
HAL Id: hal-00361395
https://hal.science/hal-00361395v1

Submitted on 14 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Event-based MILP models for resource-constrained
project scheduling problems

Oumar Koné, Christian Artigues, Pierre Lopez, Marcel Mongeau

To cite this version:
Oumar Koné, Christian Artigues, Pierre Lopez, Marcel Mongeau. Event-based MILP models for
resource-constrained project scheduling problems. Computers and Operations Research, 2011, 38 (1),
pp.3-13. �10.1016/j.cor.2009.12.011�. �hal-00361395�

https://hal.science/hal-00361395v1
https://hal.archives-ouvertes.fr

Event-based MILP models for resource-constrained project

scheduling problems

Oumar Koné1,2,3, Christian Artigues1,2, Pierre Lopez1,2, Marcel Mongeau3,4

1 CNRS ; LAAS ; 7 avenue du colonel Roche, F-31077 Toulouse, France ;

2 Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France ;

3 Université de Toulouse ; UPS, INSA, UT1, UTM ; Institut de Mathématiques de Toulouse ;

4 CNRS ; Institut de Mathématiques de Toulouse UMR 5219 ; F-31062 Toulouse, France.

e-mails: {okone,artigues,lopez}@laas.fr, mongeau@math.univ-toulouse.fr

Abstract

In this paper we make a comparative study of several mixed integer linear programming

(MILP) formulations for resource-constrained project scheduling problems (RCPSPs). First,

we present three discrete and continuous time MILP formulations issued from the literature.

Second, instead of relying on the traditional discretization of the time horizon, we propose two

original MILP formulations for the RCPSP based on the concept of event : the Start/End for-

mulation and the On/Off formulation. These formulations present the advantage of involving

fewer variables than the formulations indexed by time. Because the variables of this type of for-

mulations are not function of the time horizon, we have a better capacity to deal with instances

of very large scheduling horizon. We also illustrate our contribution with a series of tests on

various types of instances with the three MILP formulations issued from the literature together

with our two new formulations, and we draw some conclusions on their use.

Keywords: Resource-constrained project scheduling, mixed integer linear programming, project

management.

Introduction

In this paper we consider the resource constrained project scheduling problem (RCPSP). A project

involves activities, and resources (renewable or non-renewable), generally available in limited quan-

tities. The processing of an activity requires throughout its duration, one or more units of one

or more resources. The RCPSP deals with organizing in time the realization of activities, taking

into account a number of precedence constraints, and constraints on the use and availability of the

resources needed. A schedule is a solution that describes resource allocation over time, and aims

at satisfying one or more objectives.

1

There exist strongly NP-hard problems that can be solved reasonably well in practice. However,

the RCPSP belongs to the class of really hard optimization problems. To illustrate this statement,

instances of the minimum lateness one-machine scheduling problem with release dates involving

thousands of jobs can be solved to optimality by Carlier’s algorithm [9]. This is unfortunately

not the case for the RCPSP for which today’s exact methods are still unable to solve problems

dealing with more than 60 activities [14]. A way to compare several exact and heuristic methods

proposed to solve an NP-hard optimization problem involves comparing the results they obtain in

terms of consumed CPU time, memory requirement, and objective-function value on a common

set of problem instances. Since the late sixties, a wide variety of benchmark RCPSP instances has

been proposed. The best exact methods to date for solving the RCPSP [14, 20] are specialized

branch-and-bound methods, taking advantage of the problem structure to solve the RCPSP.

Besides these powerful specific methods, it is of theoretical and practical interest to study

the performance of standard Mixed Integer Linear Programming (MILP) for solving the problem.

Indeed, MILP solvers are often the only available to practitioners.

Hence, the purpose of this paper is to compare the performance of classical and new MILP

formulations.

There exist a large number of MILP formulations for the RCPSP. Among others, we can cite the

formulations involving an exponential number of variables such as the discrete time formulation of

Mingozzi et al. [22] which considers that all feasible sets of activities (all activities involved in this

set can be processed simultaneously) of the problem are given, and the continuous time formulation

of Alvarez et al. [1] that assumes that all the forbidden sets (distinct sets whose activities involved

in them are not authorized to be processed simultaneously) are known. On the other hand, there

also exist some formulations involving a polynomial number of variables, known as compact, and

other formulations involving a pseudo-polynomial number of variables. We restrict our study to

these two latter categories because the purpose of this article is to study the formulations that

allow solving problems directly with an MILP solver.

There have been previously theoretical and experimental comparison of MILP formulations of

the RCPSP [4, 11, 13, 22, 26] but mainly in terms of the quality of the LP relaxation.

However, when direct solving through a MILP solver is involved, the best results are not nec-

essarily obtained by the strongest MILP formulations. For the RCPSP, one reason for that is that

the strongest formulations known to date involve a pseudo-polynomial number of variables, which

makes necessary the study of more compact formulations.

This paper is divided into four sections. We briefly describe the RCPSP in the first section.

Section 2 presents three MILP formulations of the RCPSP issued from the literature: the basic

discrete-time formulation proposed by Pritsker et al. [24], the disaggregated discrete-time formula-

2

tion proposed by Christofides et al. [11], and the flow-based continuous-time formulation proposed

by Artigues et al. [3]. In Section 3, we propose two new MILP formulations of the RCPSP based

on the concept of events: the Start/End formulation and the On/Off model. Then, we perform in

Section 4, a series of tests on various instances to assess these new formulations, both in terms of

the calculation of the lower bound obtained by their linear relaxation, and in terms of the exact

resolution. We conclude this study by drawing conclusions about the tests we carried out together

with some tips about how to use these new formulations.

1 Resource-constrained project scheduling

Formally, the RCPSP is a particular combinatorial optimization problem, i.e. it is defined by a

solution space X , which is discrete or which can be reduced to a discrete set, and by a subset of

feasible solutions Y ⊆ X associated with an objective function f : Y → R. A combinatorial opti-

mization problem aims at finding a feasible solution y ∈ Y such that f(y) is optimized (minimized

or maximized). A resource-constrained project scheduling problem (RCPSP) is a combinatorial op-

timization problem defined by a tuple (V, p,E,R,B, b), where V is a set of activities, p is a vector

of durations, E is a set of precedence relations, R is a set of renewable resources, B is a vector of

resource availabilities, and b is a matrix of demands.

1.1 Problem description

Let n be the number of activities to be scheduled, and m be the number of available resources.

Activities constituting the project are identified by a set {0, . . . , n + 1}. Activity 0 represents by

convention the start of the schedule, and activity n + 1 represents symmetrically the end of the

schedule. The set of non-dummy activities is identified by A = {1, . . . , n}.

The durations are represented by a vector p of N
n+2 whose ith component, pi, is the duration of

activity Ai, with the special values: p0 = pn+1 = 0.

The precedence relations are given by a set E of index pairs such that (i, j) ∈ E means that activity

i must precede activity j. We assume that we are given a precedence activity-on-node graph G(V,E)

whose nodes correspond to activities V = A∪{0, n+1}, and arcs correspond to precedence relations.

We shall identify in the sequel each activity with the corresponding node of the precedence graph.

We assume that G contains no cycle, otherwise the precedence relations are obviously inconsistent.

Since precedence is a transitive binary relation, the existence of a path in G from node i to node

j means also that activity i must precede activity j. Hence, all precedence graphs having the

same transitive closure define the same precedence constraints. Taking into account the preceding

remark, we assume that E is such that 0 is a predecessor of all other activities and n + 1 is a

3

successor of all other activities.

The renewable resources are formalized by set R = {1, . . . ,m}.

The availabilities of the resources are represented by a vector B of N
m such that Bk denotes the

availability of resource k. In particular, a resource k such that Bk = 1 is called a unary or disjunctive

resource.

The demands of the activities for resources are abstracted by b, an (n+2)×m integer matrix, such

that entry bik represents the amount of resource k used per time period during the execution of

activity i. Note that b0k = 0 and bn+1,k = 0, for all k ∈ R.

A schedule is a point S of R
n+2 such that its ith component, Si, represents the start time of

activity i. S0 is a reference point for the start of the project. Here we assume that S0 = 0. A

solution S is said feasible if it is compatible with the precedence constraints

Sj − Si ≥ pi ∀(i, j) ∈ E, (1)

and the resource constraints
∑

i∈At

bik ≤ Bk ∀k ∈ R,∀t ∈ H, (2)

where At = {i ∈ A |Si ≤ t < Si + pi} represents the set of non-dummy activities in process at time

t. H = {0, 1, . . . , T} is the scheduling horizon, and T (the length of the scheduling horizon) is some

upper bound for the makespan.

The makespan of a schedule S is equal to Sn+1, the start time of the end activity. The above-

defined set At and constraints state that an activity cannot be interrupted once it is started.

This is referred to as not allowing preemption. The RCPSP can then be stated as follows: The

RCPSP is the problem of finding a non-preemptive schedule S of minimal makespan Sn+1 subject

to precedence constraints (1) and resource constraints (2).

1.2 Complexity

According to the computational complexity theory [16], the RCPSP is one of the most intractable

combinatorial optimization problems. Indeed, the RCPSP belongs to the class of problems that

are NP-hard in the strong sense. The complexity theory states that an optimization problem is

NP-hard in the strong sense if its decision version is NP-complete in the strong sense. Garey and

Johnson [15] have shown that the decision variant of the RCPSP with a single resource and no

precedence constraints, called the resource-constrained scheduling problem, is NP-complete in the

strong sense by reduction from the 3-partition problem. NP-hardness can be shown by a simpler

observation made by Blazewicz et al. [7] yielding even worse negative results [26].

4

2 MILP formulations for the RCPSP

The oldest work conducted on the exact resolution of RCPSP used Mixed Integer Linear Program-

ming (MILP). There are in the literature several formulations of the RCPSP based on MILP. We

concentrate our study on three of these formulations.

2.1 Basic discrete-time formulation (DT)

In 1969, Pritsker et al. [24] gave a formulation of the RCPSP containing only one type of binary

decision variable, xit, indexed by both activities and time. We call it the basic discrete-time

formulation, noted DT. This variable is defined so that xit = 1 if activity i starts at time t, and

xit = 0 otherwise. Thus, this formulation can be written as follows:

min
x

∑

t∈H

txn+1,t (3)

∑

t∈H

txjt ≥
∑

t∈H

txit + pi ∀(i, j) ∈ E (4)

n∑

i=1

bik

t∑

τ=t−pi+1

xiτ ≤ Bk ∀t ∈ H,∀k ∈ R (5)

∑

t∈H

xit = 1 ∀i ∈ A ∪ {0, n + 1} (6)

xit ∈ {0, 1} ∀i ∈ A ∪ {0, n + 1},∀t ∈ H, (7)

Since Si =
∑

t∈H

txit, for all i ∈ A ∪ {0, n + 1}, we remark that constraints (4) and (5) are simple

translations of precedence constraints (1) and resource constraints (2), respectively. Constraints

(6) and (7) impose non-preemption of the project activities.

This formulation includes (n+2)(T +1) binary variables, and |E|+(T +1)m+n+2 constraints.

2.2 Disaggregated discrete-time formulation (DDT)

In 1987, Christofides et al. [11] proposed a formulation which is very similar to the DT formulation.

The two formulations mainly differ in how they formulate the precedence constraints. Indeed, the

precedence constraints formulated by Christofides

T∑

τ=t

xiτ +

t+pi−1∑

τ=0

xjτ ≤ 1, ∀t ∈ H,∀(i, j) ∈ E, (8)

are disaggregated expressions of DT precedence constraints (4). We note it DDT for disaggregated

discrete-time formulation. The number of binary variables in these formulations indexed by time

increases proportionally with T , the length of the scheduling horizon. Formulation DDT involves

5

the same number, (n + 2)(T + 1), of binary variables as DT but DDT requires more constraints

((T + 1)(m + |E|) + n + 2 constraints). Note that since (4) ⇒ (8) for 0 ≤ x ≤ 1, the LP relaxation

of DDT is at least as good as the LP relaxation of DT.

2.3 Flow-based continuous-time formulation (FCT)

Inspired by the work by Balas et al. [5], Artigues et al. [3] proposed a flow-based continuous-time

formulation (noted FCT in the sequel) of the RCPSP using three types of variables. First, the

usual starting-time continuous variables Si, for each activity i. Second, sequential variables xij

which are binary and indicate whether activity i is processed before activity j. Finally, continuous

flow variables fijk to denote the quantity of resource k that is transferred from activity i (at the

end of its processing) to activity j (at the start of its processing). Note that b̃ik = bik for all i ∈ A

and b̃0k = b̃n+1,k = Bk, since activity 0 acts as a resource source while activity n + 1 acts as a

resource sink. Thus, formulation FCT can be written as follows:

min
S,f,x

Sn+1 (9)

xij + xji ≤ 1, ∀(i, j) ∈ (A ∪ {0, n + 1})2, i < j (10)

xik ≥ xij + xjk − 1 ∀(i, j, k) ∈ (A ∪ {0, n + 1})3 (11)

Sj − Si ≥ −M + (pi + M)xij ∀(i, j) ∈ (A ∪ {0, n + 1})2 (12)

fijk ≤ min (bik, bjk)xij ∀(i, j) ∈ (A ∪ {0} × A ∪ {n + 1}),∀k ∈ R (13)
∑

j∈A∪{0,n+1}

fijk = b̃ik ∀i ∈ A ∪ {0, n + 1},∀k ∈ R (14)

∑

i∈A∪{0,n+1}

fijk = b̃jk ∀i ∈ A ∪ {0, n + 1},∀k ∈ R (15)

xij = 1 ∀(i, j) ∈ E (16)

fijk ≥ 0 ∀(i, j) ∈ (A ∪ {0, n + 1})2,∀k ∈ R (17)

f(n+1)0k = Bk ∀k ∈ R (18)

Si ≥ 0 ∀i ∈ A ∪ {0, n + 1} (19)

xij ∈ {0, 1} ∀(i, j) ∈ (A ∪ {0, n + 1})2 (20)

where M is some large enough constant. M can be set to any valid upper bound of the makespan

(e.g. M =

n∑

i=1

pi). Constraints (10) state that for two distinct activities, either i precedes j, or

j precedes i, or i and j are processed in parallel. Constraints (11) express the transitivity of the

precedence relations. Constraints (25) are so-called disjunctive contraints linking the start time

of i and j w.r.t. variable xij . The constraint is active when xij = 1 (i precedes j) and, in that

case, enforces the precedence relation Sj ≥ Si + pi. If xij = 0, the constraint is always satisfied.

6

Constraints (26) link flow variables and xij variables. If i precedes j, the maximum flow sent from

i to j is set to min{bi, bj} while if i does not precede j the flow must be zero. Constraints (14)

and (15) are resource flow conservation constraints. Constraint (18) ensures the conservation of

the flow. Constraints (16) set the preexisting precedence constraints.

Applegate and Cook [2] showed in their computational study of the job-shop problem (which

can be seen as a particular case of the RCPSP) that this formulation yields poor relaxations, which

is due to the big-M constant in constraints (12). However, to solve a problem involving a large

time-horizon, FCT can be preferable to DT and DDT. Formulation FCT involves (n + 2)2 binary

variables, m(n+2)2+n+2 continuous variables, and n3+(m+(15/2))n2 +(4m+(35/2))n+5m+13

constraints.

3 Event-based MILP models for the RCPSP

In contrast to the formulations using the variables indexed by time (like DT and DDT), we propose

here two new formulations that use variables indexed by events. This is inspired by work by

Grossmann on batch process problems [23] and on the formulation by Dauzère-Pérès and Lasserre

for flow-shop problems [12], as well as on the former polyhedral study of machine scheduling by

Lasserre and Queyranne [21]. We consider that an event occurs when an activity starts or ends. In

any left-shifted schedule for the RCPSP, the start time of an activity is either 0 or coincides with

the end time of some other activity. Furthermore, it can be simply shown that the set of left-shifted

(or semi-active) schedules is dominant. Consequently, the number of events can be restricted to

the number of activities plus one. Let E = {0, 1, . . . , n} be the index set of the events. In fact,

event-based formulations do not involve the use of dummy activities. Consequently, the number

of activities is n instead of n + 2 for all the preceding formulations. Event-based formulations (as

well as FCT) have the marginal advantage of being able to deal with instances containing some

non-integer activity processing times. More importantly, for instances with long-enough scheduling

horizon, event-based models involve fewer variables compared to the models indexed by time.

Remark also that the event-based formulations we are introducing in this paper do not involve any

big-M constant.

3.1 Start/End Event-based formulation (SEE)

The first event-based formulation we present involves two types of binary variable and two types

of continuous variable. Variable xie (respectively yie) is equal to 1 if activity i starts (respectively

ends) at event e. Thus, x variables set the start times and y variables set the finish time of each

activity. The continuous variable te represents the date of event e. The continuous variable rek

7

represents the quantity of resource k required immediately after event e. This yields the Start/End

Event-based formulation (noted SEE):

min
r,t,x,y

tn (21)

t0 = 0 (22)

tf ≥ te + pixie − pi(1 − yif) ∀(e, f) ∈ E2, f > e,∀i ∈ A (23)

te+1 ≥ te ∀e ∈ E , e < n (24)
∑

e∈E

xie = 1 ∀i ∈ A (25)

∑

e∈E

yie = 1 ∀i ∈ A (26)

n∑

e′=e

yie′ +

e−1∑

e′=0

xje′ ≤ 1 ∀(i, j) ∈ E,∀e ∈ E (27)

r0k =
∑

i∈A

bikxi0 ∀k ∈ K (28)

rek = r(e−1)k +
∑

i∈A

bikxie −
∑

i∈A

bikyie ∀e ∈ E , e ≥ 1, k ∈ R (29)

rek ≤ Bk ∀e ∈ E , k ∈ R (30)

xie ∈ {0, 1}, yie ∈ {0, 1} ∀i ∈ A ∪ {0, n + 1},∀e ∈ E (31)

te ≥ 0 ∀e ∈ E (32)

rek ≥ 0 ∀e ∈ E , k ∈ R. (33)

The objective function is given by (21). Constraint (22) stipulates that event 0 starts at time 0.

Inequalities (23) ensure that if activity i starts at event e and ends at event f , then tf ≥ te + pi.

Constraints (24) ensure that if event e precedes event f , then e must start before f . Constraints

(25) (respectively (26)) require that a start event (respectively end event) has a single occurrence.

Constraints (27) describe the precedence relation between activities. If i < j then i ends at event e

or after, j cannot start before event e. Constraints (28) give the total consumption of the activities

that start at event 0. Constraints (29) are resource conservation constraints that imply that for

each resource k, its consumption immediately after event e is equal to its consumption immediately

after the previous event e − 1, plus the consumption required by the activities that start at event

e, minus the consumption required by the activities that end at event e. Constraints (30) limit the

consumption of resources at each event to the availability of resources.

Note that variables rek can all be replaced by their expression in function of variables xie,

starting by (28) and making substitutions with (29). So they are not counted below.

Formulation SEE involves 2n2 +2n binary variables, (n+1) continuous variables, and (1/2)n3 +

n2 + (3 + |E|+ m)n + |E|+ m + 1 constraints. Compared to DT and DDT, formulation SEE has a

8

polynomial number of variables and constraints. Compared to FCT, SEE does not involve big-M

constraints but has unfortunately a larger number (about twice more) of binary variables.

3.2 On/Off Event-based formulation (OOE)

The second event-based formulation we introduce in this paper is a variant of SEE that uses only

one type of binary variable per event, and one type of continuous variable. Variable zie is set to

1 if activity i starts at event e or if it still being processed immediately after event e. Thus, zie

remains equal to 1 for the duration of the process activity i. That is why we call this model, the

On/Off Event-based formulation (noted OOE). In this model, the number of events is exactly equal

to the number of activities n. The continuous variable te represents, as in SEE, the date of event e.

Moreover, with formulation OOE, the resource constraints are modelled in very simple way. Here

is the OOE formulation:

min
z,t,Cmax

Cmax (34)

Cmax ≥ te + (zie − zi(e−1))pi ∀e ∈ E ,∀i ∈ A (35)

t0 = 0 (36)

tf ≥ te + ((zi−e − zi(e−1)) − (zif − zi(f−1)) − 1)pi ∀(e, f, i) ∈ E2 × A, f > e 6= 0 (37)

te+1 ≥ te ∀e 6= n − 1 ∈ E (38)

e−1∑

e′=0

zie′ ≥ e(1 − (zie − zi(e−1))) ∀e 6= 0 ∈ E (39)

n−1∑

e′=e

zie′ ≥ e(1 + (zie − zi(e−1))) ∀e 6= 0 ∈ E (40)

∑

e∈E

zie ≥ 1 ∀i ∈ A (41)

zie +

e∑

e′=0

zje′ ≤ 1 + (1 − zie)e ∀e ∈ E ,∀(i, j) ∈ E (42)

n−1∑

i=0

bikzie ≤ Bk ∀e ∈ E ,∀k ∈ R (43)

te ≥ 0 ∀e ∈ E (44)

zie ∈ {0, 1} ∀i ∈ A,∀e ∈ E (45)

Constraint (35) gives the makespan (Cmax ≥ te + pi if i is in process at event e − 1 but not at

event e). Constraints (37) link the binary optimization variables zie to the continuous optimization

variables te, and ensures that the processing time of an activity is equal to the processing time

of this activity. tf ≥ te + pi if activity i starts immediately after event e and ends at event f .

Constraints (39) and (40), called contiguity constraints, ensure the adjacency of the events during

9

which an activity being processed. Constraint (41) ensures that each activity is processed at least

once during the project. Constraint (42) is the precedence constraint and constraint (43) is the

resource constraint.

Formulation OOE involves n2 binary variables (twice as less for SEE), (n + 1) continuous

variables, and (1/2)n3 − (1/2)n2 + (3 + |E| + m)n − 2 constraints.

3.3 Example

In order to better understand the new SEE and OOE models, let us consider an illustrative instance

of the RCPSP. It involves 10 activities and 2 resources. Durations (processing times) and avail-

abilities are displayed in Table 1. Figure 1 shows the Gantt chart of a feasible schedule (solution).

i 1 2 3 4 5 6 7 8 9 10

pi 7 3 5 5 6 4 5 4 3 7

b1i 0 2 3 3 2 1 1 1 1 3

b2i 2 1 3 2 1 0 3 1 1 1

Successors 3 6,7 4,9 11 1 1 5,8 10 4 9

Table 1: An illustrative RCPSP instance

Figure 1: Gantt chart of a feasible solution with discrete time and events

Table 2 displays corresponding values of the optimization variables related to activities 6 and

7. The xit’s are the time-indexed variables used in DT and DDT models (center), while the xie, yie

and zie (left-hand side) are the event-indexed variables involved in SEE and OOE models. Finally,

the Si (right-hand side) are the continuous variables used in FCT formulation.

10

e 0 1 2 3

x6e 0 1 0 0

y6e 0 0 1 0

z6e 0 1 0 0

x7e 0 1 0 0

y7e 0 0 0 1

z7e 0 1 1 0

t 2 3 4 5 6 7 8

x6t 0 1 0 0 0 0 0

x7t 0 1 0 0 0 0 0

e 0 1 2 3

z6e 0 1 0 0

z7e 0 1 1 0

Table 2: Some values of variables for the feasible solution

4 Computational comparison

In this section, we first describe the instances we shall use in our numerical comparisons; second,

we characterize them through some instance indicators; and finally, we perform a computational

comparison of the five MILP models, first in terms of linear programming relaxation, and then, in

terms of integer solving.

4.1 Instances and instance indicators

Among the large number of instances found in the literature, we shall concentrate on the following:

KSD: PSPLIB (from Kolisch et al. [19]) is a scheduling library reachable through a web site [25],

that contains the most used RCPSP instances. Among these instances, we choose the 480 instances

that involve n = 30 activities (noted KSD30). The groups of instances have been generated using

different values of the NC, RF, and RS indicators (see below).

BL: Baptiste and Le Pape [6] proposed a set of 39 instances, among which 19 comprise n = 20

activities, and 20 involve n = 25 activities. Each activity requires m = 3 resources with a randomly

generated demand ranging from 0 to 60% of the total availability. For the 20-activity instances,

|E| = 15 precedence constraints were randomly generated, while |E| = 45 precedence constraints

were generated for the 25-activity instances.

Pack: Carlier and Néron [10] proposed a set of 55 instances with a small number (|E|) of

precedence relations. The number of activities varies from 17 to 35 (with an average of n = 25

activities), and there are m = 3 resources. Resource availability ranges from 5 to 10. There are two

instance categories. In the first one, the activity demand bk is randomly generated between 0 and

Bk (k = 1, . . . ,m), which may generate disjunctions. In the second one, any activity demand cannot

exceed half of the resource availability, which implies the absence of disjunctions and consequently

yields highly cumulative instances.

The instances described in the literature to test the formulations proposed for the RCPSP, are

11

often being subject of some criticism. In fact for the most used instances, the KSD ones, it appears

that the harder instances all have a small RS indicator (see below) implying a high disjunction

ratio. This motivated the generation of the BL and Pack instances, both characterized by small

disjunction ratios. Regardless of these criticisms, we also note that most of the instances above

involve relatively short durations, which could represent an advantage for the MILP formulations

indexed by time. Thus, in order to enhance representativeness, we created two new types of

instances (noted Pack d and KSD15 d), which are modified versions of instances Pack and KSD30.

These types of instances can typically be found in the process industry.

Hereafter is a more precise description of these new instance sets we are introducing.

Pack d: These instances are obtained by multiplying by 50 the processing time of a randomly

selected part of the activities. Thus, the processing times vary from a few units of time to hundreds

of units of time.

KSD15 d: These are instances obtained by modifying KSD30 as follows. The processing time

of a randomly selected part of the activities are multiplied by 15, and each instance now only

involves 15 activities (instead of 30 for KSD30). Both Pack d and KSD30 d are publicly available1.

Since the sixties, indicators have emerged to characterize the RCPSP instances. They can be

roughly classified into four categories: precedence-oriented (e.g. OS and NC), time-oriented (e.g.

RF), resource-oriented, and hybrid (e.g. RS, #FS, ACUFS) [4]. Let us now recall briefly the

established relationships between these indicator values and instance tractability. Table 3 displays

for each instance the range of each indicator.

Table 3: Average tractability indicator values for five instance sets

KSD30 BL Pack KSD15 d Pack d

|V | 32 22 - 27 17 - 35 17 17 - 35

|R| 4 3 2 - 5 4 2 - 5

T 34 - 130 14 - 34 23 - 139 187 - 999 644 - 3694

OS 0.34 - 0.69 0.25 - 0.45 0.13 - 0.48 0.34 - 0.64 0.13 - 0.48

NC 1.5 - 2.13 1.45 - 2 1.5 - 1.72 1.18 - 1.82 1.50 - 1.72

RF 0.25 - 1.0 0.5 - 0.77 1 - 1 0.25 - 1 1

RS 0.14 - 1 0.16 - 0.55 0.08 - 0.53 0.18 - 1 0.08 - 0.48

DR 0.36 - 0.9 0.25 - 0.45 0.19 - 0.94 0.35 - 0.90 0.19 - 0.94

PR 10 5 19 250 1138

• OS: Order strength is defined as the density of the transitive closure of the precedence graph

1
See http://www.laas.fr/∼okone/

12

(0 ≤ OS ≤ 1), where OS = 0 corresponds to a total parallelism whereas OS = 1 means that

the activities are totally ordered.

• NC: Network complexity corresponds to the average number of precedence arcs per activity

(assuming E includes no redundant arcs). Globally, the hardness of instances decreases as

NC and OS increase.

• RF: Resource factor is defined as the average number of required resources. It is generally

experienced that instance hardness increases as RF increases.

• RS: Resource Strength defines resource features incorporating also time features. The required

CPU time varies in function of RS according to a continuous bell-shaped easy-hard-easy

pattern (with instances close to RS = 0 being far harder than the ones close to RS = 1).

• DR Disjunction Ratio integrates precedence and resource features. It is used to distinguish

between cumulative instances (with a low disjunction ratio) and disjunctive instances (with

a high disjunction ratio).

• PR Process Range is simply defined as PR =
max pi

min pi
.

For more details on instance indicators, see [4]. In [4], the Pack instances were shown to be the

hardest to solve with state-of-the-art exact and heuristic methods. These instances are characterized

by a smaller disjunction ratio and a small number of precedence constraints (as suggested by the

range of OS and NC).

In the next subsection, we shall compare the different formulations of the RCPSP on the five

instance sets KSD30, BL, Pack, KSD15 d, and Pack d.

4.2 Results

We perform two series of tests. The first series deals with the calculation of lower bounds obtained

through a linear relaxation of each of the five formulations DT, DDT, FCT, SEE, and OOE. The

second series tests the exact solving on various instances using each of the five formulations. These

tests were carried out on a XEON 5110 biprocessor Dell PC clocked at 1.6Ghz with 4GB RAM,

and running Linux FEDORA as operating system. The formulations are coded in C++, in an

ILOG-Concert (version 26) environment. The solver used is ILOG-Cplex (version 11). We limit

the resolution time of each instance to 500 seconds.

We set the big-M value (involved in formulation FCT) to

n∑

i=1

pi.

13

4.2.1 Time window preprocessing

As already mentioned, formulations DT and DDT are highly sensitive to time horizon. To moder-

ate this characteristic, we perform a preprocessing phase aiming at reducing activity time windows

by standard precedence and resource constraint propagation. The horizon T is set to an upper

bound obtained by the parallel schedule scheme heuristic with the minimum latest finishing time

rule [18]. Then starting with [0, T] the operation time windows are reduced by using the constraint

propagation algorithms described in [8] until no more adjustment can be detected. Such prepro-

cessing allows a high reduction of the number of binary variables and strengthen the relaxation of

formulations DT and DDT [13].

4.2.2 LP relaxations

In this series of tests we compare the lower bounds obtained by linear relaxation of each of the five

MILP formulations. The results are displayed in Table 4, where we use the following abbreviations:

Opt. Sol.: Instances for which the relaxation could be solved in 500 seconds.

%: Percentage of instances for which the relaxation could be solved in 500 seconds.

% Gap: Percentage of average deviation from the earliest start time produced by time window

preprocessing.

Time: Average CPU time required, in seconds.

By order of importance, the criteria of performance are % Opt. Sol., % Gap, and Time. The

time-indexed formulations present better performances on the instances involving relatively short

scheduling horizon (KSD30, Pack and BL). On these instances, the best lower bounds are produced

by DDT, followed by DT.

These results allow us to say unequivocally that formulation DDT provides better lower bounds

on instance sets KSD30 and Pack, followed by DT. The classification of formulations in descending

order, in terms of quality of lower bounds, is as follows:

• for instances KSD30, Pack, and BL: DDT>DT>OOE,SEE>FCT.

No conclusion can be drawn concerning instances KSD15 d and Pack d, because the event-based

formulations which solve most of these instances, return only the earliest start time produced by

the time window preprocessing (as mentioned before).

4.2.3 Exact solving

The second series of tests involves exact resolutions, i.e. computing optimal solutions for each

instance. The results are display in Table 5, where are added the following abbreviations:

14

Table 4: Linear relaxation results

Instances Formulations Opt. Sol.

% % Gap Time

KSD30 DT 100 0.04 0.04

DDT 100 0.31 0.78

FCT 97 0.0 6.94

SEE 100 0.0 3.01

OOE 100 0.0 0.39

Pack DT 82 10.43 0.11

DDT 82 15.26 1.14

FCT 82 0.0 4.17

SEE 82 0.0 1.54

OOE 82 0.0 0.24

BL DT 100 5.53 0.05

DDT 100 13.09 0.12

FCT 97 0.0 2.25

SEE 100 0.0 1.09

OOE 100 0.0 0.17

KSD15 d DT 71 0.0 0.28

DDT 15 22.05 0.52

FCT 100 0.0 0.10

SEE 100 0.0 0.05

OOE 100 0.0 0.04

Pack d DT 0 0.0 0.00

DDT 0 0.0 0.00

FCT 100 0.0 3.79

SEE 100 0.0 0.41

OOE 100 0.0 0.15

15

% Gap: Percentage of average deviation from the optimal (or the best known) objective-function

value.

Non-opt. Sol.: Found solution for which optimality is not proven;

Total Sol.: Total of solutions (including both Opt. Sol. and Non-opt. Sol.);

% No Sol.: Percentage of instances for which the LP relaxation could not be solved within 500

seconds.

We can reasonably define a priority order between these criteria of performance as follows: %

Opt. Sol., Time, % Non-opt. Sol., and % Gap.

On the instance sets KSD30, Pack, and BL, formulation DDT presents the best results, because

it solves to optimality most of the instances. It is followed by DT. Note that DDT solves, in less

than 500 seconds, 82% of instances while the branch and bound of Demeulemeester and Herroelen

[14] solves all instances to optimality much more quickly. However, although the gap is not closed

with specific methods, this relative good result underlines the progress of MILP solvers. On the

other hand, on instance sets KSD15 d (involving very large scheduling horizon), formulation FCT

yields the best performances. Finally, on instance sets Pack d (which have a large duration range

but also, as mentioned before, are very highly cumulative instances) formulation OOE obtains the

best results, although only a small percentage of instances are solved to optimality (18%). For these

instances the performance of DDT and DT decreases dramatically. Consequently, solving exactly

instances with a large range of durations through MIP is an actual challenge.

To summarize, the classification of formulations, in descending order of quality, is as follows:

• For the instances KSD30, and Pack: DDT>DT>FCT>OOE>SEE ;

• For the instances Pack: DDT>DT>OOE>FCT>SEE ;

• For the instances BL: DDT>DT>OOE>SEE>FCT ;

• For KSD15 d: FCT>OOE>SEE>DT>DDT ;

• For instances Pack d: OOE>FCT,SEE>DDT,DT.

Conclusions

In this article, we proposed two new MILP formulations for the RCPSP: Start/End Event-based

formulation and On/Off Event-based formulation. These formulations have the features of using

variables indexed by events (not by time), and they involve limited complexity in terms of number

of binary variables. We also compared these new MILP formulations, together to classical ones,

both in terms of linear-relaxation lower bounds, and in terms of exact resolution.

16

Table 5: Exact resolution results

Instances Formulations Opt. Sol. Non-opt. Sol. Total Sol. No Sol.

% Time % % Gap % %

KSD30 DT 78 12.76 8 6 86 14

DDT 82 10.45 9 5 91 9

FCT 52 33.81 4 2 56 44

SEE 3 123.62 0 4 3 97

OOE 24 112.62 9 5 33 67

Pack DT 64 37.32 9 2 73 27

DDT 73 61.09 22 127 95 5

FCT 0 0.00 2 13 2 98

SEE 0 0.00 0 0 0 100

OOE 27 20.63 18 127 45 55

BL DT 100 37.93 0 0 100 0

DDT 100 13.68 0 0 100 0

FCT 0 0.00 0 0 0 100

SEE 0 0.00 8 13 8 92

OOE 0 0.00 49 0 49 51

KSD15 d DT 55 6.34 1 0 56 44

DDT 5 1.65 0 0 5 95

FCT 95 7.87 4 0 99 1

SEE 76 10.95 18 1 94 6

OOE 82 2.96 18 0 100 0

Pack d DT 0 0.00 0 0 0 100

DDT 0 0.00 0 0 0 100

FCT 4 7.58 0 0 4 96

SEE 4 215.08 0 0 4 96

OOE 18 75.58 42 0 60 40

17

RCPSP problems involving a wide range of processing times are now common in industry but

are not represented in classical benchmarks. We proposed in this study new instance sets involving

such features, KSD15 d and Pack d, and we observed the event-based formulations we proposed

are very promising for such problems.

Thus, compared on various types of instances, with three other formulations issued from the

literature, which two of them (DT and DDT) use variables indexed by time and the last (FCT)

uses sequential variables, we obtain that the formulation proposed by Christofides et al. (DDT)

yields better results for the exact resolution on traditional instances KSD30, BL, and Pack.

This is consistent with the superiority of the formulation in terms of linear relaxation. However,

our subsequent experiments show that, when exact solving through a commercial solver is involved,

no formulation dominate the other ones (including ours) and that the accurate formulation has to

be selected depending on instance characteristics.

Indeed, the formulations based on the events (more particularly On/Off formulation), as well

as FCT, have the advantage of solving more easily the instances involving very large scheduling

horizons (KSD15 d). This is not the case for the formulations using variables indexed by time.

When these instances involving very large scheduling horizons are highly cumulative (Pack d),

On/Off formulation presents better performances compared to all other MILP formulations. We

concluded that to solve highly cumulative RCPSP instances involving very large scheduling horizon,

our event-based On/Off formulation seems the most appropriate.

Finally, remark that another feature of the event-based formulations we introduced is that they

are theoretically able to process instances with non-integer processing times.

References

[1] R. Alvarez-Valdès and J. M. Tamarit, “The project scheduling polyhedron: dimension, facets

and lifting theorems”, European Journal of Operational Research, 67(2): 204–220, 1993.

[2] D. Applegate and W. Cook, “A computational study of job-shop scheduling”, ORSA Journal

on computing, 3(2): 149–156, 1991.

[3] C. Artigues, P. Michelon, and S. Reusser, “Insertion techniques for static and and dynamic

resource-constrained project scheduling”, European Journal of Operational Research, 149(2):

249–267, 2003.

[4] C. Artigues, O. Koné , P. Lopez, M. Mongeau, E. Néron, and D. Rivreau, “Computational

Experiments”, in C. Artigues, S. Demassey, and E. Néron, (Ed.), Resource-Constrained

18

Project Scheduling Models, algorithms, extensions and applications, ISTE/Wiley, pages 98–

102, 2008.

[5] E. Balas, “Project scheduling with resource constraints”, in E. M. L. Beale, (Ed.), Applica-

tions of mathematical programming techniques, pages 187–200, American Elsevier, 1970.

[6] P. Baptiste and C. Le Pape, “Constraint propagation and decomposition techniques for

highly disjunctive and highly cumulative project scheduling problems”, Constraints, 5(1-2):

119–139, 2000.

[7] J. Blazewicz, J. Lenstra, and A. Rinnooy, “Scheduling subject to resource constraints: Clas-

sication and complexity”, Discrete Applied Mathematics, 5(1): 11–24, 1983.

[8] P. Brucker and S. Knust, “A linear programming and constraint propagation-based lower

bound for the RCPSP”, European Journal of Operational Research, 127: 355–362, 2000.

[9] J. Carlier, “The one-machine sequencing problem”, European Journal of Operational Re-

search, 11(1): 42–47, 1982.

[10] J. Carlier and E. Néron, “On linear lower bounds for resource constrained project scheduling

problem”, European Journal of Operational Research, 149: 314–324 ,2003.

[11] N. Christofides, R. Alvarez-Valdès, and J. M. Tamarit , “Project scheduling with resource

constraints: A branch and bound approach”, European Journal of Operational Research,

29(3): 262–273, 1987.

[12] S. Dauzère-Pérès and J.B. Lasserre, “A new mixed-integer formulation of the flow-shop

sequencing Problem”, 2nd Workshop on models and algorithms for planning and scheduling

problems, Wernigerode, Allemagne, may 1995.

[13] S. Demassey, C. Artigues, and P. Michelon, “Constraint propagation based cutting planes:

an application to the resource-constrained project scheduling problem”, INFORMS Journal

on Computing, 17(1): 52–65, 2005.

[14] E. Demeulemeester and W. Herroelen, “New benchmark results for the resource-constrained

project scheduling problem”, Management Science, 43(11): 1485–1492, 1997.

[15] M. Garey and D. Johnson, “Complexity results for multiprocessor scheduling under resource

constraints”, SIAM Journal on Computing, 4(4): 397–441, 1975.

[16] M. Garey and D. Johnson, Computers and intractibility. A guide to the theory of NP-

Completeness, W.H. Freeman and Company, New York, 1979.

19

[17] J. Jozefowska and J. Weglarz, Perspectives in modern project scheduling, Springer, 2006.

[18] R. Kolisch, “Serial and parallel resource-constrained project scheduling methods revisited:

Theory and computation”, European Journal of Operational Research, 90(2): 320–333, 1996.

[19] R. Kolisch and A. Sprecher, “PSPLIB - A project scheduling library”, European Journal of

Operational Research, 96(1): 205–216, 1997.

[20] P. Laborie, “Complete MCS-based search: Application to resource constrained project

scheduling”, IJCAI, pages 181–186, 2005.

[21] J.B. Lasserre and M. Queyranne, “Generic scheduling polyhedra and a new mixed-integer

formulation for single-machine scheduling, integer programming and combinatorial opti-

mization”, Proceedings of the 2nd International IPCO Conference, pages 136–149, 1992.

[22] A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco, “An exact algorithm for the

multiple resource-constrained project scheduling problem based on a new mathematical

formulation”, Management Science, 44(5): 714–729, 1998.

[23] J. M. Pinto and I. E. Grossmann, “A continuous time MILP model for short term scheduling

of batch plants with pre-ordering constraints”, Industrial & Engineering Chemistry Research,

34(9): 3037–3051, 1995.

[24] A. Pritsker, L. Watters, and P. Wolfe , “Multi-project scheduling with limited resources: A

zero-one programming approach”, Management Science, 16: 93–108, 1969.

[25] PSPLIB. http://129.187.106.231/psplib/.

[26] M. Uetz, Algorithms for Deterministic and Stochastic Scheduling, PhD thesis, Technische

Universität Berlin, 2001.

20

