factor in the case

where F0 is a singleton is also studied. We conclude with a discussion in section 5. The

technical details are presented in the Appendix.

We now give some notations that will be used throughout this paper. For a distri-

bution P with density p, let P n and P∞ denote its n-fold product and infinite prod-

uct distribution, respectively. Expectations with respect to these measures will be de-

noted En and E∞, respectively. The most common measures of distance between two

densities p, q are the L1-distance, denoted by ‖ p − q ‖1, and the Hellinger distance

h (p, q) =‖ p1/2 − q1/2 ‖2. We allow d to stand for either of these distances. Finally, we

let H(L, β) denote the set of Hölder continuous functions, that is the set of functions f

such that
∣∣f (m)(x)− f (m)(y)

∣∣ < L |x− y|β for β ∈ (m,m+ 1].

2. Consistency of Bayes Factors

Recall that the Bayes factor is said to be consistent if

lim
n→∞

Bn =

 ∞, in P∞
∗ probability if p∗ ∈ F0

0, in P∞
∗ probability if p∗ ∈ F1\F0

.

In other words any decision in the form : H0 is accepted if Bn > t for some fixed

level t gives asymptotically the right answer. In goodness of fit tests (or other tests of

nested hypotheses) the null distribution can be regarded as being part of the alternative,

therefore inconsistency of the Bayes factor in this case means inconsistency of its answer

to the question: is the null hypothesis true?

Here we shall consider the case where F0 = {p : p = pθ, θ ∈ Θ} where Θ ⊂ Rd. As the

prior probabilities on H0 and H1 have no effect on the consistency we will take α = 1/2.
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The Bayes factor for our hypothesis test is given by

Bn =

{∫
Θ

n∏
i=1

pθ (Yi)π0 (dθ)

}{∫
F1

n∏
i=1

p (Yi)π1 (dp)

}−1

.

To study the asymptotic behaviour of Bn we need to introduce some assumptions. Our

first two assumptions were also used by Ghosal et al. (2008) in their examination of the

consistency of Bayes factors.

Assumption A1: The nonparametric posterior from π1 is strongly consistent at p∗ with

rate εn, that is

π1 (p : d(p, p∗) > εn | Y n) → 0,

in P∞
∗ probability.

Assumption A2: For any θ ∈ Θ ⊂ Rd

π0

(
θ′ : K(pθ, pθ′) < cn−1, V (pθ, pθ′) < cn−1

)
> Cn−d/2,

where K (p, q) is the Kullback-Leibler divergence defined by K (p, q) =
∫

log(p/q)p dµ

and V (p, q) =
∫

log(p/q)2p dµ.

Assumption A1 is satisfied by many nonparametric priors. Consistency of the posterior

is actually a minimal condition to require since there cannot be a full subjective (infor-

mative) construction of a prior on an infinite dimensional parameter set. Diaconis &

Freedman (1986) discuss the importance of consistency of the posterior distribution. Suf-

ficient conditions for establishing rates of convergence of the posterior distribution in the

setting of density estimation have been determined by Ghosal et al. (2000). This assump-

tion is very weak, considering that there is no constraint on εn other than limn εn = 0.

Assumption A2 is used to provide a lower bound on the marginal likelihood under the

parametric model and it is satisfied by any regular parametric model with positive con-

tinuous prior density. It is possible to replace this assumption with a Laplace expansion

of the marginal likelihood, however any model with a valid Laplace expansion will most

likely satisfy A2.

The next assumption is weaker than the condition given in equation (4.1) of Ghosal et

al. (2008).
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Assumption A3: If Aεn(θ) = {p : d(p, pθ) < Cεn} , where εn is the rate of convergence

given in Assumption A1, then

sup
θ
π1(Aεn(θ)) = o(n−d/2).

Assumption A3 compares the amount of probability the nonparametric prior π1 places

near the parametric family with the prior mass of the parametric prior near each pa-

rameter value θ ∈ Θ. This is the key assumption as will be demonstrated in section

4.1.

Our final assumption is a technical assumption which will be satisfied by most regular

models.

Assumption A4: Θ is a compact subset of Rd and pθ is continuous in L1 as a function of

θ.

The compactness of Θ is used here to make the proof clearer. In the non compact case,

we can go back to the compact case by assuming for instance some regularity conditions

on the model so that the maximum likelihood estimator under the parametric model

converges to the projection of p∗ on {pθ, θ ∈ Θ} (Arcones, 2002).

The following theorem holds for general classes of prior distributions both on the al-

ternative and on the parametric models.

Theorem 1. Assume that given P∗ the data Y1, . . . , Yn are independent and identically

distributed on [0, 1]. Assume also that assumptions A1-A4 hold.

- If p∗ ∈ F0 then Bn →∞ in P∞
∗ probability.

- If p∗ ∈ F1\F0 and p∗ is in the Kullback-Leibler support of π1 then Bn → 0,

exponentially fast, almost surely with respect to P∞
∗ .

Proof. Assume that p∗ ∈ F0, i.e. there exists θ∗ such that p∗ = pθ∗ . Let Aεn = Aεn(θ∗),

then the Bayes factor can be written as

B−1
n =

{∫
F1

n∏
i=1

p (Yi)π1 (dp)

}{∫
Θ

n∏
i=1

pθ (Yi)π0 (dθ)

}−1

=

{∫
Aεn

n∏
i=1

p (Yi)π1 (dp)

}{∫
Θ

n∏
i=1

pθ (Yi)π0 (dθ)

}−1

× π−1
1 (Aεn | Y1, . . . , Yn) .



6 BAYESIAN GOODNESS OF FIT TESTING

Under assumption A1, π1 (Aεn | Y1, . . . , Yn) converges to one in P∞
∗ probability. From A3

we may apply lemma 1 of Shen & Wasserman (2001) to give that when δ is small enough

P n
∗

{∫
Θ

n∏
i=1

pθ(yi)

p∗(yi)
π0(dθ) < δn−d/2

}
≤ C

(− log δ)
.

Applying the Markov inequality, for any ε > 0,

P n
∗

{∫
Aεn

n∏
i=1

p (yi)

p∗ (yi)
π1 (dp) > εδn−d/2

}
< (εδ)−1nd/2π1 (Aεn) .

Combining the above two inequalities and letting ε, δ → 0 at an appropriate rate, we

see that under A4 this probability will converge to zero and hence B−1
n → 0 in P∞

∗

probability.

Now assume that p∗ ∈ F1\F0. Define for i = 1, 2, . . . Φi =
∫ 1

0
yip∗ (y) dy and Φi(θ) =∫ 1

0
yipθ (y) dy, for all θ ∈ Θ. Define Θ0 = Θ and Θn = Θn−1 ∩ {θ : Φn(θ) = Φn}. If

there exists a θ′ ∈ Θn for all n = 1, 2, . . . then pθ′ = p∗, µ−a.e. by the uniqueness of

the Hausdorff moment problem and as p∗ ∈ F1\F0 we have a contradiction. Therefore,

there exists an m such that Θm = ∅, i.e. the first m moments of p∗ and pθ can not

be equal for any θ ∈ Θ. By A2 Φi(θ) is a continuous function of θ for all i and hence

g(θ) = supi=1,...,m |Φi − Φi(θ)| is also a continuous function of θ. As there is no θ ∈ Θ

such that g(θ) = 0 and Θ is a closed set then there exists an ε > 0 such that g(θ) > ε for

all θ ∈ Θ.

The set Θ can be partitioned as

Θ =
m⋃
i=1

[
{θ : Φi − Φi (θ) > ε}

⋃
{θ : Φi (θ)− Φi > ε}

]
.

The functions yi can be used to form a strictly unbiased test of p = p∗ against p ∈

{pθ : Φi (θ)− Φi > ε} and of p = p∗ against p ∈ {pθ : Φi (θ)− Φi < ε}. Applying proposi-

tion 4.4.1 of Ghosh & Ramamoorthi (2003) there exists an exponentially consistent test.

By applying their lemmas 4.4.1 and 4.4.2 it follows that∫
{θ:hi−hi(θ)>ε}

∏n
i=1

pθ(Yi)
p∗(Yi)

π (dθ)∫
F1

∏n
i=1

p(Yi)
p∗(Yi)

π1 (dp)
−→ 0, P∞

∗ − almost surely,

exponentially fast. The Bayes factor is bounded by a finite sum of these terms and hence

it must converge to zero P∞
∗ − almost surely, exponentially fast.
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Remark 1. The restriction of Yi to [0, 1] was only introduced to simplify the construction

of a weak neighbourhood around p∗ which did not intersect F0. It is possible to alter this

assumption for random variables on other ranges. For example, if the support of the Yi is

[0,∞) then using functions e−my, m = 1, 2, . . . can be used to form weak neighbourhood of

p∗ and the same arguments hold. We need only consider m = 1, 2, . . . since a distribution

on [0,∞) is uniquely identified by the sequence of values of its Laplace transform at

integer values (Feller, 1939).

Remark 2. Note that we obtain also an upper bound on the rate of convergence of the

Bayes factor under H0 since we have proved that

lim
C→∞

lim sup
n

P n
∗

{
B−1
n > Cn−d/2π(Aεn)

}
= 0.

We therefore obtain the significant result that B−1
n is controlled, when H0 is true, by the

ratio of the prior probabilities of effective neighbourhoods of the true density under π1

and π0 respectively.

The conditions of theorem 1 can be difficult to verify as they require finding upper

bounds on the prior probabilities in non-regular cases. Despite this difficulty, Rousseau

(2008) has provided a general framework where assumptions A1 and A3 hold. This is

the case of the embedded prior, that is where the nonparametric prior is constructed on

the embedded model

{pθ,g(x) = pθ(x)g(Pθ(x)), θ ∈ Θ, g ∈ G},

where G is the set of density functions on [0,1]. In such cases the prior mass of neighbour-

hoods under the nonparametric model will be typically much smaller than those under

the parametric model, as described in section 4.1.1 of Rousseau (2008).

The following two sections consider the mixture of triangular priors as a prior for which

these conditions can be verified. They also provide an illustration of difficulties that can

be encountered.

3. Mixtures of triangular priors

3.1. Definitions. A mixture of triangular distributions is defined as follows. Let the

sequence 0 = t0 < t1 < . . . < tk−1 < tk = 1 be a partition of [0, 1]. The function ∆i (x)

is the triangular density function with support on the interval [ti−1, ti+1] and mode at
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ti for i = 1, . . . , k − 1. The density ∆0(x) is the triangular distribution on [t0, t1] with

mode at t0, similarly ∆k(x) has support [tk−1, tk] and mode tk. A mixture of triangular

distributions then has the density function p (x) =
∑k

i=0wi∆i (x) , where wi ≥ 0 and∑k
i=0wi = 1. As in Perron & Mengersen (2001) we consider the two cases:

I For each k, the partition of [0, 1] is assumed fixed so that ti = i/k and the weights

wi are varied. The density is denoted p(x;w(k)) where w(k) = (w0, . . . , wk).

II For each k, the weights wi are fixed at w0 = wk = 1/(2k), wi = 1/k, i =

1, . . . , k − 1 and the partition is varied. The density is denoted by p(x;ψ(k))

where ψ(k) = (t0, . . . , tk) denotes the partition of [0, 1].

When needed, we generically denote by ξ(k) the vector of parameters of a mixture

of triangulars with k components and by Sk the set of these parameters. The log-

likelihood shall be denoted by ln(ξ(k)) =
∑n

i=1 log p(Yi; ξ(k)) and the prior on the pa-

rameter (ξ(k), k) is written π(ξ(k), k) = π(ξ(k) | k)π(k), in the mixture of triangular

distributions prior.

There are a number of reasons for choosing to work with mixtures of triangular dis-

tributions. Firstly, as the resulting density functions are piecewise linear functions on

[0, 1] interpolating the points (ti, wi∆i (ti)), they are easy to manipulate and simplify

some necessary calculations. The flexibility of the densities allows them to approximate

smooth density functions well which leads to good asymptotic properties for the posterior

distribution. Finally, they can be relatively easy to implement in practice.

Since the rate of convergence of the posterior is relevant to obtaining consistency of

the Bayes factor, we first give a few results on posterior rates of convergence under such

priors. When there is no possibility of confusion we shall denote the mixture of triangular

prior by π instead of π1.

3.2. Type I mixture - rates of convergence. As with the Bernstein polynomial priors,

for a given k, this class of mixtures is a simple convex combination of density functions

which are bounded by a multiple of k. Thus consistency (strong and weak) and rates

of convergence can be proved using very similar techniques to those used for Bernstein

polynomials (Ghosal, 2001, Petrone & Wasserman, 2002).

Theorem 2. Assume that p∗ belongs to the Hölder class H(L, β) with β ≤ 2 and satisfies

p∗(x) ≥ ax(1 − x) for some constant a > 0. Assume also that the Type I mixture of
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triangular distributions prior satisfies for all k, c1e
−C1k log k ≤ π (k) ≤ c2e

−C2k for some

constants c1, c2, C1, C2 > 0 and for each k the prior on w(k) is a Dirichlet distribution

with parameters uniformly bounded in k. Then there exists an R > 0 such that

En
∗ [π

(
p : d (p, p∗) > Rn−β/(2β+1)(log n)(4β+1)/4β | Y n

)
] ≤ n−H ,

for all H > 0 and all n sufficiently large.

The proof of theorem 2 is given in Appendix (i).

3.3. Type II Mixtures - rates of convergence. The type II mixture is slightly more

complicated to study than the type I, in the same way as the free knot splines are more

complicated to study than fixed splines estimators. However here, the problem is made

easier since the weights are fixed. As in the case of fixed partition and free weights we

obtain the minimax rate of convergence up to a log n term.

Theorem 3. Assume that p∗ belongs to the Hölder class H(β, L) with β ≤ 2 Assume

also that p∗ ≥ a > 0 on [0, 1]. In addition, assume that the prior satisfies the following

conditions:

• The prior on the number of components k is such that there exists c1, c2 > 0

satisfying e−c1n logn ≤ π (k > n) ≤ e−c2n logn for all n sufficiently large.

• For any k ≤ k0n
1/(2β+1), where k0 is some positive constant, the prior places very

small probability on two points in the partition being close. Specifically, there exist

α, γ > 0 satisfying, for all c > 0

π
(
max
i
|ti − ti−1| < e−αn

γ | k
)
< exp(−cn1/(2β+1) log n),

for all n sufficiently large. Moreover, for any k the prior has a positive density with

respect to the Lebesgue measure µk on {ψ(k) = (t0, ..., tk); 0 < t1 < ... < tk−1 < 1}:

there exists r > 0 such that for all k > 1

π(ψ(k) | k) ≥ ckµk(ψ(k)), ck > c/Γ(k)r.

Then there exists an R > 0 such that

En
∗

[
π

(
p : d (p, p∗) > Rn−β/(2β+1) log n

∣∣Y n
)]
≤ n−H ,

for all H > 0 and all n sufficiently large.
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The proof of theorem 3 is given in point (ii) of the Appendix.

Remark 3. As a simple example of a prior satisfying the conditions of theorem 3 consider

a Poisson process with continuous intensity on [0, 1]. This prior can also be viewed as a

Poisson prior on k and conditional on k, any density absolutely continuous with respect

to the distribution of the order statistic of a k sample of uniforms on [0, 1].

Remark 4. Note that the above classes of priors, both for the Types I and II mixtures of

triangular densities lead to adaptive estimators with respect to the smoothness parameter

β, on β ∈ (0, 2], up to a log n term.

4. Bayes factors with mixtures of triangular prior

4.1. Bayes factor with a parametric null hypothesis. Now consider the hypothesis

test of the introduction where the prior on F1 is one of the mixture of triangular priors

that we have described. We note that it is also possible to specify the prior on F1 in

a goodness of fit setting by embedding the parametric model pθ in the nonparametric

model through pθ(y)g(Pθ(y)) where g is a nonparametric density on [0, 1] and Pθ is the

cumulative distribution function. This is the approach taken in Verdinelli & Wasserman

(1998) and Robert & Rousseau (2004). Although the former can have some desirable

properties (Rousseau, 2008), we think that, due to the popularity of using mixtures to

directly model density functions, it is of interest to investigate if such direct modeling can

be applied to goodness of fit problems. To apply theorem 1 with a mixture of triangular

distributions prior to theorem we need to verify assumptions A1 - A4 hold. A1 holds

by either theorem 2 or theorem 3 depending on the choice of prior. Assumptions A2

and A4 depend on the parametric family. To verify that A3 holds we introduce a new

assumption on the parametric family to be tested.

Assumption A3′: For each θ ∈ Θ, pθ has a bounded third derivative and its second

derivative is non-zero on some interval [a, b], 0 < a, b < 1.

The set Aεn(θ) comprises of all densities which are within εn of pθ as measured by

Hellinger or L1 distance. In the proof of lemma 4.2 of McVinish et al. (2005) it was

shown that for any density p(x) satisfying A3′ and any mixture of triangular densities

p(x; ξ(k)) (type I or II), then there exists constants α, c such that∫ 1

0

|p(x)− p(x; ξ(k))| dx ≥ ck−α. (1)
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As we have assumed that for all θ ∈ Θ, pθ satisfies A3′ then

inf
θ∈Θ

inf
ξ(k)∈Sk

d (pθ, p(· ; ξ(k))) ≥ ck−α,

where d(., .) can be either L1 or Hellinger distance. Therefore, for a mixture of k triangular

densities to be an element of Aεn(θ) we need k > ε
−1/α
n c = kn. Since theorem 2 and

theorem 3 together with the regularity condition of A3′ imply that εn < Cn−3/7(log n)2,

it follows that a mixture of triangular densities will need at least Cn3/(7α)(log n)−2/α

components. Thus

π (Aεn) ≤ π(k ≥ kn) ≤ e−C
′kn ,

from the conditions on the priors on k and we finally obtain

π (Aεn) ≤ Be−bn
γ

,

for some B, b > 0 and any γ < 3/(7α). Therefore, nd/2π (Aεn) → 0 for any finite d and

assumption A3 is satisfied.

As an example of a parametric family to be tested, consider the two-dimensional ex-

ponential family

pθ(y) = f(y) exp (θ1b1(y) + θ2b2(y) + α(θ1, θ2)) , (2)

where Θ is a compact subset of R2, b1, b2, α are smooth functions and y ∈ [0, 1]. It is

easily seen that A2 is satisfied. Also, since for all θ, θ′ ∈ Θ, h(pθ, pθ′) < C|θ − θ′| it

follows that A4 is satisfied. If on some interval f(y) has a bounded third derivative and

its second derivative is non-zero then assumption A3′ is satisfied. Also, if f(y) is a finite

mixture of triangular densities then assumption A3′ will be satisfied provided (0, 0) /∈ Θ.

The Bayes factor therefore can provide a consistent test of this parametric family.

We now give a situation where failure of assumption A3 to hold leads to an inconsistency

in the Bayes factor, that is under H0, Bn → 0 in P∞
∗ probability. Consider again the

parametric density (2) where (0, 0) ∈ Θ and f ≡ 1; in other words there exists θ ∈ Θ

such that pθ is the uniform density. In this case assumption A3 is no longer satisfied since

from theorem 2 or theorem 3

π1 (Aεn(θ)) > cn−2/5(log n)9/8,
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for θ = (0, 0) and some c > 0 sufficiently small. When P∗ is the uniform distribution we

can bound the marginal likelihood for the parametric model using a Laplace approxima-

tion so that ∫
Θ

n∏
i=1

pθ(yi)π0(dθ) < Cn−1(log n)

with P∞
∗ probability tending to one. Sufficient conditions for the Laplace approximation

to be valid are given in theorem 8 of Kass et al. (1990) and can easily be verified for (2).

Inconsistency of the Bayes factor will have been demonstrated if we can show that∫
F1

n∏
i=1

p (Yi)π1 (dp) > cnn
−1(log n), (3)

with P∞
∗ probability tending to one, for some sequence cn →∞. We answer this question

in the following subsection where we obtain a lower bound on the marginal likelihood

under the prior π1 by studying the rate of convergence of the Bayes Factor under a point

null hypothesis.

4.2. Bayes Factor with a point null hypothesis. We now give a few results on the

rate of convergence of the Bayes factor when the null hypothesis is the singleton {p0},

where p0 is the uniform density. The test of hypothesis becomes H0 : p∗ = p0 against

H1 : p∗ 6= p0 and the Bayes factor is given by

B−1
n =

∫
F1

n∏
i=1

p (Yi)π1 (dp) .

The following theorem demonstrates that the Bayes factor goes to infinity under the null

at a rate smaller than n1/2 and hence verifies that inequality (3) holds. This completes the

example of inconsistency of the Bayes factor at the end of section 4.1 where assumption

A3 fails to hold.

Theorem 4. Assume that for Type I mixtures the prior on π(w | k = 1) has a strictly

positive and continuously differentiable density in a neighbourhood of w = 1/2, then under

H0 (p0 ≡ 1)

P n
0

[
B−1
n ≤ C0/

√
n
]
≤ n−H , (4)

for all H > 0 and all n sufficiently large. Assume that for Type II mixtures the prior on

π(w | k = 2) has a strictly positive and continuously differentiable density in a neighbour-

hood of w = 1/2, then under H0 (4) holds.
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Remark 5. The case k = 1 in the Type II mixtures corresponds to a point mass at the

uniform density, so that it does not make sense to put positive mass on it under the

alternative.

Proof. The proof is only given for type I mixture of triangular distributions prior since

the proof for type II mixtures follows essentially the same argument. For a type I mixture

of triangular distributions prior

B−1
n =

∞∑
k=1

Bn,k =
∞∑
k=1

π(k)

∫
Sk

n∏
i=1

p(Yi;w(k)) dπ(w(k) | k) (5)

≥ Bn,1 = π(k = 1)

∫ 1

0

n∏
i=1

p(Yi;w(1)) dπ(w(1) | 1).

The true distribution corresponds to w(1) = w1 = 1/2. This integral is bounded from

below by considering only the integral on w1 ∈ (1/2−δn, 1/2+δn), δn = K log n/
√
n. We

now take a Taylor expansion of the log-likelihood ln(w1) and the log of the prior around

the maximum likelihood estimator ŵ1 and we bound the remaining term. This leads to

ln(w1)− ln(ŵ1) + log π(w1|1)− log π(ŵ1|1) = −n(w1 − ŵ1)
2ĵ1

2
+Rn,

where

|Rn| ≤ Cn|w1 − ŵ1|3 sup
|w−ŵ1|≤4δn

∣∣∣∣∂3(ln/n)(w)

∂w3

∣∣∣∣ + C|w1 − ŵ1| sup
|w−ŵ1|≤4δn

∣∣∣∣∂ log π(w)

∂w

∣∣∣∣
= Rn,1 +Rn,2,

where ĵ1 is the empirical Fisher information. In a neighbourhood of w1 = 1/2, log p(y;w1)

is 3 times continuously differentiable with finite moments of all order (uniformly bounded

for w1 near 1/2. Therefore, for all δ > 0, H > 0 and all n sufficiently large

P n
0

[
sup

|w1−ŵ1|≤δn

|Rn,1|
n(w1 − ŵ1)2

> δĵ1

]
≤ Cn−H .

Similarly, we have assumed that π is positive at 1/2 and is continuously differentiable

around 1/2. Therefore, for all δ′ > 0, H ′ > 0 and all n sufficiently large

P n
0

[
sup

|w1−ŵ1|≤δn
|Rn,2| > δ′

]
≤ Cn−H

′
.

It follows that∫ 1

0

eln(w1)π(w1 | k = 1)dw1 ≥ e−δ(1 + δ)−1/2 exp{ln(ŵ1)}π(ŵ1 | k = 1)ĵ
−1/2
1 n−1/2,
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with probability greater than 1 − n−H for all H > 0 and all n sufficiently large. Since

eln(ŵ1) ≥ 1 and P n
0

[
ĵ
−1/2
1 > c

]
≤ n−H for all H > 0 and n sufficiently large, we may now

take C0 sufficiently small so that

P n
0

(
B−1
n ≤ C0n

−1/2
)
≤ P n

0

(
Bn,1 ≤ C0n

−1/2
)
≤ n−H , (6)

for all n sufficiently large.

By imposing additional mild conditions on the priors it is possible to strengthen the

result of the above theorem to show that the Bayes factor is actually of order n1/2 under

the null up to a log n term.

Theorem 5. Assume the prior on k satisfies π (k > n/ log n) < e−nc for some c > 0. For

a Type I mixtures prior assume π(w0, . . . , wk | k) is absolutely continuous with respect to

the Lebesgue measure on the simplex with a density bounded by MΓ(k + 1) for all k and

some M > 0. Then there exists C,C ′ > 0 such that for all δ > 0 and all n ≥ 1,

P n
0

(
B−1
n ≥ C(log n)2n−1/2

)
≤ C ′(log n)−

(1−δ)
2 . (7)

For a type II mixtures prior assume that π(t0, . . . , tk | k) is absolutely continuous with

respect to the Lebesgue measure on the simplex with a density bounded by MΓ(k + 1) for

all k ≥ 2 and some M > 0. Assume also that there exist α, γ > 0 satisfying,

π
(
max
i
|ti − ti−1| < e−αn

γ | k
)
< exp(−cn1/(2β+1) log n),

for all c > 0 and all n sufficiently large. Then there exists C,C ′ > 0 such that (7) holds.

Proof. Using the decomposition (5) of Bn then for any vn = v0n
−1/2(log n)

P n
0

[
B−1
n ≥ vn

]
≤ P n

0 [Bn,1 ≥ vn/2] + P n
0

[
∞∑
k=2

Bn,k ≥ vn/2

]
.

The proof is first given for type I mixtures. Define the sets Gn = {w(k) : 2 ≥ k ≥ kn},

Vn,k = {w(k) : ‖p0 − p‖ < rn} and Vn = ∪kVn,k where rn = r0n
−1/2 log n and kn =
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k0(log n)2. Denote

I1 =

∫
Vn∩Gn

n∏
i=1

p (Yi)π (dp) =
kn∑
k=2

π(k)

∫
Vn,k

[
n∏
i=1

p(Yi;w(k))

]
π(w(k)|k),

I2 =

∫
V c

n∩Gn

n∏
i=1

p (Yi)π (dp) =
kn∑
k=2

π(k)

∫
V c

n,k

[
n∏
i=1

p(Yi;w(k))

]
π(w(k)|k),

I3 =

∫
Gc

n

n∏
i=1

p (Yi)π (dp) =
∞∑

k=kn+1

Bn,k.

Applying the Markov inequality

P n
0 [I1 ≥ vn/6] ≤ 6v−1

n

kn∑
k≥2

π(k)π(Vn,k | k).

Applying lemma 2 in Appendix (iii) and the fact that the prior density on the weights is

bounded, it follows that

π(Vn,k | k) ≤MrknΓ(k + 1)πk+1/2/Γ(k/2 + 3/2).

From Stirling’s approximation of the Gamma function

kn∑
k=2

MrknΓ(k + 1)πk+1/2/Γ(k/2 + 3/2) ≤ Cr2
n

kn∑
k=2

exp
(
(k − 2) log(k1/2rn) + log k

)
,

and hence

P n
0 [I1 ≥ vn/6] ≤ Cv−1

n r2
n.

An application of lemma 4 in Appendix (iii) yields P n
0 [I2 ≥ vn/6] ≤ n−H for any H > 0

and n sufficiently large. Also

P n
0 [I3 ≥ vn/6] ≤ v−1

n

∑
k≥kn

π(k) ≤ v−1
n exp(−rkn) < n−H ,

for any H > 0 and n sufficiently large.

Finally, we treat Bn,1 using a Laplace expansion in a similar manner to (6), in other

words we can bound the integral on |w1 − 1/2| < δn similarly to the proof of theorem

3.5. However we must bound from above the integral outside the δn neighbourhood of

ŵ1. To do so note that the model is regular and that for all ε > 0 there exists δ > 0 such

that if |w1 − 1/2| > ε, ||1 − pw1||1 > δ. Moreover w1 ∈ (0, 1) a bounded interval in R so
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that we can construct tests (Ghosal et al., 2000) such that En
0 [φn] ≤ e−cnδ

2
n and for all

|w1 − 1/2| > δn, E
n
w1

[1− φn] ≤ e−cnδ
2
n . This implies that for all H > 0,

P n
0

[∫
|w1−1/2|>δn

eln(w1)π(w1)dw1 > e−ncδ
2
n/2

]
≤ e−ncδ

2
n/2 = O(n−H).

We need also to control ln(ŵ1), which under the uniform follows asymptotically a Chi-

square random variable and satisfies for all δ > 0,

P n
0 [ln(ŵ1) > log log n] = P n

0

[
χ2

1 > log logn− δ
]
+ n−H

≤ C√
(log n)1−δ

,

leading finally to (7).

For Type II mixtures it is necessary to make some small changes to the proof. Define

Gn = {ψ(k); 3 ≤ k ≤ kn, |ti − ti+1| > n−a(logn)2 , i ≤ k − 1} and let kn = k0(log n)2 rn =

r0n
−1/2(log n)−3 and vn = v0n

−1/2(log n). From remark 5 Bn,2 plays the role of Bn,1 in

the proof of type I mixtures. The main difference in the proof being in the treatment of

P n
0 [I1 ≥ vn/6]. To control this term, we use lemma 3 in Appendix (iii) so that

k−2∑
j=1

(tj+1 − tj)

4

(
|(tj+2 − tj)− 2/k|

(tj+2 − tj)
+
|(tj+1 − tj−1)− 2/k|

(tj+1 − tj−1)

)
+

1

2kt2
|t1 − t2/2|+

1

2k(1− tk−2)
|(1− tk−1)− (1− tk−2)/2| ≤ rn.

Since knrn = o(1), |1− tk−1 − (tk−1 − tk−2)| ≤ 2rn(1 + o(1)) so that |tk−1 − (1− 1/k)| ≤

8rn(1 + o(1)) and |tk−2 − (1− 2/k)| ≤ 8rn(1 + o(1)). We then iterate the formula using

|tk−j−1 − (1− (j + 1)/k)| ≤ 8rn(1 + o(1)) + |tk−j − (1− j/k)| so that when k ≤ kn,

π
(
‖ p0 − pψ(k) ‖1≤ rn | k

)
≤ π (|tj − j/k| ≤ 8krn, j ≤ k − 1 | k) .

The bound on P n
0 [I1 ≥ vn/6] becomes

P n
0 [I1 ≥ vn/6] ≤ v−1

n

kn∑
k=3

π(Vn,k | k)π(k) ≤ Cv−1
n r2

n.

The proof now follows the same arguments as for the type I mixture.

Remark 6. The above theorems state that when testing the point null hypothesis, p0 is

uniform, against the nonparametric alternative, the inverse Bayes factor B−1
n converges

to zero in probability under the null at a rate of n−1/2. In order to increase the rate at
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which the Bayes factor converges to zero it is necessary to restrict the amount of prior

probability placed near the uniform distribution.

Remark 7. Another application of the results of this section is when the null hypothesis

is the singleton {p0}, with p0 any density, not necessarily uniform. In this case one can

apply the cumulative distribution function transform of p0 to transform the data. This

brings us back to the case where the null hypothesis is the uniform on [0, 1]. The effect is

similar to the embedding of a parametric family in the nonparametric model. Note that

the rate of convergence of the marginal likelihood only applies to the given p0.

5. Discussion

This paper has provided sufficient conditions for the consistency of the Bayes factor in

testing goodness of fit of a parametric density function and the conditions are verified for

the mixture of triangular distributions prior. We have also shown that if these conditions

are not satisfied then the Bayes factor may be inconsistent. These results complement

the result of Rousseau (2008) who has given a necessary condition for consistency of

the Bayes factor. We believe the study of consistency is an important issue in goodness

of fit and other testing problems. Not only does it provide a frequentist validation of

the Bayesian procedure, but it also aids our understanding of how intergrating over the

parameter space accounts for parameter uncertainty.

Mixture of triangular distributions can be useful priors since they have good theoret-

ical properties and are simple to implement. An interesting problem for further study

is to establish conditions for consistency of the Bayes factor which are both necessary

and sufficient. We believe that the conditions presented here are close to being so. An-

other problem of interest is to consider goodness of fit testing in other contexts such as

regression. Using the results in Ghosal & van der Vaart (2006) it may be possible to

establish a result similar to our theorem 1. As before, the main challenge in applying

such a result would be to determine appropriate upper bounds on the prior probability

in a neighbourhood of the parametric model. Both of these problems deserve further

consideration.
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Appendix

(i) Proof of theorem 2. The proof follows similar lines to theorem 2.3 of Ghosal (2001)

and so we shall only provide the lower bound for the prior probability on the set

{
p : K(p∗, p) < ε̃2n, V (p∗, p) < ε̃2n

}
.

If p∗ is bounded away from zero then the proof is essentially the same as for theo-

rem 2.3 of Ghosal (2001). Therefore, we shall assume p∗(0) = p∗(1) = 0. From
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lemma 8.3 of Ghosal et al. (2000) we need only bound the prior probability on the set

{p : h2(p∗, p) ‖ p∗/p ‖∞< ε̃2n}. Define pi∗ = p∗(i/k) ∨ k−β for i = 0, . . . , k. Consider the

set of densities N(k, ε; p∗) defined by

p (x ;w(k)) = S−1(pi(1− k(x− i/k)) + pi+1k(x− i/k)), x ∈ [i/k, (i+ 1)/k],

where S = (p0 +pk)/(2k)+
∑k−1

i=1 p
i/k and |pi−pi∗| ≤ Cpi∗ε. It is seen that these densities

are type I mixtures of triangular densities. Let p(·;w0(k)) denote the density where

pi = pi∗. It is seen that S · p(x;w0(k)) is, with minor modification near x = 0 and x = 1,

the linear interpolation of p∗ so sup0≤x≤1 |p∗ (x)− S · p (x;w0(k))| ≤ Ck−β. In this case

S = 1 +O(k−β) and sup0≤x≤1 |p∗ (x)− p (x;w0(k))| ≤ Ck−β. For densities on N(k, ε; p∗)

we have S = 1 +O(k−β + ε) and sup0≤x≤1 |p∗ (x)− p (x;w(k))| ≤ C
(
k−β + ε

)
.

Now we determine a bound on the Hellinger distance between p∗ and p(·;w(k)). The

squared Hellinger distance is bounded by

h2(p∗, p(·;w(k))) ≤
∫ 1

0

(p (x;w(k))− p∗(x))
2

p (x;w(k))
dx.

The range of integration is divided into small intervals to obtain the bound. Assuming

ε < k−β(log k)−1,

∫ k−1

0

(p (x;w(k))− p∗(x))
2

p (x;w(k))
dx

=

∫ k−1

0

(p∗(x)− p0(1− kx)− p1kx)
2

p0(1− kx) + p1kx
dx,

≤
∫ k−1

0

(
p∗(x)− p1

∗kx+O(ε+ k−β)
)2

p0(1− kx) + p1kx
dx,

≤ C

∫ k−1

0

(
ε+ k−β

)2

p0(1− kx) + p1kx
dx,

= C(k−β + ε)2 log p1 − log p0

k(p1 − p0)
,

with the convention that (log x − log y)/(x − y) = x−1 when x = y. The second last

inequality is obtained by taking Taylor expansions for p∗(x) and p∗(1/k) around zero.

Noting that if β < 1, then p0 = p1 = k−β and if β ≥ 1, then p0 = k−β and p1 = p(1/k)

we obtain that the above term is bounded by a constant times k−2β log k. The integral
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over [1− 1/k, 1] can be bounded in a similar manner. Finally∫ 1−k−1

k−1

(p (x;w(k))− p∗(x))
2

p (x;w(k))
dx ≤ C(k−β + ε)2

∫ 1−k−1

k−1

p (x;w(k))−1 dx

≤ C(k−β + ε)2k−1

k−1∑
i=1

1

pi
≤ C(k−β + ε)2 log k.

Hence, for densities in N(k, ε; p∗),

h2(p∗, p(·;w(k))) ≤ C(k−β + ε)2 log k.

For x ∈ (i/k, (i+ 1)/k) we can bound p∗(x)/p(x) for all p ∈ N(k, ε; p∗) as

p∗(x)

p(x)
≤ p∗(x)

pi ∧ pi+1
≤ 2p∗(x)

(k−β ∨ p∗(i/k)) ∧ (k−β ∨ p∗((i+ 1)/k))
.

Taking a Taylor expansion of p∗(x) around x = i/k and x = (i + 1)/k it is seen that

‖ p∗/p ‖∞< C for k sufficiently large. The prior probability on N(k, ε; p∗) can be

bounded below using lemma A.1 of Ghosal (2001) and the fact that π(k = kn) ≥ e−nε
2

for c1n
1/(2β+1) < kn < c2n

1/(2β+1) and n sufficiently large. The remainder of the proof

follows theorem 2.3 of Ghosal (2001) to give convergence in probability. To bound the

expectation we follow the proof of theorem 2.2 in Ghosal et al. (2000) (also lemma 8.4)

so that

P∞
∗

{
Π

(
p : d (p, p∗) > Rn−β/(2β+1)(log n)(4β+1)/4β | Y n

)
> exp(−B1nε

2
n)

}
< exp(−B2nε

2
n).

(ii) Proof of theorem 3.

This result is proved by verifying that the conditions of theorem 2.1 in Ghosal (2001)

hold. The first step is to provide a lower bound on the prior probability for the set of

densities

N(ε, p∗) =
{
p : K(p∗, p) < ε2, V (p∗, p) < ε2

}
.

For a given k we take ψ(k) = (t0, t1, ..., tk) where P∗(ti) = i/k, i = 0, . . . , k. From the

mean value theorem

P∗ (ti+1)− P∗ (ti−1) = 2/k = p∗ (t∗i ) (ti+1 − ti−1) , t∗i ∈ (ti−1, ti+1) ,

for i = 1, . . . , k − 1. For i = 0, k

P∗ (t1)− P∗ (t0) = 1/k = p∗ (t∗0) (t1 − t0) , t∗0 ∈ (t1, t0) ,

P∗ (tk)− P∗ (tk−1) = 1/k = p∗ (t∗k) (tk − tk−1) , t∗k ∈ (tk−1, tk) .
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It follows that p(·;ψ(k)) is the linear interpolation of the points (ti, p∗ (t∗i )) , i = 0, . . . , k.

It is noted that (Mk)−1 ≤ |ti+1− ti| ≤ (ak)−1, where M = sup p∗(x). If β ≤ 1, we obtain

that

sup
x∈[0,1]

|p∗(x)− p(x;ψ(k))| ≤ Ck−β, if p∗ ≥ a > 0.

If β ∈ (1, 2], we note that for i = 0, . . . , k − 1,

p∗(x) = p∗(ti) +
(x− ti)

ti+1 − ti
(p∗(ti+1)− p∗(ti)) +O(k−β).

Therefore, for x ∈ (ti, ti+1)

sup
x∈[0,1]

|p∗(x)− p(x;ψ(k))|

=

∣∣∣∣(p∗(ti)− p∗(t
∗
i ))

(ti+1 − x)

ti+1 − ti
+ (p∗(ti+1)− p∗(t

∗
i+1))

(x− ti)

ti+1 − ti

∣∣∣∣ +O(k−β).

Using a Taylor expansion of
∫ ti+1

ti
p∗(x)dx and of

∫ ti
ti−1

p∗(x)dx, both equal to 1/k:

p∗(ti)[(ti+1 − ti)− (ti − ti−1)]

= −p′∗(ti)[(ti+1 − ti)
2 + (ti − ti−1)

2]/2 +O(k−β−1)

= O(k−2).

Similarly, using a Taylor expansion of
∫ ti+1

ti−1
p∗(x)dx,

p∗(t
∗
i )(ti+1 − ti−1)

= p∗(ti)(ti+1 − ti−1) +
p∗(ti)

′

2
[(ti+1 − ti)

2 − (ti − ti−1)
2] +O(k−β−1).

Together these equations imply that

p∗(ti)− p∗(t
∗
i ) = −p′∗(ti)/2[(ti+1 − ti)− (ti − ti−1)] +O(k−β) = O(k−β).

The same argument can be applied to show p∗(ti) − p∗(t
∗
i ) = O(k−β). Therefore, the

absolute difference of p∗ and p(·;ψ(k)) is bounded by Ck−β for some C > 0. Let η(k) be

another partition and p(·; η(k)) the resulting density. From lemma 1 we have

|p∗(x)− p(x; η(k))| ≤ C(k−β + ε),

where |ψ(k)− η(k)| < cεk−1. Taking k to satisfy d1ε
−1 < kβ < d2ε

−1 for constants d1, d2

and applying lemma 8.2 of Ghosal et al. (2000) it is seen that

N (Cε, p∗) ⊃
{
η(k) : |η(k)− ψ(k)| < cεk−1

}
,
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which leads to the correct lower bound for the probability of the set N (Cε, p∗).

Now define the sets Gn = {ψ(k) : k ≤ k0n
1/(2β+1), |tj − tj+1| ≥ e−αn

γ
, j ≤ k − 1}. An

upper bound on the entropy of Gn now needs to be determined. We follow Ghosal (2001)

with the remark that

||p(·;ψ(k))− p(·; η(k))||1 ≤ Cε0ε
∗
n log n,

as soon as the partitions ψ(k) = (tj, j = 0, ..., k) and η(k) = (t̃j, j = 0, ..., k) with

t̃0 = t0 = 0 and t̃k = tk = 1 satisfy

|tj − t̃j| ≤ ε0ε
∗
n log n(|tj − tj−1| ∧ |tj − tj+1|).

Therefore, the number of points in the net defined by the above constraint is bounded by

Nn = kn

(
Cαnγ

ε0ε∗n log n

)kn

≤ ek0Cn
1/(2β+1) logn,

with kn = k0n
1/(2β+1) and C some generic constant. Finally, the bound on the prior

probability for the set Gcn is easily determined. These bounds can be used to verify that

the conditions of theorem 2.1 of Ghosal (2001) hold and so the rate of convergence in

probability is found. The bound in expectation can be obtained by similar arguments as

used in the proof of Equation (2).

(iii) A few lemmas that are considered in the study of the mixtures of triangular distri-

butions. The proofs of the following lemmas can be found in McVinish et al. (2005) or

are small modifications of these as indicated.

Lemma 1. Let p(·;ψ(k)) and p(·; η(k)) be two type II mixtures of triangular densities

where ψ(k) = (t0, t1, . . . , tk−1, tk) and η(k) =
(
t0, t̃1, . . . , t̃k−1, tk

)
. Let C denote a constant

that is independent of the partitions and k. For 0 < ε < 1/4, if

max
i

∣∣ti − t̃i
∣∣ ≤ ε

Mk
, M = sup

x∈[0,1]

p(x;ψ(k)),

then

sup
x∈[0,1]

|p(x;ψ(k))− p(x; η(k))| ≤ CMε.

Furthermore, if

max
i

∣∣ti − t̃i
∣∣ ≤ ε(|ti − ti−1| ∧ |ti − ti+1|),

then

||p(·;ψ(k))− p(·; η(k))||1 ≤ Cε.
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Proof. Let ψj =
(
t0, t̃1, . . . , t̃j, tj+1, . . . , tk

)
, for j = 0, ..., k − 1 then

||p(·;ψ(k))− p(·; η(k))||1 ≤
k−1∑
j=0

||p(·;ψj)− p(·;ψj+1)||1,

and the difference between the two consecutive functions occurs only on the interval

[t̃j−2, tj+2]. Now if |tj − t̃j| ≤ ε(|tj − tj−1| ∧ |tj − tj+1|) for all j, |tj − t̃j| ≤ (1/3|tj − t̃j−1| ∧

|tj − tj+1|), so that t̃j ∈ (t̃j−1, tj+1). Using tedious but straightforward calculations, we

obtain that

||p(·;ψj)− p(·;ψj+1)||1 ≤
C|tj − t̃j|

k

[
1

tj+1 − t̃j−1

+
1

tj − t̃j−2

+
1

tj+2 − tj

]
.

Applying the triangle inequality and summing over j we have

||p(·;ψ(k))− p(·; η(k))||1 ≤ C
2ε

1− ε
.

Lemma 2 (type I mixtures). Let p0 be the uniform density. For each k ≥ 2, if

‖ p0 − p(·;w(k)) ‖1≤ ε,

then
k−1∑
j=1

|wj − 1/k|+ |w0 − 1/(2k)|+ |wk − 1/(2k)| ≤ 4ε.

Lemma 3 (type II mixtures). Let p0 be the uniform density. For each k ≥ 2, if

‖ p0 − p(·;ψ(k)) ‖1≤ ε,

then

k−2∑
j=1

(tj+1 − tj)

4

(
|(tj+2 − tj)− 2/k|

(tj+2 − tj)
+
|(tj+1 − tj−1)− 2/k|

(tj+1 − tj−1)

)
+

1

2kt2
|t1 − t2/2|+

1

2k(1− tk−2)
|(1− tk−1)− (1− tk−2)/2| ≤ ε.

Lemma 4. Let I2 =
∫
V c

n∩Gn
pη(Y

n)dπ(η), where Vn = ∪kVn,k, then

P n
0 [I2 ≥ vn] ≤ n−H

for all H > 0 and n sufficiently large.

Proof. The proof is based on the construction of tests based on the L1 distance as in

Ghosal et al. (2000).


