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Systematic Equity-Based Credit Risk: A CEV Model with Jump

to Default

Abstract

We use equity as the traded primitive for a detailed analysis of systematic

default risk. Default is parsimoniously represented by equity value hitting

the zero barrier so that, unlike in reduced-form models, the explicit linkage

to the firm’s capital structure is preserved, but, unlike in structural models,

restrictive assumptions on the structure are avoided. Default risk is either

jump-like or diffusive. The equity price can jump to default: In line with re-

cent empirical evidence on the jump-to-default risk price, we highlight how

reasonable choices of the pricing kernel can imply remarkable differences

in the equity-price-dependent status between the objective default intensity

and the risk-neutral intensity. As equity returns experience negative diffu-

sive shocks, their CEV-type local variance increases and boosts the objective

and risk-neutral probabilities of diffusive default. A parsimonious version of

our general model simultaneously enables analytical credit-risk management

and analytical pricing of credit-sensitive instruments. Easy cross-asset hedg-

ing ensues.

JEL-Classification: G12, G33.

Keywords: Market Price of Credit Risk, Constant-Elasticity-of-Variance

(CEV) Diffusive Risk, Jump-to-Default Risk, Equity, Corporate Bonds,

Credit Default Swaps.



1 Introduction

For individual firms in segments of the market with high default risk, default

risk and equity returns exhibit a clear link and default risk appears to be

systematic (see Vassalou and Xing (2004)). Observed market prices of risk

include the jump-to-default risk price, which tends to balloon at times of

bear equity markets (see Berndt, Douglas, Duffie, Ferguson, and Schranz

(2005) and Berndt, Lookman, and Obreja (2006)). The credit-equity link

has been attracting attention from credit risk managers. In their effort of

assessing actual distances from default, they have been courting credit-risk

models that focus on equity data1 and that, given the systematic nature

of default risk, explicitly treat the relationship between the objective prob-

ability measure and the pricing measure(s). An equity-based model that

directly studies the change of measure (implied by the pricing kernel) en-

ables a better informed assessment of the objective probability of default

by supporting a consistent integration of equity market data, of equity op-

tions market data, and of market data on other credit-sensitive instruments.

Since cross-asset trading of credit risk has been gaining momentum2 among

hedge funds and banks, model by-products like analytical results under the

pricing measure(s) will also benefit investors.

Reduced-form models (see Jarrow and Turnbull (1995) among the semi-

nal papers and the reviews in Lando (2004) and Schönbucher (2003)) are of

limited help, as they do not consider the direct linkage to the firm’s capital

structure. Structural models are driven by the value evolution in firm’s as-

sets. The assets-value evolution is often assumed to be diffusive so that the

default can be seen predictably coming by observing changes in the capital

structure of the firm (see the seminal papers of Merton (1974) and Black

and Cox (1976), and the reviews in Lando (2004) and Schönbucher (2003)).

While appealing, structural models suffer when it comes to applications3.

1Fore example, KMV output for public firms is strongly driven by equity-value data.
2The rise of capital structure arbitrage is a good example (see Schaefer and Strebulaev

(2006)).
3For an empirical analysis of structural models based on corporate-bond price data,
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The underlying (the sum of firm’s liabilities and equity) is illiquid and often

non-tradable. Obtaining accurate asset volatility forecasts and dependable

capital structure leverage data is difficult. Predictability of the default event

implies the counterfactual prediction of zero credit spreads for short matu-

rities4 and, last but not least, arbitrary use of the structural default barrier

is often a temptation hard to resist−endogenous barriers5 come with a prac-
ticability issue because the capital-structure assumptions under which they

are derived are not fully realistic.

We propose a credit risk model that does look at the firm’s balance

sheet but avoids the application mishaps of structural models. We take

as underlying the most liquid and observable corporate security: Equity6.

This modelling choice brings in hedging viability and the possibility of min-

imizing the dependability issue in model calibration−leverage information
from book values can be circumvented. We represent default as equity value

hitting the zero barrier either with a jump or diffusively. The presence of

an equity-value drop to zero has its credit-risk foundation in the incom-

pleteness of accounting information (see Duffie and Lando (2001)), rules

out default predictability, and embeds the concept of unexpected default,

typical of reduced-form models, within a credit-risk model that is directly

based on equity. We assume that the continuous-path part of equity value

is a Constant-Elasticity-of-Variance (CEV) diffusion7, which enables a pos-

see for example Eom, Helwege, and Huang (2004).
4Zhou (1997) posits assets-value jumps to overcome default predictability. Duffie and

Singleton (2001) explain such jumps with the presence of incomplete accounting informa-

tion.
5See for example Leland and Toft (1996), Acharya and Carpenter (2002), and references

therein.
6It must be remarked that, while equity shares are indeed the most liquid and observ-

able securities, equity-based products are not always so. For example, implied volatilities

for equity options with strikes such as those involved in equity default swaps are not avail-

able directly, and often need be mutuated by credit products such as credit default swaps

(CDS). There are instances where CDSs provide more liquid information than equity. In

general, CDSs are now fundamental liquid credit products.
7The CEV process has been first introduced to finance by Cox (1975). Among others,
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itive probability8 of diffusive absorption at zero. Unlike in structural mod-

els, credit risk can be directly related to the so-called ‘leverage effect’ (the

negative link between equity returns’ volatility and equity price observed

in equity markets as well as in equity options markets) under the CEV

assumption, because the primitives are equity returns and their volatility

skews rather than the unobserved market value of assets9.

Under these assumptions, we study incomplete-markets equity-based

credit risk under the objective probability measure as well as under the

pricing measure(s), so that risk premia receive explicit and careful treat-

ment. Our study brings an interesting economic and technical contribu-

tion, as the existing literature on equity-based jump-to-default credit risk

focuses on pricing-measure analysis10 and avoids the economic and techni-

cal treatment of default risk premia. Technically, we prove that the state

price densities we consider do back equivalent martingale measures, also in

uncharted regions of the parameters where the ‘leverage effect’ is particu-

larly strong. Economically, we show that reasonable choices of the pricing

kernel can be consistent with mounting empirical evidence that the two

components of the jump-to-default risk price exhibit remarkable differences

in their equity-price-dependent status. The jump-to-default risk price is

captured by the ratio
λQ
λP
between the risk-neutral default intensity λQ and

the CEV-based asset-pricing literature includes the works of Albanese, Campolieti, Carr,

and Lipton (2001), Beckers (1980), Boyle and Tian (1999), Cox and Ross (1976), Davydov

and Linetsky (2001), Emanuel and MacBeth (1982), Forde (2005), Goldenberg (1991),

Leung and Kwok (2005), Lo, Hui, Yuen (2000), Lo, Hui, and Yuen (2001), Lo, Tang, Ku,

and Hui (2004), Sbuelz (2004), and Schroder (1989).
8Merton (1976) considers equity price’s possible jump to zero, but no diffusive absorp-

tion at zero with positive probability.
9Hull, Nelken, and White (2004) study the link between credit risk and equity volatility

skews in Merton’s (1974) model, within which an option on the firm’s equity is a compound

option on the firm’s assets.
10See the pricing analysis in Linetsky (2006), who has introduced some of the pricing

motivations for pursuing research on equity-based credit risk, and the pricing analysis in

Carr and Linetsky (2006), who have studied the pricing implications of a Jump-to-Default

Extended CEV (JDCEV) model.
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the objective intensity λP. The variance-optimal kernel, which is known to

suit market players with hedging needs (for example, see Bertsimas, Kogan,

and Lo (2001), Biagini and Cretarola (2005, 2006), Bielecki, Jeanblanc and

Rutkowski (2004a, b, c, d), Henderson and Hobson (2003), and Schweizer

(2001)), can easily agree with the fact that observed increases in λQ come

from increases in the jump-to-default risk price due to sliding equity val-

uations rather than from fluctuations in λP. While λP looks pretty stable

through time, significant equity-driven variation is observed in the jump-to-

default risk price, with recent peaks corresponding to the late-2002 wretched

equity markets (see Berndt, Douglas, Duffie, Ferguson, and Schranz (2005)

and Berndt, Lookman, and Obreja (2006)). A possible conjecture is that,

among other things, keenness to be hedged against default risk might be

boosted by bear equity markets, even if they are accompanied by only a

slight increase in the objective likelihood of default.

In the second part of this work, we discuss a parsimonious version of our

general model. It uses the same technical steps to simultaneously enable

analytical credit-risk management and analytical pricing of credit-sensitive

instruments. A frugal specification of the state-price density is conducive

to a closed form for the objective default probabilities. Under the pricing

measure, formulae for Corporate Bond (CB) prices and Credit Default Swap

(CDS) fees are obtained, from which hedge ratios can be easily calculated.

Empirical tests show that parsimony empowers the model with analytical

results without jeopardizing its flexibility.

Albanese and Chen (2004) and Campi and Sbuelz (2006) also use a CEV-

equity model to price credit instruments but they ignore the default pre-

dictability issue and the analysis of default-risk premia. In deriving closed-

form values, we build upon a CEV result in Campi and Sbuelz (2006). Naik,

Trinh, Balakrishnan, and Sen (2003) and Trinh (2004) introduce a hybrid

debt-equity model that considers equity as primitive but that, like structural

models, necessitates a free default barrier, which is then left to potentially

ad-hoc uses−equity value is assumed to be a geometric Brownian motion.
Das and Sundaram (2003) have proposed an equity-based model that ac-
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counts for default risk, interest risk, and equity risk using a lattice frame-

work. As such, they do not seek hedger-friendly analytical solutions and do

not deal explicitly with default-risk premia. Those aspects are also missing

in the numerical equity-based credit-risk pricing that has been suggested by

the convertible bond11 literature (see, for example, Andersen and Andreasen

(2000), Andersen and Buffum (2003), and Tsiveriotis and Fernandes (1998);

McConnell and Schwartz (1986) ignore the possibility of bankruptcy). In

Cathcart and El-Jahel (2003), default occurs when a geometric-Brownian-

motion signaling variable, interpreted as the credit quality of the reference

entity, hits a lower default barrier or according to a hazard rate process,

so that both expected and unexpected defaults are accomodated in a single

framework. However, the signaling variable can hardly be identified with eq-

uity value (the default barrier is above the inaccessible zero level and there

is no ‘leverage effect’) and the concern of a possibly freewheeling default

barrier remains. Such a concern is unlikely to have no impact on the calcu-

lation of impied default barriers from market quotes. Hui, Lo, and Tsang

(2003) use a dynamic default barrier to achieve an empowered calibration

of CB spreads. Brigo and Tarenghi (2005a, 2005b) and Brigo and Morini

(2006) employ a flexible time-varying default barrier (the barrier is random

in Brigo and Morini (2006)) to accurately calibrate CDS market data.

Linetsky (2006) builds upon the convertible bond literature to assess

zero-coupon CB prices12 within a geometric-Brownian-motion model with

jump-like bankruptcy where the hazard rate of bankruptcy is a negative

power of the share price. Carr and Linetsky (2006) consider a general setup

of a jump-to-default extended diffusion with arbitrary local volatility and

intensity functions. In particular, they take the stock price to follow a CEV

diffusion, punctuated by a possible jump to zero (the JDCEV model). To

11See Nelken (2000) for a review of hybrid debt-equity instruments.
12Linetsky (2006) considers recovery payments at maturity. Guha and Sbuelz (2005)

argue that a more realistic recovery assumption for corporate bonds is the partial recovery

of the face value at the default date regardless of maturity. See later Propositions (5) and

(6) and their discussion.
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capture the possible positive link between default and volatility, they assume

that the hazard rate of default is an increasing affine function of the instan-

taneous variance of returns on the underlying stock. Linetsky (2006) and

Carr and Linetsky (2006) pursue a risk-neutral pricing analysis overlooking

the study of the existence of some equivalent martingale measure in their

incomplete-markets setting−with CEV-like complete markets, Delbaen and
Shirakawa (2002) derive existence results for a given lower bound on the

CEV parameter. Since default-risk premia are not treated, no discussion of

the objective probability of default and of the pricing-kernel-based choice of

an equivalent martingale measure is attempted. By contrast, the systematic

nature of CEV-like diffusive risk as well as of jump-to-default risk are at the

core of our work. In particular, while proving that the pricing kernels13 we

study do support equivalent martingale measures, we extend the existence

result of Delbaen and Shirakawa (2002) to any negative value of the CEV

parameter. Such a parameter region is particularly relevant for credit risk:

The more negative the CEV parameter, the higher the probability of diffu-

sive default and the more negative the link between equity returns’ volatility

and equity price.

The rest of the work is organized as follows. Section 2 describes the

general model for the equity market, the market price of credit risk, and

its related pricing kernel. Section 3 considers a parsimonious version of

the general model that simultaneously enables analytical credit-risk man-

agement and analytical pricing of credit-sensitive instruments. Section 4

concludes. An Appendix gathers lengthy proofs, analytical formulae, and

13Since the jump to default is not a stopping time of the filtration generated by the

continuous-path part of the stock price, our chosen Radon-Nikodym derivative is simi-

lar to the one coming from dynamic asset pricing theory with uncertain time-horizon,

Blanchet-Scaillet, El Karoui, and Martellini (2005), Proposition 2. Bellamy and Jean-

bleanc (2000) analyze the incompleteness of markets driven by a mixed diffusion, construct

a similar Radon-Nikodym derivative, and, among other contingent claims, study Ameri-

can contracts. Both Blanchet-Scaillet, El Karoui, and Martellini (2005) and Bellamy and

Jeanbleanc (2000) assume bounded local volatility for the stock returns, which is not our

CEV case. They also refrain from considering default-driven time-horizon uncertainty.
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details about model extensions with time-dependent coefficients and about

model-based hedging.

2 Credit risk under the objective probability mea-

sure

A sound assessment of a counterpart’s credit risk under the objective de-

fault probability is crucial for any credit risk management system. Financial

institutions and banks in particular seek it to assist decisions on approving

loans, portfolio monitoring and management reporting, capital allocation,

risk-adjusted performance measurement and loan pricing. Regulatory pres-

sure has been adding motivation. The New Basel Capital Accord allows the

use of internal ratings systems to determine the appropriate level of reserves

to support corporate-exposure activities and other credit risky activities.

We consider an arbitrage-free incomplete market where, under the ob-

jective probability measure P, the reference entity’s share price process {S}
has the following pre-default jump-diffusion dynamics:

dSt
St−

= µP (St−) dt+ σSρ−1
t− dzPt −

³
dNP

t − λP (St−) dt
´
, (1)

where {zP} is a Wiener process and {NP} is a first-jump-stopped marked
point process:

NP
t = 1{t≥τ} ,

τ ≡ inf
©
t : NP

t = 1
ª

(time of the only jump).

The underlying filtration (Ft) is generated by {zP}, {NP}, and ©ζ1{τ<t}ª
and satisfies the usual conditions of right-continuity and P-completeness.
Under (Ft), the jump-risk-pricing random variable ζ (we assume EP [exp(ζ)]
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bounded) and the processes {zP} and {NP} are mutually independent.
While the form ‘σSρ−1

t− ’ of the local diffusive volatility suits the CEV-diffusion

focus of the present work, a general form of the local diffusive volatility is

fully consistent with the no-arbitrage analysis developed in this section, as

long as it is accompanied by a bounded price of diffusive risk and it differs

from zero (see later our assumptions on the adapted process {θ} and see
Lemma (8) in the Appendix). By remaining unchanged under the pricing

measure of choice, such a general form of the local diffusive volatility agrees

with the pricing-measure analysis developed in the sections 2 and 3 of Carr

and Linetsky (2006), pp. 306-311. The time of absorption at zero in the

absence of jumps is ξ, that is

ξ ≡ inf {t : St = 0, Nt = 0} ,
whereas the time of absorption at zero tout court is the minimum between

τ and ξ, that is

τ ∧ ξ = inf {t : St = 0} .
The point 0 is the absorbing state of the share-price process {S}, so that,
once default has occurred, the share price remains at zero,

St = 0, ∀t ≥ τ ∧ ξ.
The other main objects directly or indirectly appearing in Equation (1) are:

S ≡ S0 (current share price),

St− ≡ limε&0 St−ε (left time limit of the share price),

ρ− 1 < 0 (constant elasticity of the diffusive volatility),

T > 0 (finite maturity, in years),

λP (St−) ≥ 0 (jump-to-default intensity),

where the P-intensity λP (St−) is a non-negative bounded function of the
pre-default share price St−. The objective chance of seeing no jump is

EPt
£
1{τ>T}

¤
= EPt

·
exp

µ
−
Z T

t
λP (Su−) du

¶¸
.
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We also introduce the time of absorption at zero of the continuous part {Sc}
of {S}, that is,

ξc ≡ inf {t : Sc
t = 0},

where

dSc
t

Sc
t

= µP (St−) dt+ σ(Sc
t )
ρ−1dzPt + λP (St−) dt. (2)

2.1 Expected equity returns and the market price of credit

risk

We take the bounded function θ (St−) as a vehicle of diffusive risk pricing,
and the random variable ζ and the positive bounded function F (St−) as
vehicles of jump-to-default risk pricing. The share’s instantaneous expected

capital gain conditional upon St−, µP (St−), takes the following percentage
form:

µP (St−) = r − q + θ (St−)σ +
³
EP [exp(ζ)]F (St−)− 1

´
λP (St−) ,

r − q = share’s cost of carry,

θ (St−)σ = premium for the diffusive risk,¡
EP [exp(ζ)]F (St−)− 1

¢
λP (St−) = premium for the jump-like default risk,

where r is the constant riskfree rate, q is the constant dividend yield, σ

(σ > 0) is a constant scale factor for the diffusive volatility.

Proposition (1) states that, in our arbitrage-free incomplete market, the

above specification for µP (St−) is equivalent to fix the description of the
chosen state-price-density process {π}.
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Proposition 1 For t < τ ∧ ξ, the P-dynamics of the state-price-density
process {π} is
dπt
πt−

= −rdt

−θ (St−)S1−ρt− · dzPt
+
³
(exp (ζ)F (St−)− 1) · dNP

t −
³
EP [exp(ζ)]F (St−)− 1

´
λP (St−) dt

´
,

and, for t ≥ τ ∧ ξ,

πt = πτ∧ξ exp (−r (t− τ ∧ ξ)) .

Proof. If the process {π} has the stated P-dynamics (notice that {π}’s
expected P-growth rate is the usual −r as the cumulative premium for the

jump-like default risk,

EP [exp(ζ)]

Z t

0
(F (Su−)− 1)λP (Su−) du,

compensates {π}’s jump process component), then there are no arbitrage
opportunities. Indeed, by virtue of Itô’s Formula, the π-deflated gain pro-

cesses generated by holding one share and by holding one unit of currency

in the money-market account are local P-martingales,

EPt [d (πt · St exp (qt))] = 0, EPt [d (πt · exp (rt))] = 0,

and, hence, the market is arbitrage-free14.

As for diffusive risk, the usually-assumed negative relationship between

the state-price density and the underlying stock price implies positiveness

of the pricing function θ (St−). If the premium for diffusive risk vanishes, it

is either because such a risk is not priced (sup θ ↓ 0) or because the risk is
dimming (σ ↓ 0). As for jump risk, the state price density exhibits a sudden
move from πτ− to πτ in the case of a jump to default (τ ∧ ξ = τ),

πτ = πτ− exp (ζ)F (St−) .
14This rules out arbitrage opportunities involving St exp (qt) and exp (rt), under natural

conditions on dynamic trading strategies. See, for example, Appendix B.2 in Pan (2000).
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Since πτ represents the fair present value of 1 unit of currency received at

the time of jump-like default per unit probability of such an event, only a

structural absence of discontinuity between πτ− and πτ will imply that jump-
to-default risk is not systematic (exp (ζ)F (St−) = 1 P-a.s.). The element
exp (ζ) brings additional flexibility to the sudden move of the state-price

density at the jump-to-default date, on top of the component F (St−) that
relates such a move to the market conditions prevailing just before default.

The degree of freedom contributed by exp (ζ) to the {π}-related specification
of market participants’ preferences can be valuable in applications.

Given the assumed boundedness of θ (St−) and EP [exp (ζ)]F (St−), the
chosen state-price density process does support an equivalent martingale

measure Q. Proposition (2) states that the π-deflated gain process generated
by holding one unit of currency in the money-market account is also a P-
martingale. Its T -time level represents the Radon-Nikodym derivative of Q
with respect to P , πT exp(rT ) = dQ

dP .

Proposition 2 Let πt be defined as above and let T > 0 be any finite time

horizon. Then, the local P-martingale process {ertπt}, is a P-martingale
over [0, T ].

Proof. See the Appendix.

By classic jump-diffusion Cameron-Martin-Girsanov results (see Jacod

and Shiryaev (1988)) the risk-neutral jump-to-default intensity λQ (St−) is
proportional to the objective intensity λP (St−) via the pricing kernel’s rel-
ative jump at the time of unpredictable default:

λQ (St−)
λP (St−)

= EP [exp (ζ)]F (St−) .

Our general shape for the intensities ratio can account for the most recent

empirical findings on the jump-to-default risk price
λQ
λP
. Jump-to-default

risk is priced (
λQ
λP
tends to differ from 1; cfr. Driessen’s (2005) reduced-form

study of corporate debt returns) and its price varies over time with mar-

ket conditions (
λQ
λP
varies with St−; cfr. Berndt, Douglas, Duffie, Ferguson,
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and Schranz’ (2005) and Saita’s (2006) reduced-form studies of default swap

rates and estimated default frequencies and of corporate debt returns, re-

spectively). Interestingly, Berndt, Douglas, Duffie, Ferguson, and Schranz

(2005) find that, while λP tends to have moderate fluctuations over time,

λQ is much more time-varying with peaks at times of markets’ reduced risk-

bearing capacity (see the situation in the third quarter of 2002). These peaks

drive jump-to-defaut risk compensation to relatively high levels. Berndt,

Lookman, and Obreja (2006) extend Vassalou and Xing’ (2004) empirical

analysis to find that the interaction between the pricing kernel and equity

returns is due mainly to the quantity
λQ
λP
, which they also find to exhibit

considerable fluctuation through time.

2.2 The variance-optimal pricing kernel

In an incomplete market, it is natural to look for a best approximation

of a non-attainable claim by the value of a self-financing trading strategy

toghether with an initial injection of capital. A quadratic criterion can be

used to measure the quality of this approximation, in the sense that the

best proxy is taken to be the projection15 of the claim on the value space

generated by self-financing strategies. The initial capital associated to the

best-proxy strategy can be calculated as the P-expectation of the claim
deflated by the variance-optimal pricing kernel process16 {π∗}. Hence, the
variance-optimal kernel not only provides the unique no-arbitrage price of

attainable claims but also yields the value of non-attainable claims with

respect to the reasonable criterion of best quadratic replication. Proposition

15Square integrability is assumed for the claim as well as for the trading strategies’

value. The claim’s terminal date can be the minimum between a fixed maturity and a

credit-sensitive stopping time. Defaultable-claims hedging has been recently studied by,

among others, Biagini and Cretarola (2005, 2006), Bielecki, Jeanblanc and Rutkowski

(2004a, b, c, d).
16Since the pricing kernel {π∗} supports the Radon-Nikodym derivative of the variance-

optimal martingale measure Q∗ w.r.t. the objective measure P, labelling π∗ ‘variance-

optimal kernel’ is a slight abuse of notation that finds justification in keeping the credit-risk

management analysis under its natural context, that is, under P.
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(3) explicitly carachterizes {π∗}’s structure in the context of our market.

Proposition 3 Assume the following majorant restriction on the condi-

tional expected excess return on equity:

0 ≤ µP (St−)− (r − q) < σ2S
2(ρ−1)
t− + λP (St−) .

The variance-optimal state-price-density process {π∗} is such that

θ∗ (St−)S1−ρt− =
µP (St−)− (r − q)

σ2S
2(ρ−1)
t− + λP (St−)

σSρ−1
t− ,

exp (ζ∗)F ∗ (St−) = 1 +
µP (St−)− (r − q)

σ2S
2(ρ−1)
t− + λP (St−)

,

ζ∗ = 0 P-almost surely.

Proof. In our jump-diffusion setting, the variance-optimal martingale

measure coincides with the minimal martingale measure (the Remark 4.1

in Henderson and Hobson (2003) applies and the majorant restriction on

µP (St−) avoids situations in which the minimal martingale measure is signed),
so that {π∗} is also the minimal pricing kernel. The minimal pricing kernel
is such that P-martingales that are orthogonal to the martingale part of the
equity price process {S} remain P-martingales even after being deflated by
the minimal kernel itself (cfr. Schweizer (2001) among others). Hence, {π∗}
must have the following P-dynamics:

dπ∗t
π∗t−

= −rdt+ η∗t

µ
dSt
St−
− µP (St−) dt

¶
,

where dSt
St− −µP (St−) dt is the martingale increment of {S}. The kernel {π∗}

must also correctly price traded securities like equity, that is,

EPt [d (π
∗
t · St exp (qt))] = 0,
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or, equivalently by virtue of Itô’s Formula,

µP (St−) + q − r + η∗t · σ2S2(ρ−1)t− + η∗t · λP (St−) = 0.

The remark that

θ∗ (St−)S1−ρt− = −η∗tσSρ−1
t− and exp (ζ∗)F ∗ (St−)− 1 = −η∗t ,

completes the proof.

The proof emphasizes that {π∗}’s choice is sensible from the point of view
of market players with hedging needs. Since {π∗} is also the minimal kernel,
the P-expectation of a (possibly non-attainable) claim deflated by {π∗} is
not only the initial capital necessary to reproduce the claim’s projection on

the value space of self-financing strategies, but also represents the initial

cost of the trading strategy that yields an exact replica of the claim and

that, although it may require intermediate injections/withdrawals of cash,

is self-financing ‘on average’ and minimizes the conditional size of possible

intermediate injections/withdrawals (cfr. Schweizer (2001) among others).

Most importantly, the choice of the pricing kernel {π∗} serves the purpose
of highlighting a point of definite interest for credit risk managers: The

structure of the pricing kernel at unpredictable default, exp (ζ∗)F ∗ (St−),
implies substantial differences in the ways the objective default intensity

and the risk-neutral intensity depend on equity markets. This is best seen

by taking a constant objective intensity λP and a plausibly countercyclical

risk premium on equity,

cµP (St−)− (r − q) = κ · σ2S2(ρ−1)t− , 0 < κ < 1.

From Proposition (3), the variance-optimal pricing kernel hands over a risk-

neutral default intensity that is increasing in the diffusive local variance of

equity returns:

dλQ∗ (St−) = Ã1 + κ · σ2S2(ρ−1)t−
σ2S

2(ρ−1)
t− + λP

!
λP.

14



This stylized example17 illustrates the empirical finding of Berndt, Douglas,

Duffie, Ferguson, and Schranz (2005) that much of time variation in the risk-

neutral intensity comes from time variation in the jump-to-default risk price

rather than from fluctuations in the objective intensity. They find dramatic

equity-market-linked variation over time in the jump-to-default risk price,

from peaks in the third quarter of 2002 to a significant drop by late 2003

after the bear market in global equities came to an end in March 2003.

A last remark is in order. The variance-optimal pricing kernel links the

market price of diffusive risk with the market price of jump-to-default risk,

so that the conditional expected return on equity becomes:

µP (St−)− (r − q) =

µ
λQ∗ (St−)
λP (St−)

− 1
¶³

σ2S
2(ρ−1)
t− + λP (St−)

´
.

Hence, the intensities ratio implied by the variance-optimal pricing kernel

can be read in the time-varying betas of a conditional constrained regression

of excess stock returns on proxies for the diffusive local variance and for the

objective intensity of default (the kernel choice constrains the time-varying

betas of the two regressors to be equal).

3 Consistency in risk management and pricing: A

parsimonious model

A parsimonious equity-based model that empowers analytical credit risk

management as well as analytical pricing of credit-sensitive instruments is

valuable. Thrifty formulae for the relevant items under P and under Q can
be used to support, among other applications, a consistent and integrated

filtering of information from the equity market, equity options markets, and

from other credit-sensitive markets. Measurement-error issues are trimmed

down by model’s explicit focus on the underlying equity value, a clear market

signal of corporate health.

17Notice that, since λQ∗ (St−) is not a simple power function in the local variance,

the asset-pricing facet of the example is not within the risk-neutral analysis of Carr and

Linetsky (2006).
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Within our general model of Section 2, this is best done by considering

the following parsimonious version of it. We take the P-dynamics of the
share price process {S} to be

dSt
St−

=


r − q+

θσ+¡
EP [exp(ζ)]− 1¢λP

 dt+ σSρ−1
t− dzPt −

³
dNP

t − λPdt
´
, (3)

with all the parameters constant. For the sake of simplicity, we assume that

unpredictable default is always not liked by investors, that is, the pricing

kernel’s ‘percentage jump’ ζ is non-negative. This assumption can be relaxed

at zero computational cost, since ζ can easily be either shifted downwards by

adding a negative constant to it or taken with an opposite sign. The criterion

of parameter parsimony suggests to take for ζ a one-parameter non-negative

distribution. One such distribution is the discrete Poisson distribution with

parameter φ (0 < φ <∞) and with support {0, 1, 2, ...}, so that its quantities
of interest admit a concise closed form,

EP [exp (ζ)] = exp (φ (e− 1)) > 1, EP [ζ] = V arP [ζ] = φ.

Helpfully, the systematic nature of the jump-to-default risk is turned off (the

state-price density does not jump in the case of a jump to default) as the

parameter φ is turned off (φ ↓ 0, that is, ζ = 0 P-a. s.). An alternative par-
simonious choice is the exponential distribution, whose absolute continuity

with respect to the Lebesgue measure greatly enriches ζ’s support.

3.1 Default probabilities

Given a finite maturity T (in years), V P (S, T, 0) denotes the objective de-

fault probability,

V P (S, T, y) ≡ EP0
£
exp (−y(τ ∧ ξ))1{τ∧ξ≤T}

¤
(4)
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being the T -truncated Laplace transform of τ ∧ ξ’s probability density func-
tion under P (P-p.d.f.) with Laplace parameter y (y ≥ 0). The next propo-
sition is a useful result stemming from the independence between {z} and
{N}. It states that the quantity in Definition (4) is the linear convex combi-
nation of the adjusted objective probability of default within T (with weight
λP

y+λP
) and of the T -truncated Laplace transform of ξc’s P-p.d.f. with Laplace

parameter y + λP (with weight
y

y+λP
).

Proposition 4 The quantity V P (S, T, y) admits the following expression:

V P (S, T, y) =
λP

y + λP

h
1− exp (− (y + λP)T )

³
1−EP0

£
1{ξc≤T}

¤´i
+

y

y + λP
EP0
£
exp (− (y + λP) ξ

c)1{ξc≤T}
¤
,

Proof. See the Appendix. The T -truncated Laplace transform of ξc’s

P-p.d.f. with Laplace parameter w ≥ 0,

EP0
£
exp (− (y + λ) ξc)1{ξc≤T}

¤
,

is analytical (see Campi and Sbuelz (2006)). Its closed form is also provided

in the Appendix.

Equation (3) implies the following Q-dynamics for {S}:

dSt
St−

= (r − q) dt+ σSρ−1
t− dzQt −

³
dNQ

t − λQdt
´
, (5)

zQt = zPt +

Z t

0
θS1−ρu− du (Wiener process under Q),

λQ = exp (φ (e− 1))λP.

When the jump-like default risk is not systematic (φ ↓ 0), the risk-neutral
and objective jump-to-default intensities coincide. Let V Q (S, T, y) be the

Q-counterpart of the truncated Laplace P-transform V P (S, T, y), that is,

V Q (S, T, y) ≡ EQ0
£
exp (−y(τ ∧ ξ))1{τ∧ξ≤T}

¤
.

17



As long as diffusive risk and/or jump-to-default risk are systematic (with

ζ ≥ 0), V P (S, T, y) is always smaller than the quantity V Q (S, T, y) for any
y. In particular, systematic risk makes the P-probability of default smaller
than the Q-probability of default. The technical reason is that the change of
measure from P toQ leaves diffusive volatility unchanged but, while boosting
the jump-to-default intensity (λQ > λP), shrinks the away-from-zero drift of

the stock price18:

r − q + λQ < r − q + θσ + λQ = µP + λP.

The financial reason is that the state-price-embedding measure Q weighs

dislikeable states more than the objective measure P.

3.2 Pricing instruments exposed to credit risk

The quantity

V Q (S, T, y) ≡ EQ0
£
exp (−y(τ ∧ ξ))1{τ∧ξ≤T}

¤
is the building block for the analytical pricing of T -year-lived CBs and CDSs.

V Q (S, T, r) represents the fair present value of 1 unit of currency at the refer-

ence entity’s default if default occurs within T . The next proposition gives

an analytical characterization of V Q (S, T, y). An alternative integral ex-

pression for V Q (S, T, y) can be found by suitably specializing19 the Formula

(5.15) in Carr and Linetsky (2006), p. 320.

Proposition 5 The T -truncated Laplace transform of τ ∧ ξ’s Q-p.d.f. with
Laplace parameter y can be expressed as:

V Q (S, T, y) =
λQ

y + λQ

h
1− exp (− (y + λQ)T )

³
1−EQ0

£
1{ξc≤T}

¤´i
+

y

y + λQ
EQ0

£
exp (− (y + λQ) ξ

c)1{ξc≤T}
¤
.

18More discussion on this point can be found, among others, in Duffie and Singleton

(2003).
19The coefficient ‘c’ in Carr and Linetsky (2006), Equation (4.2), p. 311, must be set

to zero.
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Proof. Since the risk-neutral drift r − q + λQ is constant, the proof

is similar to that of Proposition (4). The w-discounted value of 1 unit of

currency at the diffusive default within T ,

EQ0
£
exp (−w · ξc)1{ξc≤T}

¤
,

is analytical20 (see Campi and Sbuelz (2006)).

Proposition (5) engenders analytical pricing of CBs and CDSs. Consider

a reference entity’s CB that has face value F and pays an (annualized)

coupon C at regular 1k -spaced dates Tj up to its maturity T (k is a positive

integer). We take the maturity T to be a rational number of the type n
k (n

is also a positive integer) to keep notation simple.

Proposition 6 Given the recovery rate R at default and given the assump-

tion of Recovery of Face Value at Default (RFV), the fair CB price is

PCB (S, T, r) =
kTX
j=1

1

k
exp (−rTj)

h
1− V Q (S, Tj , 0)

i
C

+exp (−rT )
h
1− V Q (S, T, 0)

i
F

+V Q (S, T, r) ·R · F.

Proof. The result comes from taking the Q-expectation of CB’s dis-
counted payoffs. RFV bears the value V Q (S, T, r)·R ·F for CB’s defaultable
20Davidov and Linetsky (2001) point out that the quantity EQ

0

£
exp (−wξc)1{ξc≤T}

¤
can

be obtained by numerically inverting the closed-form non-truncated Laplace transform

1

a
EQ
0 [exp (− (w + a) ξc)] ,

where the inversion parameter is a > 0, see pp. 953 and 956. The same quantity has been

also computed in Davydov and Linetsky (2003), Equation (155), p. 206, by means of a

spectral expansion (the theory for such an expansion is thoroughly illustrated in Linetsky

(2004)). The implementation of Equation (155) requires the numerical finding of the roots

of a Whittaker function (see Equation (90), p. 193) in concert with the calculation of the

limit ‘limL↓0’, where L is a lower price barrier (L < S).
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part as it implies that the relevant discounted payoff is exp (−r(τ ∧ ξ))1{τ∧ξ≤T}.

R is a fixed historical data input in applications. Under RFV, CB holders

receive the same fractional recovery R of the face value F at default for

CBs issued by the reference entity regardless of maturity. Guha and Sbuelz

(2005) show that the RFV recovery form is consistent with typical bond

indenture language (for example, the claim acceleration clause), defaulted

bond price data (same-seniority bonds exhibit the same market value at

default regardless of maturity), and relevant stylized facts of non-defaulted

bond price data (the low empirical duration of high-yield bonds; see Cornell

and Green (1991) and Schaefer and Strebulaev (2006)).

Consider a CDS related to the CB just described. It offers a protec-

tion payment of (1−R)F in exchange for an (annualized) fee fCDS paid

at regular 1
m -spaced dates up to the contract’s maturity (m is a positive

integer).

Proposition 7 The fair CDS fee is

fCDS (S, T, r) =
V Q (S, T, r) (1−R)PmT

j=1
1
m exp (−rTj) [1− V Q (S, Tj , 0)]

.

Proof. Under Q, the fee fCDS (S, T, r) makes the CDS’ net present

value equal to zero.

The holder of a CB can achieve total recouping of the face value F at de-

fault by being long a CDS. Being short ∂
∂SPCB (S, T, r) shares Delta-hedges

21

against the pre-default price shocks driven by diffusive news. Recent empiri-

cal evidence shows that hedges based on equity portfolios perform reasonably

well for high-yield CBs (see Naik, Trinh, Balakrishnan, and Sen (2003) and

Schaefer and Strebulaev (2006)). Given analytical CB prices, an easy and

21The interest-rate sensitivity of bonds issued by non-high-credit-quality entities is kept

quite subdued by the claim acceleration clause. In any case, parallel shifts of the (flat)

term structure of the interest rates can be hedged by selling a portfolio of default-free

bonds that has interest-rate sensitivity equal to ∂
∂rPCB (S, T, r). Such a hedge ratio can

be easily calculated in our model as PCB’s incremental ratio with respect to r.
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effective measure of the Delta-hedge ratio is PCB’s incremental ratio with

respect to S. More details on model-based CB hedging are in the Appendix.

While extensive calibration22 is beyond the scope of the present work,

a first interesting empirical test is the troubled market situation, as repre-

sented by stock prices and by reliable CDS quotes, of a big American air

carrier like Delta Airline in the year 2002. Industry’s long term problems

emerged soon after the September 11th, 2001, terrorist attacks and the deep

recession in air travel that followed. In addition, America’s top airlines have

suffered from huge pension obligations to retired employees and fierce com-

petition from low-cost carriers. As Delta Airline’s stock price dived from

about $32 in January 2002 to below $12 by the end of December 2002, the

term structure of annualized fees of quarterly CDSs was lifted from lev-

els below 650 basis points to levels above the 1500 basis points and took

a downward-sloping shape. Table 1 exhibits CDS market quotes23 and, in

parentheses, the corresponding model-based quotes.

Table 1: CDS fees and share prices, Delta Airline (2002)

1− year 2− year 3− year share price Date

575.00

(586.51)

636.65

(645.61)

586.98

(626.79)
$32.18 (Jan. 4th, 2002)

1979.42

(2025.80)

1572.92

(1657.53)

1503.58

(1438.37)
$11.90 (Dec. 18th, 2002)

According to a distance-minimization criterion, the calibration of the model-

implied CDS-fee curve to the market curve has been performed by setting

the elasticity of the diffusive volatility ρ − 1 equal to −1.1, the recovery
22For example, see Carr and Wu (2006).
23Data was provided by Fortis Bank, Brussels.
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rate R equal to 65%, and the risk-neutral intensity λQ equal to
1
12.5 . The

parameter σ has been chosen to reproduce the annualized volatility of daily

percentage returns on the Delta stock over the last 3 months, which was

58% on January 4th and 115% on December 18th. The other parameters are

r = 4.25% (close to the average midpoint of the term structure of US default-

free interest rates over the year 2002) and q = 0. Although parsimonious,

the model seems flexible in capturing levels and shapes of CDS fees that

come along with significative states of equity market valuation.

As CDS markets have been growing by leaps and bounds, reliable quotes

can be currently gathered for maturities up to 10 years and the shape of

CDS-fee term structures can be confidently measured for the 1-to-10-year

maturity span. In our last empirical test, the model does show goodness of fit

to different patterns of curve steepness. We consider recent Bloomberg data

on two American giants of the car industry, which has not been unfamiliar

with distress in recent years. For Ford, Table 2 exhibits CDS quotes and, in

parentheses, the corresponding model-based quotes.

Table 2: CDS fees and share price, Ford (December 2nd, 2006)

1− year 3− year 5− year 7− year 10− year share price

145.00

(181.41)

405.50

(411.51)

534.75

(536.33)

572.00

(572.84)

584.25

(584.08)
$8.04

The calibration of the model-implied CDS-fee curve to the market curve has

been implemented by fixing ρ − 1 = −0.22, R = 65%, and λQ =
1
20 . The

parameter σ has been chosen to yield a diffusive volatility of 105%. The

other parameters are r = 5.25% (about the midpoint of the term structure

of US default-free interest rates at the beginning of December 2006) and

q = 0. The model is able to match the marked steepness at short maturities

and fits well the 5-to-10 year curve. Table 3 exhibits the case of General
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Motor.

Table 3: CDS fees and share price, General Motor (December 2nd, 2006)

1− year 3− year 5− year 7− year 10− year share price

130.00

(142.55)

296.25

(287.64)

404.92

(406.25)

443.50

(449.53)

463.50

(467.39)
$29.85

Calibration has been achieved by taking ρ − 1 = −0.225, R = 65%, and

λQ =
1
25 . The parameter σ has been chosen to yield a diffusive volatility of

95%. The other parameters are r = 5.25% and q = 0. The goodness of fit

is fine also in this case. In summary, these empirical pricing tests show that

thrift has empowered the model with analytical results without jeopardizing

its flexibility.’

4 Conclusions

We present an equity-based credit risk model that, by taking as primitive

the most liquid and observable part of a firm’s capital structure, departs

from reduced-form models and overcomes many of the problems suffered by

structural models in credit-risk management, pricing, and hedging appli-

cations. We study systematic credit risk via an explicit modelling of risk

premia. This brings an economic and technical contribution to the cur-

rent literature on equity-based jump-to-default credit risk, which, focused

on pricing-measure concerns, has not been dealing with the economic and

technical treatment of risk premia and of default risk premia in particular.

Technically, we prove that the pricing kernels we study do support equiva-

lent martingale measures, also in unexplored but credit-risk-relevant regions

of the parameters. Economically, we show that sensible pricing kernels for

hedgers can be consistent with mounting empirical evidence that the jump-

to-default risk price heavily loads equity market fluctuations, reaching highs
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during bear equity markets. A conceivable conjecture is that bear equity

markets might, among other things, exacerbate the propensity to be hedged

against default risk even if the increase of such a risk is only marginal. We

then discuss a parsimonious version of our general model that uses the same

technical steps to support analytical credit-risk management as well as an-

alytical pricing of credit-sensitive instruments. Empirical tests show that

parsimony enriches the model with analytical results without jeopardizing

its flexibility.

As the equity price is becoming a popular measure of the ‘dollar’ distance

to default, we believe that future research can capitalize with avail on our

model to investigate credit risk issues that reach over different securities (eq-

uity and other credit-sensitive instruments) and over different applications

(risk management, pricing, and hedging).
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5 Appendix

Proof of Proposition (2)

We will use the following auxiliary result.

Lemma 8 Let ρ < 1, so possibly taking negative values, let Sc be the con-

tinuous part of S with P-dynamics

dSc
t

Sc
t

= (r − q + θ(Sc
t )σ + λP(S

c
t ))dt+ σ(Sc

t )
ρ−1dzPt ,

and let ηt be defined as follows:

ηt ≡ E
µ
−
Z ·

0
θ(Sc

t )(S
c
u)
1−ρdzPu

¶
t

, t ≥ 0. (6)

Then, for any 0 < T < ∞, {η} is a true P-martingale over [0, T ]. In

particular, EP0 [ηT ] = 1.

Proof. Following the proof of Theorem 2.3 in Delbaen and Shirakawa

(2002), the crucial argument for ηt to be a true P-martingale is that the
integral

R T
0 θ(Sc

t )
2(Sc

u)
2(1−ρ)du is finite a.s.. Delbaen and Shirakawa (2002)

show that this is the case for ρ ∈ (0, 1). We notice that this integral remains
finite a.s. even for ρ ≤ 0. Indeed, since the function θ(·) is bounded and Sc

has continuous trajectories, the integral cannot explode.

To simplify the notation, we set eπt ≡ ertπt. From Proposition (1) stating

{π} ’s P-dynamics, it follows that for t < τ ∧ ξ
deπteπt− = −θ(St−)S1−ρt− dzPt +((e

ζF (St−)−1)dNP
t −(EP0 [eζ ]F (St−)−1)λP(St−))dt,

and eπt = eπτ∧ξ for t ≥ τ ∧ ξ. The initial condition is of course eπ0 = 1. We
can write the process eπt as a Doléans-Dade stochastic exponential (see, e.g.,
Protter (1990), p. 78) in the following way:

eπt = E µ−Z ·

0
θ(Su−)S1−ρu− dz

P
u

¶
t∧τ∧ξ

Yt∧τ∧ξ,
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where we set

Yt = exp

X
u≤t

ln(1 + (eζF (Su−)− 1)∆NP
u )−

Z t

0
(EP0 [e

ζ ]F (Su−)− 1)λP(Su−)du
 .

Fix a finite time horizon T > 0. We first prove that the process

E
µ
−
Z ·

0
θ(Su−)S1−ρu− dz

P
u

¶
t∧τ∧T

Yt∧τ∧T , t ≥ 0, (7)

is a P-martingale. Being the stochastic exponential of a local P-martingale,
it is a local P-martingale itself.

To show that it is a P-martingale, it suffices to prove that

Ψ := EP0 [E(−
Z

θS1−ρu− dz
P
u)τ∧TYτ∧T ] <∞.

First, note that, in the stochastic exponential containing the Brownian

part, i.e. E
³
− R ·0 θ(Su−)S1−ρu− dzPu

´
t∧τ∧T

, we can replace the process S with

its continuous part Sc, which is independent of NP and ζ by construction

and has dynamics (6). Conditioning with respect to ζ gives

EP0

·
E
µ
−
Z ·

0
θ(Su−)S1−ρu− dz

P
u

¶
τ∧T

Yτ∧T
¸
= EP0

·
E
µ
−
Z ·

0
θ(Su−)(Sc

u−)
1−ρdzPu

¶
τ∧T

eYτ∧T¸ ,
where eY is the process Y after replacing eζ with its expectation EP0 [e

ζ ], so

that

eYτ∧T = (1+(EP0 [eζ ]F (Sc
τ∧T )−1)1{τ≤T}) exp

½
−(EP0 [eζ ]F (Sc

τ∧T )− 1)
Z τ∧T

0
λP(S

c
u)du

¾
.

Since the functions F and λP are positive and bounded, one has

1 + (EP0 [e
ζ ]F (Sc

τ∧T )− 1)1{τ≤T} ≤ C

for some positive constant C. Moreover, being F (·) ≥ 1, ζ ≥ 0 and λP(·) ≥ 0
we also have

exp

½
−(EP0 [eζ ]F (Sc

τ∧T )− 1)
Z τ∧T

0
λP(S

c
u)du

¾
≤ 1,
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so giving

Ψ ≤ CEP0

·
E
µ
−
Z ·

0
θ(Su−)(Sc

u−)
1−ρdzPu

¶
τ∧T

¸
.

An application of Lemma 8 gives

Ψ ≤ CEP0

·
E
µ
−
Z ·

0
θ(Sc

u−)(S
c
u−)

1−ρdzPu

¶
τ∧T

¸
= C <∞.

This yields that E(− R θ(Su−)S1−ρu− dzPu)t∧τ∧TYt∧τ∧T is a P-martingale.
Doob’s optional sampling theorem applies (e.g., Theorem 18 in Protter

(1990)) so that the process eπt is a P-martingale over the time interval [0, T ].
Being T arbitrary, the proof is now complete.

Proof of Proposition (4)

We have that

P0[τ ∧ ξ > s] = P0[τ > s, ξ > s]

= EP0 [1{τ>s}P0[ξ > s|Nu = 0, u ≤ s]]

= EP0 [1{τ>s}P0[ξc > s|Nu = 0, u ≤ s]]

= P0[τ > s]P0[ξc > s],

where the last equality follows from the independence between ξc and τ .

Hence, the time-s-evaluated P-p.d.f. of the stopping time τ ∧ ξ is

fτ∧ξ(s) = − d
ds
P0[τ ∧ ξ > s]

= − d
ds
(P0[τ > s]P0[ξc > s])

= fτ (s)P0[ξc > s] + fξc(s)P0[τ > s]

= λ exp (−λs)P[ξc > s] + fξc(s) exp (−λs) .
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By Definition (4), the T -truncated Laplace transform of τ ∧ ξ’s P-p.d.f.
with Laplace parameter y is

V P (S, T, y) =

Z T

0
exp (−ys) fτ∧ξ (s) ds

=

Z T

0
exp (−ys) fτ∧ξc (s) ds

= λY1 + Y2,

Y1 =

Z T

0
exp (− (y + λ) s)P0[ξc > s]ds,

Y2 =

Z T

0
exp (− (y + λ) s) fξc (s) ds.

Y2 is the T -truncated Laplace transform of ξc’s P-p.d.f. with Laplace pa-
rameter y + λ,

Y2 = EP0
£
exp (− (y + λ) ξc)1{ξc≤T}

¤
.

Its closed form has been derived by Campi and Sbuelz (2006) and it can be

found below after this proof. An integration by parts gives

Y1 =
−1
y + λ

exp (− (y + λ) s)P0[ξc > s]

¯̄̄̄T
0

−
Z T

0

−1
y + λ

exp (− (y + λ) s)
¡−fξc (s)¢ ds

=
1

y + λ
[1− exp (− (y + λ)T )P0[ξc > T ]]− 1

y + λ
Y2.

This completes the proof.

The objective probability of default at ξc within T

The continuous-path process {ξc} has the following P-dynamics:
dSc

t

Sc
t

= (µP + λP)dt+ σ(Sc
t )
ρ−1dzPt .
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Campi and Sbuelz (2006) have shown that the T -truncated Laplace trans-

form of ξc’s P-p.d.f. with Laplace parameter w (w ≥ 0) has this analytical
expression:

EP0
£
exp (−wξc)1{ξc≤T}

¤
= lim

�↓0

∞X
n=0

an (AP, BP)
³x
2

´n Γ(ν − n, x
2KP

, x
2�)

Γ(ν)
,

for

Γ(ν) ≡
Z +∞

0
uν−1e−udu (Gamma Function),

Γ

µ
ν − n,

x

2KP
,
x

2�

¶
≡

Z x
2�

x
2KP

u−nuν−1e−udu (Generalized Incomplete Gamma Function),

an (AP, BP) ≡ (−1)nC (BP, n)An
P,

C (BP, n) ≡
Qn

k=1 (BP − (k − 1))
n!

1{n≥1} + 1{n=0},

and

x ≡ S2(1−ρ), ν ≡ 1

2(1− ρ)
,

AP ≡ 2 (µP + λP)

σ2(1− ρ)
, KP ≡ σ2(1− ρ)

2 (µP + λP)

³
1− e−2T (µP+λP)(1−ρ)

´
,

BP ≡ w

2 (µP + λP) (1− ρ)
.

Notice that the limit ‘lim�↓0’ can be exchanged with the limit ‘limm↑∞
Pm

n=0’,

that is, the first limit can be brought inside the infinite summation and

computed in closed form term by term. This is because the origin is a
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limit point for the set (0,KP] and the series
P∞

n=0 fn (�) enjoys uniform

convergence on the set (0,KP], with

fn (�) = an (AP, BP)
³x
2

´n Γ(ν − n, x
2KP

, x
2�)

Γ(ν)
.

To see this, notice that |fn (�)| is bounded for ν − n > 0. For ν − n < 0,

start with observing that

Z x
2�

x
2KP

uν−n−1e−udu <

Z ∞

x
2KP

uν−n−1du

=

µ
x

2KP

¶ν−n (−1)
ν − n

.

Consider now the following �-independent majoration for |fn (�)|:

|fn (�)| <
1

Γ(ν)
max

¡
B2P, 1

¢
An
P

³x
2

´nµ x

2KP

¶ν−n (−1)
ν − n

<
1

Γ(ν)
max

¡
B2P, 1

¢
(APKP)

n

µ
x

2KP

¶ν (−1)
ν − n

= gn .

By construction, APKP is positive and smaller than unity and the seriesP∞
n=0 gn converges. It follows that

EP0
£
exp (−wξc)1{ξc≤T}

¤
=

∞X
n=0

an (AP, BP)
³x
2

´n Γ(ν − n, x
2KP

)

Γ(ν)
,

Γ

µ
ν − n,

x

2KP

¶
≡

Z ∞

x
2KP

u−nuν−1e−udu (Incomplete Gamma Function).
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The Incomplete Gamma Function and the Gamma function are built-

in routines in many computing software like MATLAB and Mathematica,

which makes the above expressions fully viable. The analytical expression

of the objective probability of diffusive default within time T is retrieved by

taking w = 0.

The discounted value of cash at ξc within T

The replacement of the objective drift µP+λP with the risk-neutral drift

r−q+λQ in the formula for the T -truncated Laplace transform of ξ
c’s p.d.f.

with Laplace parameter w (w ≥ 0) implies that the discounted value of cash
at ξc within T is

EQ0
£
exp (−w · ξc)1{ξc≤T}

¤
=

∞X
n=0

an (A,B)
³x
2

´n Γ(ν − n, x
2K )

Γ(ν)
,

where

A ≡ 2 (r − q + λQ)

σ2(1− ρ)
, K ≡ σ2(1− ρ)

2 (r − q + λQ)

³
1− e−2T (r−q+λQ)(1−ρ)

´
,

B ≡ w

2 (r − q + λQ) (1− ρ)
.

The CEV model and time-dependent coefficients

In the standard CEV model (i.e. without jumps, λP ↓ 0), Campi and
Sbuelz (2006) obtain an explicit formula for ξc’s truncated Laplace transform

via the identity in law (2.7) in Delbaen and Shirakawa (2002). Using similar
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arguments and defining

m (t) =


µP (t) under P ,

r (t)− q (t) under Q ,

one can extend such an identity to the case of time-dependent coefficients,

so that the following time-changed process

e
R t
0 m(s)ds

³
|ρ|X(2(1−ν))

τ t

´1/|ρ|
, t ≥ 0,

has the same law as the CEV process with time-dependent coefficients m(t)

and σ(t), where X
(δ)
t is a δ−dimensional squared Bessel process and the

deterministic time-change τ t is

τ t =

Z t

0
σ(s)2e−|ρ|

R s
0 m(u)duds, t ≥ 0.

The mentioned identity in law implies the following relation between ξc andbξ = inf ns: X(2(ν−1))
s = 0

o
:

bξ = Z ξc

0
σ2(s)e−2|ρ|

R s
0 m(u)duds.

Unfortunately, the complex non-linearity of the above relation can hardly

be unravelled, so that ξc cannot be be expressed as an explicit function of bξ.
This is true even when, e.g. under Q, σ and q are constant and the interest

rate r(t) is linear in t.

Model-based CB hedging

Full dynamic hedging of a long position in a CB (with recovery rate

R and face value F ) implies being short η units of stocks as well as being

long ξ units of CDSs with given fee f (for recovery rate Z and notional X),

where η and ξ are adapted processes that satisfy the following system of

risk-exposure-nullifying equations:
∂
∂SPCB − η + ξ ∂

∂SH (S, T, r) = 0

R · F − PCB (S, T, r)− η (−S) + ξ [(1− Z)X −H (S, T, r)] = 0
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with H (S, T, r) being the fair present value of a long CDS position:

H (S, T, r) ≡ V Q (S, T, r) (1− Z)X −
mTX
j=1

1

m
exp (−rTj)

h
1− V Q (S, Tj , 0)

i
f.

Our model also states that, in the case of a jump to default (τ ∧ ξ = τ),

pure Delta hedging recoups a fraction

∂
∂SPCB (Sτ−, T − τ−, r)Sτ−
PCB (Sτ−, T − τ−, r)−R · F

of the CB loss suffered at default.
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