A formal calculus on the Riordan skew algebra

Laurent Poinsot, Gérard Henry Edmond Duchamp

To cite this version:

Laurent Poinsot, Gérard Henry Edmond Duchamp. A formal calculus on the Riordan skew algebra. 2009. hal-00361379v1

HAL Id: hal-00361379
https://hal.science/hal-00361379v1
Preprint submitted on 13 Feb 2009 (v1), last revised 3 Mar 2010 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Generalized powers for the Riordan group

L. Poinsot ${ }^{a}$ and G.H.E. Duchamp ${ }^{a}$${ }^{a}$ LIPN - UMR 7030CNRS - Université Paris 13F-93430 Villetaneuse, FranceE-mail:laurent.poinsot@lipn-univ.paris13.fr,ghed@lipn-univ.paris13.fr
Contents
1 Introduction 2
2 The "algebra" $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ of formal power series under multiplication and substitution 3
2.1 Basics on formal power series 3
2.2 "Algebra" of formal power series under substitution B
2.2.1 Right-distributive algebras 7
2.2.2 Substitution of formal power series 6
2.3 Semi-direct product algebra $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ 7
2.3.1 Topological considerations 8
3 Operation of $\mathbb{K}[[\mathrm{x}]]$ on $\mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$ 10
3.1 Power series of elements of $\mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$ 10
3.2 A first attempt to define generalized powers on the Riordan group 15
4 Convenient definition of generalized powers for the Riordan group 16
4.1 The algebra of formal power series $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$ 16
4.2 An infinite number of copies of $\mathbb{K}[[\mathrm{x}]]$ 19

1. Introduction

As defined in [g] a Riordan matrix is an infinite matrix $M^{(\mu, \sigma)}=\left(m_{i, j}\right)_{(i, j) \in \mathbb{N} \times \mathbb{N}} \in \mathbb{C}^{\mathbb{N} \times \mathbb{N}}$ such that for every $j \in \mathbb{N}$, the ordinary generating function of its j th column is equal to $\mu(\mathrm{x}) \sigma(\mathrm{x})^{j}$, or in other terms, for every $j \in \mathbb{N}, \sum_{i \geq 0} m_{i, j} \mathrm{x}^{i}=\mu(\mathrm{x}) \sigma(\mathrm{x})^{j}$, where μ, σ are two formal power series in the variable x such that $\mu=1+\mathrm{x} \nu$ and $\sigma=\mathrm{x}+\mathrm{x}^{2} \tau$ with $\nu, \tau \in \mathbb{C}[[\mathrm{x}]]$. The set of all pairs of such series (μ, σ) is naturally equipped with a semidirect group structure called "Riordan group" which can be univocally transported to the set of all Riordan matrices $M^{(\mu, \sigma)}$. This group also plays a great role in the umbral calculus setting ($[7]$) and is related in an obvious way to Sheffer sequences [8] since the exponential generating function of the ordinary generating function of each column satisfies the following condition [6]: $\sum_{i \geq 0, j \geq 0} m_{i, j} \mathrm{x}^{\mathrm{x}} \frac{\mathrm{y}^{j}}{j!}=\mu(\mathrm{x}) e^{\mathrm{y} \sigma(\mathrm{x})}$. In the papers [园, 6] the authors also consider these Riordan matrices $M^{(\mu, \sigma)}$ under the angle of mathematical and combinatorial physics, where μ and σ were respectively called a "prefunction" and a "substitution" so that they defined a linear "operator of substitution with prefunction" as the mapping $f \mapsto \mu \times(f \circ \sigma)$ where f was any formal power series and \times (resp. \circ) refers to the usual Cauchy product (resp. formal substitution) of formal power series. The Riordan group, the Riordan matrices (or the "matrices of substitution with prefunction" according to the terminology used in [5, [6]) and the substitution with prefunction operators are actually the same objects viewed through different isomorphisms. In the paper [6] was proved the following statement (labelled as "Proposition 4.1 [6]" in the original reference).
Let M be a matrix of substitution with prefunction. Then for all $\lambda \in \mathbb{C}, M^{\lambda}$ also is a
matrix of substitution with prefunction.
In [6] there were no - and still there is not in any other subsequent papers - a complete proof for this result; nevertheless the authors gave sufficient hints to the reader so that he should be able to achieve its own proof: on the one hand, the Riordan group can be seen as a projective limit of algebraic groups [4], on the other hand it can be easily checked that M^{n} is a matrix of substitution with prefunction for each $n \in \mathbb{N}$ whenever M is itself a matrix of substitution with prefunction, therefore using an argument \grave{a} la Zariski, the result that the previous property is true for all $\lambda \in \mathbb{C}$ is obtained. In the year 2008, four open problems in combinatorial physics were officially presented to several members of the French community of combinatorics in the paper [5]. One of them, namely "problem B: Combinatorics of Riordan-Sheffer one-parameters groups" ([5] , p. 4), was the question to provide a combinatorial proof for proposition 4.1 [6] - at least for $\lambda \in \mathbb{Q}$ - without using the Zariski-like argument, directly or indirectly.

In this paper, following another way, we prove the existence of another kind of generalized powers of elements of the Riordan group using binomial series. We do not provide a combinatorial proof for Proposition 4.1 [6], because the two results are sig-
nificantly different, although similar in appearance. The matrix version concerns the existence of generalized powers for elements of the Riordan group but seen as operators on formal power series or, more concretely, generalized powers for Riordan operators. In some sense, these powers are computed outside the Riordan group. In this paper, we establish the same kind of statement but inside the Riordan group, not in its image in the algebra of endomorphisms. The difference between both approaches can be briefly explained: the Riordan group can be embedded in an algebra, namely $\operatorname{End}(\mathbb{C}[[\mathrm{x}]])$, by its representation as operators $\rho_{(\mu, \sigma)}: f \mapsto \mu \times(f \circ \sigma)$; the multiplication by \rtimes of two elements of the Riordan group matching with the composition of their corresponding operators. As operators it is then possible to add two elements of the Riordan group, unfortunatly, in general, $\rho_{\left(\mu_{1}, \sigma_{1}\right)}+\rho_{\left(\mu_{2}, \sigma_{2}\right)} \neq \rho_{\left(\mu_{1}+\mu_{2}, \sigma_{1}+\sigma_{2}\right)}$. Nevetheless $\rho_{(\mu, \sigma)}=\operatorname{Id}_{\mathbb{K}[[\mathbf{x}]]}+\Lambda_{(\mu, \sigma)}$, where $\Lambda_{(\mu, \sigma)} \in \operatorname{End}(\mathbb{K}[[\mathbf{x}]])$ and $\Lambda_{(\mu, \sigma)}$ is not the image, as an operator, of an element of Riordan the group. Finally proposition 4.1 [6] tells that the binomial series $\rho_{(\mu, \sigma)}^{\lambda}:=\sum_{n \geq 0}\binom{\lambda}{n} \Lambda_{(\mu, \sigma)}^{n}$ not only converges in $\operatorname{End}(\mathbb{K}[[\mathrm{x}]])$ (for a certain topology) for every $\lambda \in \mathbb{C}$, but also converges to some Riordan operator $\rho_{(\mu(\lambda), \sigma(\lambda))}$. In our approach, we do not consider the embedding of Riordan pairs into the algebra of endomorphisms. We choose to consider the Riordan group as a subgroup of the monoid (under \rtimes) $\mathbb{K}[[\mathrm{x}]] \rtimes \mathrm{x} \mathbb{K}[[\mathrm{x}]]$, which becomes an algebra-like structure with the componentwise addition $\left(\mu_{1}, \sigma_{1}\right)+\left(\mu_{2}, \sigma_{2}\right)=\left(\mu_{1}+\mu_{2}, \sigma_{1}+\sigma_{2}\right)$. Then we use the binomial series - as in proposition 4.1 [6] - to prove (without any Zariski-like argument!) the existence of generalized powers for Riordan elements. Since our addition does not match with its operators version, it becomes clear why the two notions of generalized powers are so distinct.

More than the existence of generalized powers for the elements of the Riordan group, we also develop a formal power series calculus for the "algebra" $\mathbb{K}[[\mathrm{x}]] \rtimes \mathrm{x} \mathbb{K}[[\mathrm{x}]]$ which makes possible to consider exponentials, logarithms or inverses of some of its elements.

2. The "algebra" $\mathbb{K}[[x]] \rtimes \mathfrak{M}$ of formal power series under multiplication and substitution

2.1. Basics on formal power series

In this paragraph some basics and useful definitions and notations are provided. Many textbooks such as [2, 3, 10, 11] can be used as references on the subject. The meaning of symbol " $:=$ " is an equality by definition. The letter " \mathbb{K} " denote any field of characteristic zero and $\mathbb{K}[[\mathrm{x}]]$ is the \mathbb{K}-algebra of formal power series in one indeterminate x . In some rare occasions, in order to emphasizes the fact that f is a formal power series in the variable \mathbf{x}, we write $f(\mathrm{x})$ rather than $f . \mathbb{K}[[\mathrm{x}]]$ is endowed with the usual (x)-adic topology. In the sequel we suppose that each of its subsets is equipped with the induced topology. The (x)-adic topology is equivalently given by the valuation ν the definition
of which is recalled with some of its main properties. Let $+\infty \notin \mathbb{N}$. Let $f=\sum_{n \geq 0} f_{n} \mathrm{x}^{n}$.

$$
\nu(f):= \begin{cases}+\infty & \text { if } f=0 \tag{1}\\ \inf \left\{n \in \mathbb{N}: f_{n} \neq 0\right\} & \text { otherwise }\end{cases}
$$

For all $f, g \in \mathbb{K}[[\mathrm{x}]]$,
(i) $\nu(f+g) \geq \min \{\nu(f), \nu(g)\}$ with equality in case $\nu(f) \neq \nu(g)$;
(ii) $\nu(f g)=\nu(f)+\nu(g)$
with the usual conventions $+\infty>n$ and $+\infty+n=n+\infty=+\infty$ for every $n \in \mathbb{N},+\infty+\infty=+\infty$. In the sequel we also use the following conventions $(+\infty) n=n(+\infty)=+\infty$ for every $n \in \mathbb{N} \backslash\{0\}$ or $n=+\infty$ and $0 n=n 0=0$ for every $n \in \mathbb{N}$ or $n=+\infty,(+\infty)^{n}=+\infty$ for every $n \in \mathbb{N} \backslash\{0\}$. Sometimes we use the notation " $n>0$ " that means " $n \in \mathbb{N} \backslash\{0\}$ or $n=+\infty$ " when n explicitly refers to the valuation of some series.
With the previous topology, $\mathbb{K}[[\mathrm{x}]]$ becomes a topological algebra (we put on \mathbb{K} the discrete topology). In particular the multiplication is (jointly) continuous.
The coefficient of x^{n} in the series f can be denoted by $\left\langle f, \mathrm{x}^{n}\right\rangle$ so that f should be written as the sum $\sum_{n \geq 0}\left\langle f, \mathrm{x}^{n}\right\rangle \mathrm{x}^{n}$. In particular, $\langle f, 1\rangle$ is the constant term of the series f which is also denoted $f(0)$. For every $n \in \mathbb{N}$ and $f \in \mathbb{K}[[\mathbf{x}]]$ we define as usually

$$
f^{n}:= \begin{cases}1:=x^{0} & \text { if } n=0 \tag{2}\\ \underbrace{f \times \ldots \times f}_{n \text { terms }} & \text { if } \\ n \geq 1\end{cases}
$$

(We use the symbol " \times " to emphasizes the use of the multiplication in $\mathbb{K}[[\mathrm{x}]]$ but in the sequel we will adopt juxtaposition.) Finally, when R is a ring (with unit), $U(R)$ denotes its group of units : for instance, $U(\mathbb{K}[[\mathrm{x}]])$ is the set of series of order zero, i.e., the constant term is not null : $U(\mathbb{K}[[\mathrm{x}]])=\{f \in \mathbb{K}[[\mathrm{x}]]:\langle f, 1\rangle=f(0) \neq 0\}$.

2.2. "Algebra" of formal power series under substitution

For a certain kind of formal power series, an other product can be defined: the formal substitution. Roughly speaking if σ is a series without constant term, that is, an element of the ideal $(\mathrm{x}):=\mathrm{x} \mathbb{K}[[\mathrm{x}]]$, and $f=\sum_{n \geq 0} f_{n} \mathrm{x}^{n}$ is any series, then $f \circ \sigma:=\sum_{n \geq 0} f_{n} \sigma^{n}$ is a well-defined element of $\mathbb{K}[[\mathrm{x}]]$ called the substitution of f and σ. This operation is linear in its first variable but not in the second one. So under this substitution the ideal (x) does not behave as an algebra but as some more general structure we call "right-distributive algebra".

2.2.1. Right-distributive algebras

Let V be a set which is both a \mathbb{K}-vector space and a monoid $\left(V, \mu, 1_{V}\right)$ where $\mu: V \times V \rightarrow$ V is the (associative) multiplication of the monoid and 1_{V} its (two-sided) identity
element. Suppose also that the null vector 0_{V} of V acts as a right-sided absorbing element of V with respect to μ, that is, for every $x \in V, \mu\left(x, 0_{V}\right)=0_{V}$, and that right multiplication with respect to any element of V is a \mathbb{K}-linear mapping, or in other terms, for every $x, y, z \in V$ and every $\alpha, \beta \in \mathbb{K}, \mu(\alpha x+\beta y, z)=\alpha \mu(x, z)+\beta \mu(y, z)$. Such a structure is called a right-distributive \mathbb{K}-algebra. Obviously every (associative) algebra (with unit) can be seen as a right-distributive algebra. In case where $1_{V}=0_{V}$, then V reduces to the trivial vector space $\left\{0_{V}\right\}$ (since for every $x \in V, x=\mu\left(x, 1_{V}\right)=$ $\left.\mu\left(x, 0_{V}\right)=0_{V}\right)$. Some direct and straightforward consequences of the definition are listed below.
(i) Saying that μ is associative is equivalent to $\mu(x, \mu(y, z))=\mu(\mu(x, y), z)$ for every $x, y, z \in V$;
(ii) Since μ admits a (unique) two-sided identity element, for every $x \in V, \mu\left(1_{V}, x\right)=$ $\mu\left(x, 1_{V}\right)=x$;
(iii) Since right multiplications are linear, the property of right distributivity holds: for every $x, y, z \in V, \mu((x+y), z)=\mu(x, z)+\mu(y, z) ;$
(iv) Since right multiplications are linear, the scalar multiplication and μ are "rightsided compatible", that is, for every $\alpha \in \mathbb{K}$ and every $x, y \in V, \alpha \mu(x, y)=$ $\mu(\alpha x, y)=\mu(x \alpha, y) ;$
(v) The field \mathbb{K} does not necessary sit in the center $Z(V):=\{x \in E: \mu(x, y)=$ $\mu(y, x)$ for every $y \in V\}$ of the monoid V because in general it is not true that $\mu\left(\alpha 1_{V}, x\right)=\mu\left(x, \alpha 1_{V}\right) ;$
(vi) 0_{V} is a two-sided absorbing element of V, i.e., for every $x \in V, \mu\left(0_{V}, x\right)=0_{V}=$ $\mu\left(x, 0_{V}\right)$ (the first equality comes from the linearity of right multiplication by x).
The monoid multiplication μ defines a right monoid representation ρ_{μ} of $\left(V, \mu, 1_{V}\right)$ on the vector space V,

$$
\begin{align*}
\rho_{\mu}: V & \rightarrow \operatorname{End}(V) \\
y & \mapsto\left(\begin{array}{rll}
V & \rightarrow & V \\
x & \mapsto & \mu(x, y)
\end{array}\right) \tag{3}
\end{align*}
$$

where $\operatorname{End}(V)$ is the \mathbb{K}-algebra of linear endomorphisms of the vector space V. In other terms, for every $x, y, z \in V,\left(\rho_{\mu}(x) \circ \rho_{\mu}(y)\right)(z)=\rho_{\mu}(\mu(y, x))(z), \rho_{\mu}\left(1_{E}\right)(x)=x$ and for every $\alpha, \beta \in \mathbb{K}, \rho_{\mu}(x)(\alpha y+\beta z)=\alpha \rho_{\mu}(x)(y)+\beta \rho_{\mu}(x)(z)$. As well as the center, the notion of a two-sided ideal of a right-distributive algebra A takes its immediate meaning in this setting : more precisely, a two-sided ideal I of A is a subvector space of A such that $\mu(I \times A) \subseteq I \supseteq \mu(A \times I)$. Moreover we also define the group of units of $A, U(A)$, as the group of invertible elements of the underlying monoid: $U(A):=\left\{x \in A: \exists y \in A, \mu(x, y)=\mu(y, x)=1_{A}\right\}$. In the following, by abuse of language, we will speak about "algebras" in the broader sense of "right-distributive algebras".

2.2.2. Substitution of formal power series

Let $\mathfrak{M}:=(\mathrm{x})=\mathrm{x} \mathbb{K}[[\mathrm{x}]]$ be the principal ideal generated by x . It is the unique maximal ideal of $\mathbb{K}[[\mathrm{x}]]$ and it also generates the (x)-adic topology. Due to the definition of \mathfrak{M} any of its elements has a positive valuation (since the constant term is equal to zero). The operation "o" of formal substitution of power series turns \mathfrak{M} into a (noncommutative) monoid whose (two-sided) identity is \mathbf{x}. If $\sigma \in \mathfrak{M}$ and $n \in \mathbb{N}$, we may define

$$
\sigma^{[n]}:=\left\{\begin{array}{lll}
\mathrm{x} & \text { if } & n=0, \tag{4}\\
\underbrace{\sigma \circ \ldots \circ \sigma}_{n \text { terms }} & \text { if } & n \geq 1 .
\end{array}\right.
$$

The operation of right substitution by an element $\sigma \in \mathfrak{M}$ on $\mathbb{K}[[\mathrm{x}]]$ defines a \mathbb{K}-algebra endomorphism, that is,

$$
\begin{array}{ll}
\mathbb{K}[[\mathrm{x}]] & \rightarrow \mathbb{K}[[\mathrm{x}]] \\
f & \mapsto f \circ \sigma \tag{5}
\end{array}
$$

is a \mathbb{K}-algebra endomorphism of $\mathbb{K}[[\mathrm{x}]]$. Such an endomorphism is an automorphism if, and only if, $\nu(\sigma)=1$ (or, equivalently, the coefficient $\langle\sigma, \mathrm{x}\rangle$ of x in σ is non zero). More generally we can prove that in many cases the above endomorphism is one-to-one.

Lemma 2.1 Let $\sigma \in \mathfrak{M} \backslash\{0\}$. Then the right substitution by σ is one-to-one.
Proof - Suppose the contrary and let $f=\sum_{n \geq 0} f_{n} \mathbf{x}^{n} \in \mathbb{K}[[\mathbf{x}]] \backslash\{0\}$ such that $f \circ \sigma=0$.
Let $m:=\omega(f) \neq \infty$ and $\ell:=\omega(\sigma)>0$. By assumption, we have $m \geq 1$ and $f_{m} \sigma_{\ell}^{m}=0$ which contradicts the fact that \mathbb{K} is a field.

This lemma implies that for every $\sigma, \tau \in \mathfrak{M}$, if $\sigma \circ \tau=0$ then $\sigma=0$ or $\tau=0$. Indeed if $\tau \neq 0$, then by the previous lemma, $\sigma=0$. If $\sigma \neq 0$, then $\tau=0$ are we are done $(\sigma \circ 0=\sigma(0)=0$ because $\omega(\sigma)>0)$ or $\tau \neq 0$, but the later case contradicts the lemma.

The group of invertible elements of the monoid \mathfrak{M} is then precisely given by $\{\sigma \in \mathfrak{M}$: $\langle\sigma, \mathrm{x}\rangle \neq 0\}$, that is, the set of series that "begin with x ". With the usual addition of formal power series, \mathfrak{M} becomes a right-distributive algebra (without zero divisor) which is not an algebra. Indeed, for instance, $x^{2} \circ(x-x)=0$ but $x^{2} \circ x+x^{2} \circ(-x)=2 x^{2} \neq 0$ (since \mathbb{K} is field of characteristic zero), or also $\mathrm{x}^{2} \circ(2 \mathrm{x})=4 \mathrm{x}^{2} \neq\left(2 \mathrm{x}^{2}\right) \circ \mathrm{x}=2 \mathrm{x}^{2}$. The group of units $U(\mathfrak{M})$ of the algebra \mathfrak{M} is the group of invertible elements of the corresponding monoid.
When we put on \mathbb{K} the discrete topology and on \mathfrak{M} the subspace topology, the later is immediately seen as a Hausdorff (since metrizable) topological vector space on the former.

Lemma 2.2 The formal substitution is separately continuous. More precisely, for every $\sigma_{r} \in \mathfrak{M}$,

$$
\begin{align*}
s_{\sigma_{r}}^{(r)}: \mathfrak{M} & \rightarrow \mathfrak{M} \tag{6}\\
\sigma & \mapsto \sigma \circ \sigma_{r}
\end{align*}
$$

is a continuous linear endomorphism and for every $\sigma_{l} \in \mathfrak{M}$,

$$
\begin{align*}
s_{\sigma_{l}}^{(l)}: \mathfrak{M} & \rightarrow \mathfrak{M} \tag{7}\\
\sigma & \mapsto \sigma_{l} \circ \sigma
\end{align*}
$$

is a continuous (nonlinear) mapping.
Proof - Left to the reader.

2.3. Semi-direct product algebra $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$

On the set-theoretic cartesian product $\mathbb{K}[[\mathrm{x}]] \times \mathfrak{M}$ it is possible to define a natural structure of right distributive \mathbb{K}-algebra. This algebra is denoted by $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$. The additive structure of the underlying \mathbb{K}-vector space is the usual one given by the direct sum. The multiplication is defined by the following rule for each $\left(\mu_{1}, \sigma_{1}\right),\left(\mu_{2}, \sigma_{2}\right) \in$ $\mathbb{K}[[\mathrm{x}]] \times \mathfrak{M}$

$$
\begin{equation*}
\left(\mu_{1}, \sigma_{1}\right) \rtimes\left(\mu_{2}, \sigma_{2}\right):=\left(\left(\mu_{1} \circ \sigma_{2}\right) \mu_{2}, \sigma_{1} \circ \sigma_{2}\right) . \tag{8}
\end{equation*}
$$

It is left to the reader to check that this formula defines a noncommutative monoid multiplication (and in particular an associative binary law) with ($1, \mathrm{x}$) as its identity element. As easily one can prove that the group of units of $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ is the semidirect product of the group of units of each algebra. More precisely, $U(\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M})=$ $U(\mathbb{K}[[\mathrm{x}]]) \rtimes U(\mathfrak{M})$ where \rtimes is defined as in the formula (8). It should be noticed that it is under this form that the product \rtimes has been introduced and studied (see (9]). The algebra $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ is far from being a domain because for instance every nonzero element of the two-sided ideal $(0) \times \mathfrak{M}$ is a right zero divisor and every nonzero element of the right ideal $\mathbb{K}[[\mathrm{x}]] \rtimes(0)$ is a left zero divisor: $(\mu, 0) \rtimes(0, \sigma)=(0,0)$.
The algebra \mathfrak{M} may be identified with a two-sided ideal of $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ by the natural injection

$$
\begin{array}{ll}
\mathfrak{M} & \rightarrow \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M} \\
\sigma & \mapsto(0, \sigma) \tag{9}
\end{array}
$$

whereas $\mathbb{K}[[\mathrm{x}]]$ can only be identified separately as a submonoid and as a subvector space of $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ by the respective one-to-one homomorphisms (the first one is a morphism of monoids, and the second one is a linear mapping)

$$
\begin{array}{ll}
\mathbb{K}[[\mathrm{x}]] & \rightarrow \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M} \tag{10}\\
\mu & \mapsto(\mu, \mathbf{x})
\end{array}
$$

and

$$
\begin{array}{ll}
\mathbb{K}[[\mathrm{x}]] & \rightarrow \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M} \tag{11}\\
\mu & \mapsto(\mu, 0)
\end{array}
$$

It obviously holds that each of these embeddings is also continuous.

We define the generalized product in a usual fashion. For each $n \in \mathbb{N}$ and $(\mu, \sigma) \in$ $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$, we put

$$
(\mu, \sigma)^{\{n\}}:= \begin{cases}(1, \mathbf{x}) & \text { if } n=0 \tag{12}\\ \underbrace{(\mu, \sigma) \rtimes \ldots \rtimes(\mu, \sigma)}_{n \text { terms }} & \text { if } n \geq 1 .\end{cases}
$$

The following easy lemma will be useful in the sequel.
Lemma 2.3 For each $(\mu, \sigma) \in \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}^{+}$and $n \in \mathbb{N}$,

$$
(\mu, \sigma)^{\{n\}}= \begin{cases}(1, \mathrm{x}) & \text { if } n=0 \tag{13}\\ \left(\prod_{k=1}^{n}\left(\mu \circ \sigma^{[k-1]}\right), \sigma^{[n]}\right) & \text { if } n \geq 1\end{cases}
$$

In particular if $\sigma=0$, then

$$
(\mu, 0)^{\{n\}}= \begin{cases}(1, \mathrm{x}) & \text { if } n=0 \tag{14}\\ \left(\mu \mu(0)^{n-1}, 0\right) & \text { if } n \geq 1\end{cases}
$$

(Under the convention $\alpha^{0}:=1$ for every $\alpha \in \mathbb{K}$ in such a way that $(\mu, 0)^{\{1\}}=$ $\left(\mu \mu(0)^{0}, 0\right)=(\mu, 0)$ even for $\mu(0)=0$.)
If $\mu=0$, then

$$
(0, \sigma)^{\{n\}}= \begin{cases}(1, \mathrm{x}) & \text { if } n=0 \tag{15}\\ \left(0, \sigma^{[n]}\right) & \text { if } n \geq 1\end{cases}
$$

Proof - Omitted.

2.3.1. Topological considerations

In the remainder of the paper, we suppose that the underlying set $\mathbb{K}[[\mathrm{x}]] \times \mathfrak{M}$ of the algebra $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ is equipped with the product topology in such a way that the underlying vector space is a Hausdorff (since the topology is metrizable) topological vector space (when is put on \mathbb{K} the discrete topology). Regarding the multiplicative structure, the following result is proved.

Lemma $2.4 \rtimes$ is separately continuous. More precisely, for every $\left(\mu_{r}, \sigma_{r}\right) \in \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$, the mapping

$$
\begin{array}{rll}
R_{\left(\mu_{r}, \sigma_{r}\right)}: & \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M} & \rightarrow \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M} \\
& (\mu, \sigma) & \mapsto(\mu, \sigma) \rtimes\left(\mu_{r}, \sigma_{r}\right) \tag{16}
\end{array}
$$

is a continuous linear endomorphism, and for every $\left(\mu_{l}, \sigma_{l}\right) \in \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$,

$$
\begin{array}{rll}
L_{\left(\mu_{l}, \sigma_{l}\right)}: & \mathbb{K}[[\mathbf{x}]] \rtimes \mathfrak{M} & \rightarrow \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M} \tag{17}\\
& (\mu, \sigma) & \mapsto\left(\mu_{l}, \sigma_{l}\right) \rtimes(\mu, \sigma)
\end{array}
$$

is a (nonlinear) continuous mapping.
Before we achieve the proof of this result, we need another easy lemma.

Lemma 2.5 Let $(\mu, \sigma) \in \mathbb{K}[[\mathrm{x}]] \times \mathfrak{M}$. Then $\nu(\mu \circ \sigma)=\nu(\mu) \nu(\sigma)$. In particular, for every $n \in \mathbb{N}, \nu\left(\sigma^{[n]}\right)=\nu(\sigma)^{n}$. (Under the conventions recalled in subsect. 2..1: $(+\infty) n=n(+\infty)=+\infty$ if $n \in \mathbb{N} \backslash\{0\}$ or $n=+\infty, 0 n=n 0=0$ if $n \in \mathbb{N}$ or $n=+\infty$, $(+\infty)^{n}=+\infty$ for every $n \in \mathbb{N} \backslash\{0\}$.)

Proof - Let us begin to prove that $\nu(\mu \circ \sigma)=\nu(\mu) \nu(\sigma)$.
(i) Suppose that $\mu=0$. Then $\mu \circ \sigma=0$. Since $\nu(0)=+\infty, \nu(\sigma)>0$ and $(+\infty) n=n(+\infty)=+\infty$ for every $n>0$, the result follows;
(ii) Suppose that $\mu \neq 0$. If $\sigma=0$, then $\nu \circ \sigma=\mu(0)$. Now if $\mu(0)=0$, that is, $\nu(\mu)>0$, then $\nu(\mu(0))=+\infty=\nu(\mu)(+\infty)=\nu(\mu) \nu(0)$. If $\mu(0) \neq 0$, that is, $\nu(\mu)=0$, then $\nu(\mu(0))=0=\nu(\mu) 0=\nu(\mu) \nu(\sigma)$. Finally let suppose that $\sigma \neq 0$. Because $\mu \neq 0$, there is a $n_{0} \in \mathbb{N}$ such that $n_{0}=\nu(\mu)$ and $\mu=\sum_{n \geq n_{0}} \mu_{n} \mathrm{x}^{n}$ with $\mu_{n_{0}} \neq 0$. By definition, $\mu \circ \sigma=\sum_{n \geq n_{0}} \mu_{n} \sigma^{n}$. But $\nu\left(\sigma^{n}\right)=n \nu(\sigma)$ for every $n \in \mathbb{N}$. Since $\nu(\sigma)>0$, for all $m>n, \nu\left(\sigma^{m}\right)>\nu\left(\sigma^{n}\right)$ and in particular for every $n>n_{0}=\nu(\mu)$, $\nu\left(\sigma^{n}\right)>\nu\left(\sigma^{n_{0}}\right)=n_{0} \nu(\sigma)=\nu(\mu) \nu(\sigma)$ and for every $n<n_{0}, \mu_{n} \sigma^{n}=0$.
Now let us prove the second statement of the lemma. Let $\sigma \in \mathfrak{M}$ and $n \in \mathbb{N}$.
(i) Suppose that $\sigma=0$. Therefore $0^{[n]}=\left\{\begin{array}{lll}\mathrm{x} & \text { if } & n=0, \\ 0 & \text { if } & n \in \mathbb{N} \backslash\{0\}\end{array}\right.$ which implies that $\nu\left(0^{[n]}\right)=\left\{\begin{array}{lll}1 & \text { if } & n=0, \\ +\infty & \text { if } & n \in \mathbb{N} \backslash\{0\}\end{array}\right.$. The expected result follows;
(ii) Suppose that $\sigma \neq 0$ (that is to says that $\nu(\sigma) \in \mathbb{N} \backslash\{0\}$). $\nu\left(\sigma^{[0]}\right)=\nu(\mathrm{x})=1=\nu(\sigma)^{0}$. Suppose by induction that $\nu\left(\sigma^{[n]}\right)=\nu(\sigma)^{n}$. Then $\nu\left(\sigma^{[n+1]}\right)=\nu\left(\sigma^{[n]} \circ \sigma\right)=$ $\nu\left(\sigma^{[n]}\right) \nu(\sigma)$ (according to the first statement of the lemma) $=\nu(\sigma)^{n+1}$ by induction.

Proof - (of lemma 2.4)
(i) Let us begin with $R_{\left(\mu_{r}, \sigma_{r}\right)}$: it is already known to be linear. Therefore we only need to check continuity at zero. Let $\left(\left(\mu_{n}, \sigma_{n}\right)\right)_{n \in \mathbb{N}}$ be a sequence of elements of $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ converging to $(0,0)$, which, by definition of the product topology, is equivalent to $\nu\left(\mu_{n}\right)$ and $\nu\left(\sigma_{n}\right)$ both converge to $+\infty$. But $\left(\mu_{n}, \sigma_{n}\right) \rtimes\left(\mu_{r}, \sigma_{r}\right)=\left(\left(\mu_{n} \circ \sigma_{r}\right) \mu_{r}, \sigma_{n} \circ \sigma_{r}\right)$. Now $\nu\left(\left(\mu_{n} \circ \sigma_{r}\right) \mu_{r}\right)=\nu\left(\mu_{n} \circ \sigma_{r}\right)+\nu\left(\mu_{r}\right)=\nu\left(\mu_{n}\right) \nu\left(\sigma_{r}\right)+\nu\left(\mu_{r}\right)$, according to lemma 2.5. Because $\nu\left(\sigma_{r}\right)>0$, it follows that $\nu\left(\left(\mu_{n}, \sigma_{n}\right) \rtimes\left(\mu_{r}, \sigma_{r}\right)\right)$ converges to $+\infty$ as $n \rightarrow+\infty$. So the first component of $R_{\left(\mu_{r}, \sigma_{r}\right)}\left(\mu_{n}, \sigma_{n}\right)$ converges to zero as $n \rightarrow+\infty$. Moreover $\nu\left(\sigma_{n} \circ \sigma_{r}\right)=\nu\left(\sigma_{n}\right) \nu\left(\sigma_{r}\right)$, and for the same reason as the first component, the second component also converges to zero. By definition of the product topology of two metrizable topologies, the result is proved;
(ii) Let us explore the case of $L_{\left(\mu_{l}, \sigma_{l}\right)}$: we begin to prove that the following mapping is continuous.

$$
\begin{align*}
\ell_{\mu_{l}}: \mathfrak{M} & \rightarrow \mathbb{K}[[\mathbf{x}]] \\
\sigma & \mapsto \mu_{l} \circ \sigma \tag{18}
\end{align*}
$$

Let $\left(\sigma_{n}\right)_{n \in \mathbb{N}} \in \mathfrak{M}^{\mathbb{N}}$ which converges to $\sigma \in \mathfrak{M}$. We should prove that $\mu_{l} \circ \sigma_{n} \rightarrow \mu_{l} \circ \sigma$ which actually is immediate. Therefore $\ell_{\mu_{l}}$ is continuous. Now we need a general result recalled below.
Let $X_{1}, X_{2}, Y_{1}, Y_{2}$ and Z be topological spaces and $h: Y_{1} \times Y_{2} \rightarrow Z$ be a continuous mapping ($Y_{1} \times Y_{2}$ with the product topology). Let $f_{i}: X_{i} \rightarrow Y_{i}$ for $i=1,2$ be continuous mappings. Then the mapping

$$
\begin{align*}
& f_{1} \otimes_{h} f_{2}: \quad X_{1} \times X_{2} \quad \rightarrow \quad Z \\
& \left(x_{1}, x_{2}\right) \quad \mapsto \quad h\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right) \tag{19}
\end{align*}
$$

is also continuous ($X_{1} \times X_{2}$ with the product topology).
It is possible to take advantage of this later general statement in our case because the first coordinate function of $L_{\left(\mu_{l}, \sigma_{l}\right)}$ is equal to Id $\otimes_{\times} \ell_{\mu_{l}}$ (where Id stands for the identity mapping of $\mathbb{K}[[\mathrm{x}]]$ and \times for the usual multiplication of $\mathbb{K}[[\mathrm{x}]]$ which is known to be continuous). Finally the second coordinate function of $L_{\left(\mu_{l}, \sigma_{l}\right)}$ is

$$
\begin{array}{lll}
\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M} & \rightarrow & \mathfrak{M} \tag{20}\\
(\mu, \sigma) & \mapsto & \sigma_{l} \circ \sigma
\end{array}
$$

which is continuous by lemma 2.2 since for every (μ, σ) it is equal to $s_{\sigma_{l}}^{(l)}(\sigma)$. By definition of the product topology, continuity of both coordinate functions implies the continuity of $L_{\left(\mu_{l}, \sigma_{l}\right)}$ itself.

3. Operation of $\mathbb{K}[[\mathrm{x}]]$ on $\mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$

3.1. Power series of elements of $\mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$

Generally speaking a formal power series $f:=\sum_{n \geq 0} f_{n} \mathrm{x}^{n}$ is said to operate on an element a of a topological (associative) algebra A (with unit 1_{A}) if and only if the series $\sum_{n \geq 0} f_{n} a^{n}$ (with $a^{0}:=1_{A}$ and $a^{n+1}:=a a^{n}$) converges in the topology of A. If a each element of a given subset $S \subseteq \mathbb{K}[[\mathrm{x}]]$ operates on a, we say that S operates on a. Finally if S operates on each element of $T \subseteq A$, then we say that S operates on T. In this section we prove that there exists a two-sided ideal of $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ on which every element of $\mathbb{K}[[\mathrm{x}]]$ operate.

We define $\mathfrak{M}^{+}:=\{\sigma \in \mathfrak{M}: \nu(\sigma)>1\}$, or in other terms, an arbitrary element σ of \mathfrak{M}^{+}takes the form $\sigma=\alpha \mathrm{x}^{2}+\mathrm{x}^{3} f$, where $f \in \mathbb{K}[[\mathrm{x}]] . \mathfrak{M}^{+}$is a two-sided ideal of
\mathfrak{M}. Indeed, $\nu(\sigma+\tau) \geq \min \{\nu(\sigma), \nu(\tau)\}>1$ and $\alpha \sigma \in \mathfrak{M}^{+}$for every $\sigma, \tau \in \mathfrak{M}^{+}$and every $\alpha \in \mathbb{K}$. Now let $\sigma \in \mathfrak{M}$ and $\sigma_{+} \in \mathfrak{M}^{+}$, then $\nu\left(\sigma \circ \sigma_{+}\right)=\nu(\sigma) \nu\left(\sigma_{+}\right)>1$ and $\nu\left(\sigma_{+} \circ \sigma\right)=\nu\left(\sigma_{+}\right) \nu(\sigma)>1$ (since $\nu\left(\sigma_{+}\right) \geq 1$) which ensure that \mathfrak{M}^{+}is a two-sided ideal of \mathfrak{M}.

In a similar way we define $\mathbb{K}[[\mathrm{x}]]^{+}:=\mathfrak{M}$. We use another name for \mathfrak{M} because in the subsequent part of this paper its multiplicative structure will be important, at least more important than its compositional structure. $\mathbb{K}[[\mathrm{x}]]^{+}$is a two-sided ideal of $\mathbb{K}[[\mathrm{x}]]$. Indeed, $\nu(\lambda+\mu) \geq \min \{\nu(\lambda), \nu(\mu)\}>0$ and $\alpha \mu \in \mathbb{K}[[\mathrm{x}]]^{+}$for every $\lambda, \mu \in \mathbb{K}[[\mathrm{x}]]^{+}$and $\alpha \in \mathbb{K}$. Now let $\mu \in \mathbb{K}[[\mathrm{x}]]$ and $\mu_{+} \in \mathbb{K}[[\mathrm{x}]]^{+}$. Then $\nu\left(\mu \mu_{+}\right)=\nu(\mu)+\nu\left(\mu_{+}\right)>0$ which ensures that $\mathbb{K}[[\mathrm{x}]]^{+}$is an ideal of the commutative algebra $\mathbb{K}[[\mathrm{x}]]$.

Now let show that $\mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$is itself a two-sided ideal of $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$. Obviously regarding the vector space structure, there is nothing to prove. Let $(\mu, \sigma) \in \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ and $\left(\mu_{+}, \sigma_{+}\right) \in \mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$. We need to prove that $(\mu, \sigma) \rtimes\left(\mu_{+}, \sigma_{+}\right)$and $\left(\mu_{+}, \sigma_{+}\right) \rtimes(\mu, \sigma)$ both belong to $\mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$. On the one hand, the former product is equal to $\left(\left(\mu \circ \sigma_{+}\right) \mu_{+}, \sigma \circ \sigma_{+}\right)$. Since we already know that $\sigma \circ \sigma_{+} \in \mathbb{K}[[\mathrm{x}]]^{+}$, we only need to establish that $\nu\left(\left(\mu \circ \sigma_{+}\right) \mu_{+}\right)>0$. But $\nu\left(\left(\mu \circ \sigma_{+}\right) \mu_{+}\right)=\nu\left(\mu \circ \sigma_{+}\right)+\nu\left(\mu_{+}\right)=\nu(\mu) \mu\left(\sigma_{+}\right)+\nu\left(\mu_{+}\right)>0$. On the other hand, $\left(\mu_{+}, \sigma_{+}\right) \rtimes(\mu, \sigma)=\left(\left(\mu_{+} \circ \sigma\right) \mu, \sigma_{+} \circ \sigma\right)$ and as in the first case, the only fact to check is $\nu\left(\left(\mu_{+} \circ \sigma\right) \mu\right)>0$. But $\nu\left(\left(\mu_{+} \circ \sigma\right) \mu\right)=\nu\left(\mu_{+}\right) \nu(\sigma)+\nu(\mu)>0$ (because both $\nu\left(\mu_{+}\right)$and $\nu(\sigma)$ are positive $)$.

Independently from algebraic considerations, it is possible to prove that each element of $\mathbb{K}[[\mathrm{x}]]$ operates on $\mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$. Let $f=\sum_{n \geq 0} f_{n} \mathrm{x}^{n} \in \mathbb{K}[[\mathrm{x}]]$ and $\left(\mu_{+}, \sigma_{+}\right) \in \mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$. The argument to prove this fact is partially based on the following lemma.
Lemma 3.1 $\mathbb{K}[[\mathrm{x}]]$ operates on \mathfrak{M}^{+}. More precisely, for each $f=\sum_{n \geq 0} f_{n} \mathrm{x}^{n} \in \mathbb{K}[[\mathrm{x}]]$ and each $\sigma_{+} \in \mathfrak{M}^{+}, \sum_{n \geq 0} f_{n} \sigma_{+}^{[n]} \in \mathfrak{M}$.

Proof - The goal to prove is the fact that for every $f=\sum_{n \geq 0} f_{n} \mathrm{x}^{n} \in \mathbb{K}[[\mathrm{x}]]$ and every $\sigma_{+} \in \mathfrak{M}^{+}, \sum_{n \geq 0} f_{n} \sigma_{+}^{[n]}$ is a well-defined element of \mathfrak{M}. According to lemma 2.5, $\nu\left(\sigma_{+}^{[n]}\right)=\nu\left(\sigma_{+}\right)^{n} \geq 2^{n}$ for every $n \in \mathbb{N}$. Therefore $\lim _{n \rightarrow+\infty} \nu\left(\sigma_{+}^{[n]}\right)=+\infty$, so that the series $\sum_{n \geq 0} f_{n} \sigma_{+}^{[n]}$ converges in $\mathbb{K}[[\mathbf{x}]]$. Moreover it is easy to check that $\left\langle\sum_{n \geq 0} f_{n} \sigma_{+}^{[n]}, 1\right\rangle=0$ and $\left\langle\sum_{n \geq 0} f_{n} \sigma_{+}^{[n]}, \mathrm{x}\right\rangle=f_{0}$ (because $\sigma_{+}^{[0]}=\mathrm{x}$). The convergence in \mathfrak{M} follows.

Proposition 3.2 $\mathbb{K}[[\mathrm{x}]]$ operates on $\mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$. More precisely for every $f=$ $\sum_{n \geq 0} f_{n} \mathrm{x}^{n} \in \mathbb{K}[[\mathrm{x}]]$ and every $\left(\mu_{+}, \sigma_{+}\right) \in \mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}, \sum_{n \geq 0} f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}} \in \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$.

Proof - The goal to be proved is that $\sum_{n \geq 0} f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}$ is a convergent series in $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ whenever $\left(\mu_{+}, \sigma_{+}\right) \in \mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$. A proof by case follows.
(i) $\mu_{+}=\sigma_{+}=0$: For every $n>0,(0,0)^{\{n\}}=(0,0)$. Therefore $\sum_{n \geq 0} f_{n}(0,0)^{\{n\}}=$ $f_{0}(1, \mathrm{x}) \in \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M} ;$
(ii) $\mu_{+}=0$ and $\sigma_{+} \neq 0$: According to lemma 2.3, for every $n>0,\left(0, \sigma_{+}\right)^{\{n\}}=\left(0, \sigma_{+}^{[n]}\right)$, so we only need to prove that the series $\sum_{n \geq 0} f_{n} \sigma_{+}^{[n]}$ is convergent in \mathfrak{M} which is the case by lemma 3.1 since $\sigma_{+} \in \mathfrak{M}^{+}$;
(iii) $\mu_{+} \neq 0$ and $\sigma_{+}=0$: According to lemma 2.3, for every $n>0,\left(\mu_{+}, 0\right)^{\{n\}}=$ $\left(\mu_{+} \mu_{+}(0)^{n-1}, 0\right)$, so we only need to prove that the series $f_{0}+\sum_{n \geq 1} f_{n} \mu_{+} \mu_{+}(0)^{n-1}$ converges in $\mathbb{K}[[\mathrm{x}]]$. Since $\mu_{+} \in \mathbb{K}[[\mathrm{x}]]^{+}, \mu_{+}(0)=0$ so that $f_{1} \mu_{+} \mu_{+}(0)^{0}=f_{1} \mu_{+}$and $f_{n} \mu_{+} \mu_{+}(0)^{n-1}=0$ for every $n>1$. Therefore $f_{0}+\sum_{n \geq 1} f_{n} \mu_{+} \mu_{+}(0)^{n}=f_{0}+f_{1} \mu_{+} \in$ $\mathbb{K}[[\mathrm{x}]] ;$
(iv) $\mu_{+} \neq 0$ and $\sigma_{+} \neq 0$: Using lemmas 2.3 and 3.1 it already holds that the second component of the series is convergent in \mathfrak{M} (since $\sigma_{+} \in \mathfrak{M}^{+}$). Let us study the first component. For every $n>0$, taking into account lemma 2.3, $f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}=f_{n}\left(\prod_{k=1}^{n}\left(\mu_{+} \circ \sigma_{+}^{[k-1]}\right), \sigma_{+}^{[n]}\right)$. We need to evaluate the valuation of $\prod_{k=1}^{n}\left(\mu_{+} \circ \sigma_{+}^{[k-1]}\right): \quad \nu\left(\prod_{k=1}^{n}\left(\mu_{+} \circ \sigma_{+}^{[k-1]}\right)\right)=\nu\left(\mu_{+}\right) \sum_{k=1}^{n} \nu\left(\sigma_{+}\right)^{k-1} \geq \nu\left(\mu_{+}\right) \sum_{k=1}^{n} 2^{k-1}$. Since $\nu\left(\mu_{+}\right)>0$, it follows that $\lim _{n \rightarrow+\infty} \nu\left(\prod_{k=1}^{n}\left(\mu_{+} \circ \sigma_{+}^{[k-1]}\right)\right)=+\infty$ which ensures the convergence of the first component. Therefore the series $\sum_{n \geq 0} f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}$ is componentwise convergent and so is convergent in the product topology of $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$.

The above proposition guarantees the existence of, for instance, $\exp \left(\mu_{+}, \sigma_{+}\right):=$ $\sum_{n \geq 0} \frac{1}{n!}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}} \in \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ or $\sum_{n \geq 0}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}} \in \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ whenever $\left(\mu_{+}, \sigma_{+}\right) \in$ $\mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$. We can note that the later series generally does not define $\left((1, \mathrm{x})-\left(\mu_{+}, \sigma_{+}\right)\right)^{\{-1\}}$ as we would expect since in general $\left((1, \mathrm{x})-\left(\mu_{+}, \sigma_{+}\right)\right) \rtimes$
$\left(\sum_{n=0}^{m}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}\right) \neq\left(\sum_{n=0}^{m}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}\right) \rtimes\left((1, \mathrm{x})-\left(\mu_{+}, \sigma_{+}\right)\right)$because of noncommutativity of \rtimes and its lack of left distributivity. Nevertheless it will soon be shown (see section (4) that $\sum_{n \geq 0}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}$ is the inverse of $\left((1, \mathbf{x})-\left(\mu_{+}, \sigma_{+}\right)\right)$for another kind of multiplication.

As another direct consequence of the above proposition, we have the following result. Let $(\mu, \sigma) \in \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ and $f=\sum_{n \geq 0} f_{n} \mathrm{x}^{n} \in \mathbb{K}[[\mathrm{x}]]$. Then $\sum_{n \geq 0} f_{n}((\mu, \sigma)-(\mu(0),\langle\sigma, \mathrm{x}\rangle \mathrm{x}))^{n} \in$ $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$. This result is indeed straightforward because $(\mu, \sigma)-(\mu(0),\langle\sigma, \mathrm{x}\rangle \mathrm{x}) \in$ $\mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$whenever $(\mu, \sigma) \in \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$.

The operation of $\mathbb{K}[[\mathrm{x}]]$ on $\mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$gives rise to the following mapping.

$$
\begin{align*}
\Psi: & \mathbb{K}[[\mathrm{x}]] \rtimes\left(\mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}\right) & \rightarrow \mathbb{K}[[\mathbf{x}]] \rtimes \mathfrak{M} \\
& \left(f,\left(\mu_{+}, \sigma_{+}\right)\right) & \mapsto \sum_{n \geq 0} f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}} \tag{21}
\end{align*}
$$

where $f=\sum_{n \geq 0} f_{n} \mathrm{x}^{n}$. This operation has some interesting properties stated below, even if they are not important for the main subject of the paper.

Lemma 3.3 Let $\left(\mu_{+}, \sigma_{+}\right) \in \mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$. We define

$$
\begin{aligned}
& \phi_{\left(\mu_{+}, \sigma_{+}\right)}: \mathbb{K}[[\mathrm{x}]] \\
& \rightarrow \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M} \\
& f \\
& \mapsto \Psi\left(f,\left(\mu_{+}, \sigma_{+}\right)\right) .
\end{aligned}
$$

$\phi_{\left(\mu_{+}, \sigma_{+}\right)}$is a vector space homomorphism that maps x to $\left(\mu_{+}, \sigma_{+}\right)$. Moreover if $f \in \mathfrak{M}$, then $\phi_{\left(\mu_{+}, \sigma_{+}\right)}(f) \in \mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$.

Proof - Let $f=\sum_{n \geq 0} f_{n} \mathrm{x}^{n}$ and $g=\sum_{n \geq 0} g_{n} \mathrm{x}^{n}$ be two formal series. We have $f+g=\sum_{n \geq 0}\left(f_{n}+g_{n}\right) \mathrm{x}^{n}$. Besides $\phi_{\left(\mu_{+}, \sigma_{+}\right)}(f)=\sum_{n \geq 0} f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}$ and $\phi_{\left(\mu_{+}, \sigma_{+}\right)}(g)=\sum_{n \geq 0} g_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}$ and finally $\phi_{\left(\mu_{+}, \sigma_{+}\right)}(f+g)=\sum_{n \geq 0}\left(f_{n}+g_{n}\right)\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}=$ $\sum_{n \geq 0}\left(f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}+g_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}\right)=\sum_{n \geq 0} f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}+\sum_{n \geq 0} g_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}$ (the last equality is due to the fact that $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ is a topological group). Scalar multiplication by $\alpha \in \mathbb{K}$ is continuous on $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ and one has $\phi_{\left(\mu_{+}, \sigma_{+}\right)}(\alpha f)=\sum_{n \geq 0} \alpha f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}=$ $\alpha \sum_{n \geq 0} f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}=\alpha \phi_{\left(\mu_{+}, \sigma_{+}\right)}(f)$. Finally the last statement is rather straightforward.

In order to deeply study $\phi_{\left(\mu_{+}, \sigma_{+}\right)}$another easy lemma is needed.

Lemma 3.4 Let $\left(\mu_{+}, \sigma_{+}\right) \in \mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}, g \in \mathbb{K}[[\mathrm{x}]]$ and $m \in \mathbb{N}$. Then

$$
\phi_{\left(\mu_{+}, \sigma_{+}\right)}\left(\mathrm{x}^{m} g\right)=\phi_{\left(\mu_{+}, \sigma_{+}\right)}(g) \rtimes\left(\mu_{+}, \sigma_{+}\right)^{\{m\}}=\phi_{\left(\mu_{+}, \sigma_{+}\right)}\left(g \mathrm{x}^{m}\right) .
$$

Proof -

$$
\begin{aligned}
\phi_{\left(\mu_{+}, \sigma_{+}\right)}\left(\mathrm{x}^{m} g\right) & =\phi_{\left(\mu_{+}, \sigma_{+}\right)}\left(\sum_{n=0}^{\infty} g_{n} \mathrm{x}^{n+m}\right) \\
& =\sum_{n \geq 0} g_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n+m\}} \\
& =\sum_{n \geq 0} g_{n}\left(\left(\mu_{+}, \sigma_{+}\right)^{\{n\}} \rtimes\left(\mu_{+}, \sigma_{+}\right)^{\{m\}}\right) \\
& =\sum_{n \geq 0}\left((g _ { n } (\mu _ { + } , \sigma _ { + }) ^ { \{ n \} }) \rtimes \left(\mu_{+}, \sigma_{+}\left\{^{\{m\}}\right)\right.\right.
\end{aligned}
$$

(according to the rule of right distributivity.)

$$
=\left(\sum_{n \geq 0} g_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}\right) \rtimes\left(\mu_{+}, \sigma_{+}\right)^{\{m\}}
$$

(by continuity and linearity of \rtimes in its first variable.)
$=\phi_{\left(\mu_{+}, \sigma_{+}\right)}(g) \rtimes\left(\mu_{+}, \sigma_{+}\right)^{\{m\}}$.

Proposition 3.5 Let $\left(\mu_{+}, \sigma_{+}\right) \in \mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+}$. Then $\phi_{\left(\mu_{+}, \sigma_{+}\right)}$is the only linear mapping $\psi: \mathbb{K}[[\mathrm{x}]] \rightarrow \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ such that for every $m \in \mathbb{N}$ and every $g \in \mathbb{K}[[\mathrm{x}]]$, $\psi\left(g \mathrm{x}^{m}\right)=\psi(g) \rtimes\left(\mu_{+}, \sigma_{+}\right)^{\{m\}}$.
Proof - Let $f \in \mathbb{K}[[\mathrm{x}]]$. For every $m \in \mathbb{N}, f=\sum_{n=0}^{m} f_{n} \mathrm{x}^{n}+\mathrm{x}^{m+1} g$ with $g \in \mathbb{K}[[\mathrm{x}]]$. Let ψ as in the statement of the proposition. One has $\psi(f)=\sum_{n=0}^{m} f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}+\psi(g) \rtimes$ $\left(\mu_{+}, \sigma_{+}\right)^{\{m+1\}}$. Likewise $\phi_{\left(\mu_{+}, \sigma_{+}\right)}(f)=\sum_{n=0}^{m} f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}+\phi_{\left(\mu_{+}, \sigma_{+}\right)}(g) \rtimes\left(\mu_{+}, \sigma_{+}\right)^{\{m+1\}}$. Then it follows that $\psi(f)-\phi_{\left(\mu_{+}, \sigma_{+}\right)}(f)=\left(\psi(g)-\phi_{\left(\mu_{+}, \sigma_{+}\right)}(g)\right) \rtimes\left(\mu_{+}, \sigma_{+}\right)^{\{m+1\}}$ for every $m \in \mathbb{N}$. But when $m \rightarrow+\infty,\left(\mu_{+}, \sigma_{+}\right)^{\{m+1\}}$ converges to $(0,0)$. Indeed, suppose that $\mu_{+}=0$ and $\sigma_{+}=0$, then the result obviously holds. If $\mu_{+}=0$ and $\sigma_{+} \neq 0$, then $\left(0, \sigma_{+}\right)^{\{m+1\}}=\left(0, \sigma_{+}^{[m+1]}\right)$ and $\nu\left(\sigma_{+}^{[m+1]}\right)=v\left(\sigma_{+}\right)^{m+1} \geq 2^{m+1}$. If $\mu_{+} \neq 0$ and $\sigma_{+}=0$, we have $\left(\mu_{+}, 0\right)^{\{m+1\}}=\left(\mu_{+} \mu_{+}(0)^{m}, 0\right)$. Since $\mu_{+}(0)=0$ (because $\mu_{+} \in \mathbb{K}[[\mathrm{x}]]^{+}$), for every $m>0,\left(\mu_{+} \mu_{+}(0)^{m}, 0\right)=(0,0)$. Finally let suppose that $\mu_{+} \neq 0$ and $\sigma_{+} \neq 0$. Therefore $\left(\mu_{+}, \sigma_{+}\right)^{\{m+1\}}=\left(\prod_{k=1}^{m+1}\left(\mu_{+} \circ \sigma_{+}^{[k-1]}\right), \sigma_{+}^{[m+1]}\right)$. We already know that $\lim _{m \rightarrow \infty} \sigma_{+}^{[m+1]}=0$. We also have $\nu\left(\prod_{k=1}^{m+1}\left(\mu_{+} \circ \sigma_{+}^{[k-1]}\right)\right)=\sum_{k=1}^{m+1} \nu\left(\mu_{+}\right) \nu\left(\sigma_{+}\right)^{[k-1]} \geq \nu(\sigma) \sum_{k=1}^{m+1} 2^{k-1} \rightarrow \infty$ as $m \rightarrow \infty$.
Besides we have seen in lemma 2.4 that for every $a \in \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$, the mapping

$$
\begin{array}{rll}
L_{a}: \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M} & \rightarrow \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M} \\
& (\mu, \sigma) & \mapsto a \rtimes(\mu, \sigma)
\end{array}
$$

is continuous and in particular at the point $(0,0)$. Since the topology put on $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ is metrizable (as the product of two metric topologies), then for every sequence $\left(b_{n}\right)_{n} \in(\mathbb{K}[[\mathbf{x}]] \rtimes \mathfrak{M})^{\mathbb{N}}$ converging to $(0,0)$, one has $\lim _{n \rightarrow \infty} L_{a}\left(b_{n}\right)=L_{a}(0,0)=(0,0)$. When applied to the case $a:=\left(\psi(g)-\phi_{\left(\mu_{+}, \sigma_{+}\right)}(g)\right)$ and $b_{n}=\left(\mu_{+}, \sigma_{+}\right)^{\{n+1\}}$, we deduce that $\psi(f)=\phi_{\left(\mu_{+}, \sigma_{+}\right)}(f)$ for an arbitrary formal power series f, so $\psi=\phi_{\left(\mu_{+}, \sigma_{+}\right)}$.

3.2. A first attempt to define generalized powers on the Riordan group

In this subsection is presented a result which seems to provide a relevant definition for generalized powers of elements of the Riordan group. However we will show that it is not at all the case, and we will have to propose another solution in the subsequent section. Some notations are needed to establish such statement. Let UP (resp. US) be the subgroup of invertible elements of the algebra $\mathbb{K}[[\mathrm{x}]]$ (resp. \mathfrak{M}) with a constant term equals to one (resp. with coefficient of x equals to one). The letters "U", "P" and "S" in the notations UP and US refer to the terms "unipotent", "prefunction" and "substitution"; the later names are used especially in the series of papers [4, 因, 6]. More precisely,

$$
\begin{align*}
\text { UP } & :=\{1+\mathrm{x} s: s \in \mathbb{K}[[\mathrm{x}]]\} \\
\text { US } & :=\left\{1+\mu_{+}: \mu_{+} \in \mathbb{K}[[\mathrm{x}]]^{+}\right\} \tag{22}\\
\left\{\mathrm{x}+\mathrm{x}^{2} s: s \in \mathbb{K}[[\mathrm{x}]]\right\} & =\left\{\mathrm{x}+\sigma_{+}: \sigma_{+} \in \mathfrak{M}^{+}\right\}
\end{align*}
$$

The elements of US are also known under the name "formal diffeomorphisms (tangent to the identity)" (see for instance (11). The semi-direct product UP \rtimes US, sometimes called "Riordan group" ([9]), is a subgroup of the group of units of $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$. It endows the subspace topology as usually. The set of Riordan matrices $M^{(\mu, \sigma)}$ for unipotent (μ, σ) become a subgroup, isomorphic to $\mathrm{UP} \rtimes \mathrm{US}$, of $\mathrm{GL}\left(\mathbb{K}^{\mathbb{N} \times(\mathbb{N})}\right)$ the linear group of row-finite matrices困.

We now recall the traditional definition for generalized binomial coefficients: let $\lambda \in \mathbb{K}$ and $n \in \mathbb{N}$, then $\binom{\lambda}{n}:=\frac{\lambda(\lambda-1) \ldots(\lambda-n+1)}{n!}$. Now let us prove a statement similar to proposition 4.1 [6] in our setting. Note that its proof is Zariski-free.

Proposition 3.6 Let $(\mu, \sigma) \in \mathrm{UP} \rtimes \mathrm{US}$ with $\mu=1+\mu_{+}, \mu_{+} \in \mathbb{K}[[\mathrm{x}]]^{+}$and $\sigma=\mathrm{x}+\sigma_{+}$, $\sigma_{+} \in \mathfrak{M}^{+}$. Let $\lambda \in \mathbb{K}$. Then the series $(\mu, \sigma)^{\{\lambda\}}=\left((1, \mathbf{x})+\left(\mu_{+}, \sigma_{+}\right)\right)^{\{\lambda\}}:=$ $\sum_{n \geq 0}\binom{\lambda}{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}$ is convergent in $\mathbb{K}[[\mathbf{x}]] \rtimes \mathfrak{M}$ and the sum of this series belongs to $U P \rtimes U S$.

Proof - According to proposition 3.2 we already agree for the convergence of the series in $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$. To conclude the proof it is sufficient to check that the sum of the series

[^0]belongs to UP \rtimes US. The first term of the series is $(1, \mathrm{x})$ because $\binom{\lambda}{0}=1$. Now we make use of lemma 2.3 to study the terms $\left(\mu, \sigma_{+}\right)^{\{n\}}$ for each $n \in \mathbb{N} \backslash\{0\}$.
(i) Second coordinate of $\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}$:

- Case $\sigma_{+}=0$: the second component is equal to 0 for every $n \in \mathbb{N} \backslash\{0\}$;
- Case $\sigma_{+} \neq 0$: the second component is equal to $\sigma_{+}^{[n]}$. According to lemma 2.5, $\nu\left(\sigma^{[n]}\right) \geq 2^{n}>1$.
(ii) First coordinate of $\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}$:
- Case $\mu_{+}=0$: the first component is equal to 0 for every $n \in \mathbb{N} \backslash\{0\}$;
- Case $\mu_{+} \neq 0$:
- Case $\sigma_{+}=0$: the first component is equal to $\mu_{+} \mu_{+}(0)^{n-1}=\mu_{+}$if $n=1$ and to 0 if $n>1$ since $\mu_{+}(0)=0$;
- Case $\sigma_{+} \neq 0$: the first component is equal to $\prod_{k=1}^{n} \mu_{+} \circ \sigma_{+}^{[k-1]}$. Then according to lemma [2.5, $\nu\left(\prod_{k=1}^{n} \mu_{+} \circ \sigma_{+}^{[k-1]}\right) \geq \nu\left(\mu_{+}\right) \sum_{k=1}^{n} 2^{[k-1]}>0$.

The definition of generalized powers for element of the Riordan group provided by the previous proposition seems quite natural, nevertheless it is not the convenient one in our setting. Actually when restricted to natural integers it does not match with the usual powers in $\mathbb{K}[[\mathbf{x}]] \rtimes \mathfrak{M}$ as it can be easily checked even on trivial instances: let $\mu=1+\mathbf{x}$ and $\sigma=\mathrm{x}+\mathrm{x}^{2}$. Therefore on the one hand,

$$
\begin{align*}
(\mu, \sigma)^{\{2\}} & =\left((\mu \circ \sigma) \times \mu, \sigma^{[2]}\right) \\
& =\left(\left((1+\mathrm{x}) \circ\left(\mathrm{x}+\mathrm{x}^{2}\right)\right) \times(1+\mathrm{x}),\left(\mathrm{x}+\mathrm{x}^{2}\right) \circ\left(\mathrm{x}+\mathrm{x}^{2}\right)\right) \\
& =\left(\left(1+\mathrm{x}+\mathrm{x}^{2}\right)(1+\mathrm{x}), \mathrm{x}+\mathrm{x}^{2}+\left(\mathrm{x}+\mathrm{x}^{2}\right)^{2}\right) \tag{23}\\
& =\left(1+2 \mathrm{x}+2 \mathrm{x}^{2}+\mathrm{x}^{3}, \mathrm{x}+2 \mathrm{x}^{2}+2 \mathrm{x}^{3}+\mathrm{x}^{4}\right) .
\end{align*}
$$

Using the series definition, we have on the other hand,

$$
\begin{aligned}
\left(\mathrm{x}, \mathrm{x}^{2}\right)^{\{0\}}+2\left(\mathrm{x}, \mathrm{x}^{2}\right)^{\{1\}}+\left(\mathrm{x}, \mathrm{x}^{2}\right)^{\{2\}} & =(1, \mathrm{x})+2\left(\mathrm{x}, \mathrm{x}^{2}\right)+\left(\mathrm{x}, \mathrm{x}^{2}\right) \rtimes\left(\mathrm{x}, \mathrm{x}^{2}\right) \\
& =(1, \mathrm{x})+\left(2 \mathrm{x}, 2 \mathrm{x}^{2}\right)+\left(\mathrm{x}^{3}, \mathrm{x}^{4}\right) \\
& =\left(1+2 \mathrm{x}+\mathrm{x}^{3}, \mathrm{x}+2 \mathrm{x}^{2}+\mathrm{x}^{4}\right)
\end{aligned}
$$

So our definition for generalized powers has a serious weakness: it does not generalize the usual powers, which makes it impossible to be taken as generalized powers at least in this minimal sense.

4. Convenient definition of generalized powers for the Riordan group

4.1. The algebra of formal power series $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$

In order to fix the problem met in the end of the previous section, we need to introduce a new algebra in which can be lead convenient calculus.

Let $\left(\mu_{+}, \sigma_{+}\right) \in \mathbb{K}[[\mathrm{x}]]^{+} \rtimes \mathfrak{M}^{+} \backslash\{(0,0)\}$. Our first goal is to prove that $\phi_{\left(\mu_{+}, \sigma_{+}\right)}$is one-to-one.

Lemma 4.1 For every integers $n<m$,
(i) $\nu\left(\prod_{k=1}^{n} \mu_{+} \circ \sigma_{+}^{[k-1]}\right)<\nu\left(\prod_{k=1}^{n} \mu_{+} \circ \sigma_{+}^{[k-1]}\right)$;
(ii) $\nu\left(\sigma_{+}^{[n]}\right)<\nu\left(\sigma_{+}^{[m]}\right)$.

Proof -
(i) - Suppose that $n=0$ (and therefore $m>0$). In this case $\prod_{k=1}^{0} \mu_{+} \circ \sigma_{+}^{[k-1]}:=1$ by convention and then $\nu(1)=0$. Besides $\nu\left(\prod_{k=1}^{n} \mu_{+} \circ \sigma_{+}^{[k-1]}\right)=\nu\left(\mu_{+}\right) \sum_{k=1}^{m} \nu\left(\sigma_{+}^{k-1}\right)>$ 0;

- Suppose that $n>0$. Then it is clear that the choices of μ_{+}and σ_{+}gives the expected result.
(ii) - Suppose that $n=0 . \nu\left(\sigma_{+}^{[0]}\right)=\nu(\mathrm{x})=1$ and $\nu\left(\sigma_{+}^{[m]}\right)=\nu\left(\sigma_{+}\right)^{m} \geq 2^{m}>1$ for every $m>0$;
- Suppose that $n \neq 0$. Then it is clear that $\nu\left(\sigma_{+}\right)^{n}<\nu\left(\sigma_{+}\right)^{m}$.

Lemma $4.2 \phi_{\left(\mu_{+}, \sigma_{+}\right)}: \mathbb{K}[[\mathrm{x}]] \rightarrow \mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ is one-to-one.
Proof - Since it is a linear mapping, it is sufficient to check that its kernel is reduced to zero. So let $f=\sum_{n=0}^{\infty} f_{n} \mathrm{x}^{n} \in \mathbb{K}[[\mathrm{x}]]$ a non zero series. Let $n_{0}:=\nu(f)$. In this case, $\phi_{\left(\mu_{+}, \sigma_{+}\right)}(f)=\phi_{\left(\mu_{+}, \sigma_{+}\right)}\left(f_{n_{0}} \mathrm{x}^{n_{0}}+\sum_{n>n_{0}} f_{n} \mathrm{x}^{n}\right)=\phi_{\left(\mu_{+}, \sigma_{+}\right)}\left(f_{n_{0}} \mathrm{x}^{n_{0}}\right)+\phi_{\left(\mu_{+}, \sigma_{+}\right)}\left(\sum_{n>n_{0}} f_{n} \mathrm{x}^{n}\right)=$ $f_{n_{0}}\left(\mu_{+}, \sigma_{+}\right)^{\left\{n_{0}\right\}}+\sum_{n>n_{0}} f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}$. Checking component by component and using the previous lemma, we obtain the expected result.

Now it becomes natural to define $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]:=\operatorname{im}\left(\phi_{\mu_{+}, \sigma_{+}}\right)=\left\{\sum_{n \geq 0} f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}: f=\right.$ $\left.\sum_{n \geq 0} f_{n} \mathrm{x}^{n} \in \mathbb{K}[[\mathrm{x}]]\right\}$. By injectivity of $\phi_{\left(\mu_{+}, \sigma_{+}\right)}$, for every $(\mu, \sigma) \in \mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$, it exists one only one formal power series f such that $(\mu, \sigma)=\sum_{n \geq 0} f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}$. So it is possible to manipulate the elements of $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$via their representation as a sum of converging series in the "variable" $\left(\mu_{+}, \sigma_{+}\right)$. Because $\phi_{\left(\mu_{+}, \sigma_{+}\right)}$is a linear mapping, $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$has a structure of \mathbb{K} subvector space of $\mathbb{K}[[\mathbf{x}]] \rtimes \mathfrak{M}$. In particular, $\lambda\left(\sum_{n \geq 0} f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}\right)=$
$\sum_{n \geq 0} \lambda f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}$ and $\sum_{n \geq 0} f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}+\sum_{n \geq 0} g_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}=\sum_{n \geq 0}\left(f_{n}+g_{n}\right)\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}$.
In particular the addition of two elements of $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$in $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$ matches with their addition in $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$. Nevertheless the notation $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$should seem misleading because $\phi_{\left(\mu_{+}, \sigma_{+}\right)}(f g) \neq \phi_{\left(\mu_{+}, \sigma_{+}\right)}(f) \rtimes \phi_{\left(\mu_{+}, \sigma_{+}\right)}(g)$. Indeed, one the one side,

$$
\phi_{\left(\mu_{+}, \sigma_{+}\right)}(f g)=\sum_{n \geq 0}\left(\sum_{k=0}^{n} f_{k} g_{n-k}\right)\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}
$$

and on the other side,

$$
\begin{aligned}
\phi_{\left(\mu_{+}, \sigma_{+}\right)}(f) \rtimes \phi_{\left(\mu_{+}, \sigma_{+}\right)}(g) & =\left(\sum_{n \geq 0} f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}\right) \rtimes\left(\sum_{n \geq 0} g_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}\right) \\
& =\sum_{n \geq 0} f_{n}\left(\left(\mu_{+}, \sigma_{+}\right)^{\{n\}} \rtimes\left(\sum_{k \geq 0} g_{k}\left(\mu_{+}, \sigma_{+}\right)^{\{k\}}\right)\right)
\end{aligned}
$$

(by linearity and continuity in the first variable of \rtimes.)

$$
=\sum_{n \geq 0} f_{n}\left(\left(\mu_{+}, \sigma_{+}\right) \rtimes \phi_{\left(\mu_{+}, \sigma_{+}\right)}(g)\right)
$$

In order to obtain an algebra, we introduce the usual Cauchy product " $*$ " on $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$.

$$
\sum_{n \geq 0} f_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}} * \sum_{n \geq 0} g_{n}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}:=\sum_{n \geq 0}\left(\sum_{k=0}^{n} f_{k} g_{n-k}\right)\left(\mu_{+}, \sigma_{+}\right)^{\{n\}} .
$$

We should remark that this multiplication is commutative contrary to \rtimes. Actually this operation simulates the multiplication \rtimes in the multiplicative monoid generated by $\left(\mu_{+}, \sigma_{+}\right)$. Indeed let $d \in \mathbb{N}$. We define $\left(\delta_{n}^{(d)}\right)_{n \in \mathbb{N}} \in \mathbb{K}^{\mathbb{N}}$ by $\delta_{n}^{(d)}=0$ for every $n \neq d$ and $\delta_{d}^{(d)}=1$. Then we have $\sum_{n \geq 0} \delta_{n}^{(d)}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}=\left(\mu_{+}, \sigma_{+}\right)^{\{d\}}$. Now let $d, e \in \mathbb{N}$. Let us compute the Cauchy product $\sum_{n \geq 0} \delta_{n}^{(d)}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}} * \sum_{n \geq 0} \delta_{n}^{(e)}\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}=$ $\sum_{n \geq 0}(\underbrace{\sum_{k=0}^{n} \delta_{k}^{(d)} \delta_{n-k}^{(e)}}_{=0 \Leftrightarrow k \neq d, n \neq d+e})\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}=\left(\mu_{+}, \sigma_{+}\right)^{\{d+e\}}$. But the first member of the Cauchy product occurring as the left member of the first equality is nothing else than $\left(\mu_{+}, \sigma_{+}\right)^{\{d\}}$, whereas its second member is $\left(\mu_{+}, \sigma_{+}\right)^{\{e\}}$. On "monomials" $\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}$ is identical to \rtimes. In particular for every natural integer $n,\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}=\left(\mu_{+}, \sigma\right)^{* n}$ where the second member is the nth Cauchy power of $\left(\mu_{+}, \sigma_{+}\right) . \phi_{\left(\mu_{+}, \sigma_{+}\right)}$becomes an algebra homomorphism from $\mathbb{K}[[\mathrm{x}]]$ to $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$. We use this Cauchy product to define the generalized power of the unipotent operator $\left(1+\mu_{+}, \mathrm{x}+\sigma_{+}\right)$in terms of a the binomial series: let $\lambda \in \mathbb{K}$ and define $\left((1, \mathbf{x})+\left(\mu_{+}, \sigma_{+}\right)\right)^{* \lambda}:=\sum_{n \geq 0}\binom{\lambda}{n}\left(\mu_{+}, \sigma_{+}\right)^{* n}$. We need to prove that this binomial series is convergent. Nevertheless it can be checked that if $\lambda \in \mathbb{N}$, then $\left((1, \mathbf{x})+\left(\mu_{+}, \sigma_{+}\right)\right)^{* \lambda}$ matches with the λ th Cauchy power of
$\left(1+\mu_{+}, \mathbf{x}+\sigma_{+}\right) \in \mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$. Therefore this version of the generalized powers extends the usual ones.
Proposition 4.3 The series $\left((1, \mathrm{x})+\left(\mu_{+}, \sigma_{+}\right)\right)^{* \lambda}=\sum_{n \geq 0}\binom{\lambda}{n}\left(\mu_{+}, \sigma_{+}\right)^{* n}$ is convergent and defines an element of UP $\rtimes \mathrm{US}$.

Proof - Actually since $\left(\mu_{+}, \sigma_{+}\right)^{* n}=\left(\mu_{+}, \sigma_{+}\right)^{\{n\}}$, the result is already given by proposition 3.6.

4.2. An infinite number of copies of $\mathbb{K}[[\mathrm{x}]]$

Because $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$is isomorphic, as an algebra, to $\mathbb{K}[[\mathrm{x}]]$, it is possible to study the properties of series in powers of $\left(\mu_{+}, \sigma_{+}\right)$through the properties of the corresponding formal power series. We denote $\phi_{\left(\mu_{+}, \sigma_{+}\right)}(f)$ by $f\left(\mu_{+}, \sigma_{+}\right)$, and $\omega\left(f\left(\mu_{+}, \sigma_{+}\right)\right):=\omega(f)$. Now $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$is a isomorphic as a topological algebra to $\mathbb{K}[[\mathrm{x}]]$. In particular if $f=$ $1+g \in \mathbb{K}[[\mathrm{x}]]$ where $\omega(g)>0$, then $f\left(\mu_{+}, \sigma_{+}\right)$has a multiplicative inverse in $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$ given by $\sum_{n \geq 0}(-1)^{n} g\left(\mu_{+}, \sigma_{+}\right)^{* n}$, as already computed in subsect. 3.1. Moreover if $\sigma \in \mathfrak{M}$, then right substitution by $\sigma\left(\mu_{+}, \sigma_{+}\right)$is valid in $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]: f\left(\mu_{+}, \sigma_{+}\right) \circ \sigma\left(\mu_{+}, \sigma_{+}\right):=$ $\sum_{n \geq 0} f_{n} \sigma\left(\mu_{+}, \sigma_{+}\right)^{* n} \in \mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$. So using $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$we may define a semi-direct "algebra" $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right] \rtimes \mathfrak{M}\left(\mu_{+}, \sigma_{+}\right)$- where $\mathfrak{M}\left(\mu_{+}, \sigma_{+}\right):=\left(\mu_{+}, \sigma_{+}\right) \rtimes \mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]$isomorphic (both as a vector space and as a monoid) - to $\mathbb{K}[[\mathrm{x}]] \rtimes \mathfrak{M}$. Then for every $\left(\mu\left(\mu_{+}, \sigma_{+}\right)_{+}, \sigma\left(\mu_{+}, \sigma_{+}\right)_{+}\right) \in \mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]^{+} \rtimes \mathfrak{M}^{+}\left(\mu_{+}, \sigma_{+}\right)$(for the natural definitions of both $\mathbb{K}\left[\left[\mu_{+}, \sigma_{+}\right]\right]^{+}$and $\left.\mathfrak{M}^{+}\left(\mu_{+}, \sigma_{+}\right)\right)$an algebra $\mathbb{K}\left[\left[\mu\left(\mu_{+}, \sigma_{+}\right)_{+}, \sigma\left(\mu_{+}, \sigma_{+}\right)_{+}\right]\right]$, isomorphic to $\mathbb{K}[[\mathrm{x}]]$, may be defined. The process can continue indefinitely.

References

[1] C. Brouder, A. Frabetti and C. Krattenthaler, Non-commutative Hopf algebra of formal diffeomorphisms, Advances in Mathematics volume 200 (2), pp. 479-524 (2006).
[2] N. Bourbaki, Éléments de mathématique - Algèbre chap. 1 à 3. Masson, 634 p. (1970).
[3] N. Bourbaki, Éléments de mathématique - Algèbre chap. 4 à 7. Masson, 422 p. (1981).
[4] H. Cheballah, G.H.E. Duchamp and K.A. Penson, Approximate substitutions and the normal ordering problem. Journal of Physics: Conference Series 104 (2008).
[5] G.H.E. Duchamp and H. Cheballah, Some Open Problems in Combinatorial Physics, pp. 1-7 (2008). arXiv: 0901.2612v1 [cs.SC].
[6] G.H.E. Duchamp, K.A. Penson, A.I. Solomon, A. Horzela and P. Blasiak, One-parameters groups and combinatorial physics, Proceedings of the Symposium COPROMAPH3: Contemporary Problems in Mathematical Physics (Porto-Novo, Benin, Nov. 2003). J. Govaerts, M.N. Hounkonnou and A.Z. Msezane (eds.). World scientific publishing (2004). arXiv: quant-ph/04011262.
[7] S.M. Roman. The umbral calculus. Academic press (1984).
[8] G.-C. Rota, D. Kahaner and A. Odlyzko, Finite operator calculus. Journal of Mathematical Analysis and Applications vol. 42 (3), pp. 685-760 (1973).
[9] L. W. Shapiro, S. Getu, W.-J. Woan and L. C. Woodson, The Riordan group. Discrete Applied Mathematics 34, pp. 229-239 (1991).
[10] R.P. Stanley, Enumerative combinatorics Volume 1, volume 49 of Cambridge Studies in Advanced Mathematics. Cambridge University Press (1997).
[11] R.P. Stanley, Enumerative combinatorics Volume 2, volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press (1999).

[^0]: $\ddagger M$ is row-finite if and only if each column of M has only finitely many nonzero coefficients.

