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Abstract 

This paper describes an infrared image simulator for remote sensing applications, called OSIrIS 

(outdoor scene and infrared image simulation). It has been developed partly for training and 

reproduces with great details the physical phenomena that play a major role in complex urban 

environment. OSIrIS performs a synthesis of scene based on a 3-D description of the landscape 

with a high spatial resolution (0.5 – 10 m). The physical processes are briefly described and their 

importance with respect to the objectives are discussed. Thermal emission depends on temperature 

and generally dominates the signal. Temperature is governed by heat equation and is solved by the 

means of boundary conditions such as in-depth temperature and flux balance at surface. Main 

parameters are solar and atmospheric radiations, wind, heat conduction and changes in humidity. 

An innovative approach was developed to take into account variations in time of the interactions 

between the landscape and the physical processes. OSIrIS aims at simulating situations that are 

encountered in reality. It enables users self-formation, helping them understanding changes in 

image radiance as a function of the input parameters and their own simulation requirements. 

Examples are given that illustrate specific aspects of infrared images. 

                                                 
* Corresponding author: CEP, Ecole des Mines de Paris, F-06904 Sophia Antipolis, France, 
lucien.wald@ensmp.fr 
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Introduction 

There is now a growing demand in very high spatial resolution imagery for remote sensing 

application over urban areas including images in the thermal infrared range from 3 to 14 µm. 

Various domains, like meteorology and thermal radiative budget, air pollution monitoring (Wald 

& Baleynaud, 1999), or security information are under concern. Such an imagery is not currently 

available in the public domain. Several systems are planned to provide images at a high spatial 

resolution of a few meters or better in a near future. 

In this respect, having simulations of images that will be acquired by future sensors is necessary to 

train end-users with future images in an operational context. This need is enhanced by the 

complexity in analysis of infrared images compared to visible range. The authors undertook 

training activities several years ago and found that only a few tools were available for that 

purpose. Jaloustre-Audouin (1998) and Jaloustre et al. (1997) developed a simulator of landscape 

in 2-D in the infrared domain, called SPIRou. Johnson et al. (1998) developed a simulator devoted 

to vehicles. Gastellu-Etchegorry et al. (1996) were interested in radiative budget for vegetation 

canopy studies; the model DART (Gastellu-Etchegorry et al. 2004) simulates any type of 

landscape but the modelling of the thermal processes has a limited accuracy. Barillot (2001) 

developed a code called Mistral that simulates an image with a 3-D description of the landscape as 

input but with a limited geographical extension. Yu et al. (1998) and Wang et al. (2001, 2003) 

developed a model for large-scale and complex urban scenes though the feasibility of the model is 

to be further proven as stated by the authors themselves. 

We concluded in 2000 that there was no relevant training tool that was capable of reproducing 

with great details and accuracy the physical phenomena that play a major role in a complex urban 

environment. The simulator OSIrIS (outdoor scene and infrared image simulator) was developed 

in part to palliate this shortcoming and better answer the expectations of the trainees. It is a 

simulator of infrared images dedicated to remote sensing applications and benefits from the 

knowledge gained with the simulator SPIRou. It takes into account a 3-D description of the 

landscape with a high spatial resolution (0.5 – 10 m). By exploiting up-to-date published models, 

this simulator aims at reproducing as accurately as possible the behaviour of the landscape and 
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providing simulations close to reality (Poglio et al., 2002a). It comprises a high quality tool 

modelling the physical phenomena playing a role in the infrared range and allows for an 

exhaustive description of the scene: buildings, streets, materials, vegetation, moisture, etc. The 

major requirements for the design of this training simulator are possibilities to simulate various 

landscapes at different geographical locations at any time for different spectral bands under 

various meteorological conditions. Scene synthesis is one technical approach to meet such 

requirements and was adopted. Of particular interest are the following IR bands as they are those 

present in spaceborne sensors: the so-called band II (3 – 5 µm) and band III (8 –12 µm). 

The modelling of the physical processes is presented in the next section. The innovative modelling 

of objects is then detailed. Several examples of synthesised images are presented eventually; they 

were selected in order to illustrate difficulty in image analysis and complexity in simulation. The 

first example shows the differences in spatial variability between surface temperature field and 

radiance field at 10 µm. It points out the non-linearity between temperature and radiance - a fact 

that is not commonly admitted - and illustrates the difficulty in interpreting the image. The second 

example deals with the persistency of thermal effects. The accurate simulation of such effects 

implies a high complexity in the description and modelling of objects. The third example 

illustrates the difference between the bands II and III. This difference can be large during daytime 

and weak during nighttime. 

Physics 

The radiance balance equation 

In thermal infrared, the flux coming from an object and seen by a sensor originates partly from 

reflection and partly from thermal emission by the object. In the general case, the energy 

equilibrium for a set of radiating objects is expressed by the following equation, independently on 

the wavelength λ (Sillion & Puech 1994): 

 ( ) ( ) ( ) ( )∫
Ω

+= ωθϕθϕθϕθϕθϕθ dxLxfxLxL ivvrvvevv cos,,,,,,,,,,  (1) 

where 
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� L(x,θ,ϕ), Le(x,θv,ϕv) and Lj(x,θ,ϕ) are respectively the radiance leaving the point x in the 

viewing direction (θv,ϕv), the radiance emitted by x in the same direction, and the incident 

radiance impinging on x from direction (θ,ϕ); 

� Ω is the set of directions (θ,ϕ) in the hemisphere covering the surface at x; 

� fr(x,θ,ϕ,θv,ϕv) is the bi-directional reflectance distribution function (BRDF) describing the 

reflective properties at x (Nicodemus et al., 1977). 

Additional information on transfer in global illumination can be found in Arvo (1993). The 

emitted and incident radiances and the BRDF depend upon the wavelength λ. Part of the flux Li 

reaching an object is directly reflected by this object, part of this flux is absorbed and the last part 

propagates through the object. Materials encountered in landscape are generally opaque and the 

assumption “no transmission” is usually valid. Only reflection and absorption occur. 

Reflection 

Spectral reflected fluxes are deduced from spectral incident fluxes. In thermal infrared from 3 to 

14 µm, there are two sources: 

� The solar flux. The major part of the energy of the Sun is in the visible range. 

Nevertheless, the influence of the solar flux is not negligible in infrared, particularly close 

to 3 µm. This flux is anisotropic and depends upon the relative geometry between the Sun 

and the object. 

� The atmospheric thermal emission. The atmosphere is made of particles, gases, etc. which 

partly absorb radiation from the Sun or the Earth. In turn, the atmosphere radiates energy 

as an atmospheric emitted flux. This flux is the most significant near to 10 µm. 

In OSIrIS, we exploit the well known simulator MODTRAN to predict spectral solar incident flux 

and the direct and diffuse components, in combination with the ESRA analytical model (Rigollier 

et al., 2000). The atmospheric flux is simulated using the model of Berger (1988). 
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Thermal emission 

The main difficulty in Eq. 1 is the term Le. According to emission laws, each object is acting as a 

source; its emitted flux is the product of the emissivity εs by the blackbody function Lbb for surface 

temperature Ts. For lambertian emitters, it comes: 

 L(λ) = εS(λ) Lbb(TS, λ) (2) 

Spectral emissivity is an intrinsic property of the object. Due to energy conservation law for 

opaque objects, the sum of the absorbed and reflected fluxes must be equal to the incident flux. 

For objects at thermal equilibrium – and having the same temperature than the surroundings – 

Kirchoff’s law implies that absorbed and emitted fluxes must be equal. Thus, emissivity can be 

expressed as the complement of the reflectance to unity (Korb et al. 1999; Salisbury et al. 1994). 

Spectral reflectance databases (ASTER, 2000) exist for several types of materials; reflectance and 

emissivity are computed using such databases. A database of thermal and optical properties of 

objects is thus created. Emissivity of objects may depend on their moisture content, e.g., dry and 

wet sand. OSIrIS exploits the database and does not take into account this dependency, except if it 

is reported in the database. 

Temperature prediction 

The temperature T of an object is governed by the heat equation (3). Under thermodynamical 

conditions usually encountered in landscape, its evolution in time is expressed as the product of 

the thermal diffusivity κ of the object by the Laplacian operator ∆ applied to the temperature: 

 T
t
T ∆=∂

∂ κ  (3) 

Because of thermal inertia, the temperature at instant t depends upon the temperature at previous 

instant t-dt and can be computed iteratively. Several solutions to Eq. 3 have been published: the 

finite difference method (Ciarlet & Lions 1990; Jakob 1949; Mitchell & Griffiths 1980) and the 

methods proposed by Bhumralkar (1975) and Deardorff (1978). Heat equation is a second-order 

equation that requires two boundary conditions: the energy flux balance at surface and the in-depth 

temperature. 
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At surface, the conduction flux Fcs is given by: 

 FCS(TS, t) = Rnet(TS, t) – [H(TS, t) + Ll(TS, t) (4) 

where Rnet represents the radiative flux net balance, that is sum of solar and atmospheric 

irradiances and the negative radiative loss by the surface. In OSIrIS as in SPIRou, each of these 

contributions is modelled with the parameterisations of, respectively Rigollier et al. (2000), 

Swinbank (1963) and Olseth et al. (1994). For the sake of space, we do not reproduce the 

equations of these models. H denotes the convective contribution due to sensible heat; it is 

predicted by Louis (1979). Ll is the latent heat and is given by the model of Noilhan and Planton 

(1989). Knowledge of Ll requires also knowledge of soil moisture; the in-depth humidity of soil is 

predicted in a way similar to temperature. Each of these physical phenomena is modelled with an 

accuracy depending on its relative importance in energy flux balance (Poglio et al. 2001a): in our 

simulation, it is not useful to have a very accurate model for a component of low contribution. 

Relative locations of the objects in the landscape are taken into account as they induce 

disturbances in a 3-D landscape (Poglio et al., 2001a). 

Given an initial state, an iterative process is harnessed to compute surface change at the instant of 

the simulation. The interactions between physical parameters and their variations in time are 

computed following Johnson (1995) and Jaloustre et al. (1997). It should be mentioned that in 

principle, OSIrIS may take into account the small scale variability in air temperature, water vapour 

pressure and wind. Nevertheless, making it a reality would require an interaction with a numerical 

model of atmospheric turbulent flow which has not been realised. In the following, we assume 

horizontal homogeneity. 

Modelling of urban objects 

A landscape is composed of several objects such as buildings, trees, streets, rivers, etc. Each object 

has attributes, such as its location, materials, internal temperature etc. The surrounding of the 

object is another important attribute.  
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3-D objects and facets 

In computer science community (Foley et al., 1996; Watt, 2000), objects are 3-D entities made of 

several 2-D plane facets. Contrary to the visible range scene synthesis in the infrared image 

requires the knowledge of the in-depth composition of each facet in order to compute surface 

temperature. For instance, a wall in a building is described by an internal thermal insulation layer 

of few centimetres and an external layer made of concrete. Thus, landscape is modelled by the 

means of objects, facets, and in-depth composition of each facet.  

Taking into account variations in time of all the interactions differentiates the scene synthesis in 

the infrared range from that in the visible domain. The synthesis methods used for short 

wavelengths do not need to reproduce the recent history of the landscape contrary to the infrared 

case. In infrared range the classical radiosity approach cannot be used, except if one applies it to 

each voxel and each time step. An entity, called “element”, was invented for OSIrIS 

implementation (Poglio et al 2001b); it is detailed in the next section. It permits an efficient 

computation of temperatures and radiative fluxes at each instant. 

The element-based modelling 

The element is the 3-D entity that exhibits homogeneous properties with respect to geometrical 

considerations, material composition, and the physical phenomena occurring at each instant. For 

example, one may consider a facet partly shadowed at instant t. The illuminated and shadowed 

parts of the facet are a preliminary set of elements; this set will be subsequently subdivided by 

taking into account the shadowing occurring at other instants. 

To reduce as much as possible the number of elements, and accordingly the computational time, 

an element is defined as the largest entity included in a facet. Its external surface is flat and 

oriented (Fig. 1). The in-depth composition is made of one or several layers of primary materials. 

The element is homogeneous for boundary conditions, both internal and external. At internal 

boundary, internal temperature is the same on each point of the boundary and each time step. At 

external boundary, the element is homogeneous with respect to energy flux balance at each instant 

during the simulation process. The mesh is made of the union of elements for the whole period of 

simulation.  
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Figure 1. Illustration of the multi-layered in-depth composition of an element and the homogeneity 

with respect to boundary conditions on the internal and external surfaces. 

 

The simulator OSIrIS converts the standard description of landscape by objects into an element-

based representation (Poglio et al., 2002a). Figure 2 shows the different steps used to construct the 

elements from the objects constituting the landscape. The element generation is detailed in Poglio 

et al.( 2002b). As a starting point, objects and facets representing the scene originate from the 

concatenation of the geometrical and material meshes. It gives rise to the initial mesh for 

discontinuity meshing approach (Heckbert, 1992). Identical areas with respect to boundary 

conditions split the scene into homogeneous areas. A new mesh taking into account these areas is 

achieved by the means of constrained triangulation. The latter is performed by the means of the 

Triangle software (Shewchuk, 1996, 2001). This new mesh is the geometrical support of the 

elements. Each entity of the mesh presents homogeneous properties with respect to physical 

phenomena at instant t. Shadow effects are the most important ones and sufficient accuracy can be 

achieved by considering this physical phenomenon only (Poglio et al., 2001a). The process is 

iterated to obtain the mesh at each instant during the simulation. The generation of such a mesh is 

based on physical considerations, which continuously change in time. There is no a priori 
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limitation to the number of meshes. Nevertheless, criteria are used to stop the refinement of the 

mesh according to the accuracy desired by the user (Poglio et al., 2002b). 

Landscape

Object 2 Object nObject 1 Object k

Facet k-1 and
3-D description

Element k-1-3

Element k-1-2

Element k-1-1

Element k-2-5

Element k-2-4

Element k-2-3

Element k-2-2

Element k-2-1

Element k-p-1

Facet k-2 and
3-D description

Facet k-p and
3-D description

 

Figure 2. Illustration of the element-based representation of the landscape. 

 

Texture in thermal infrared 

In scene synthesis, texture allows to simulate the real state of the surface of a material. These 

textures represent the radiometric variations existing in areas assumed to be homogeneous. 

Textures can be considered as variations in reflection of the signal and temperature – and thus 

variations in thermal emission. To simulate texture, a two-steps method is used: 

� firstly, the radiometry of an element is computed, 

� secondly, small changes are made to the thermal and optical attributes of materials 

according to their domain of variation usually encountered in databases, and a second 

temperature is computed. The difference between this temperature and the real 

temperature is used to compute the amplitude of variation around the main temperature 

band thus around of the main radiometry. Variations of radiometry are then spatially 

distributed. 
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Examples of use of OSIrIS for training 

Temperature and radiance 

The following example shows three buildings on a flat ground (Fig. 3). In each image in this 

paper, North is in the upper-right corner. It means that the viewing angle is at the Southeast of the 

images with a tilt of 30° compared to nadir viewing. The ground is made of three different 

materials: asphalt in the South, grass in the Northwest and sand in the Northeast; near the corner 

the sand is drier than in the other part. The simulation is for the 7th of November, near the city of 

Cannes, South of France, 43.6 N – 7.0 E. Each facade of the three buildings is made of concrete 

but: 

� the flat roofing of the building in the Southwest corner is covered by a thin sheet of 

aluminium, 

� the roof of the Northern building is made of terra cotta tiles, 

� the flat parts of the roof of the building in the Southeast corner are covered by aluminium 

and the slope roof is made of slate stone shingle. 

The image on the left is an intermediate output of the OSIrIS simulator. It shows the spatial 

distribution of surface temperature in the 3-D scene. Surface temperatures range approximately 

from 3 °C in darkest black – in the shadow of the second building – to 38 °C in white – on the flat 

ground of the third building. The right image is a simulation in radiance in band III, between 8 and 

12 µm, with values ranging from 26 Wm-2sr-1 in darkest black to 42 Wm-2sr-1 in white. 

One notes that the features in these images are different. It illustrates the non-linearity between 

temperature and radiance, a fact not well known to trainees. One can see that the warmest surface 

temperature in the scene occurs on the roof of the Southwest building covered by aluminium but it 

does not exhibit the largest radiance. In this spectral band thermal emission dominates the signal 

and depends upon emissivity and surface temperature. Since aluminium has a large reflectance 

(Table 1), its emissivity is very low; as a consequence its thermal emission is weaker than other 

bodies of similar temperature but larger emissivity. Looking now carefully at the wet sand and the 

grass, temperatures of the sunny parts of the sand and the grass are very close whereas in the 
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shadow of the North building the corresponding temperatures are different. In the right image, 

these four areas exhibit four different radiances. Differences in emissivity are also responsible of 

these differences. 
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  Radiance – 11:00 am – band III 

Figure 3. Illustration of variations of the radiance in band II and III as a function of the 

temperature. 
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Persistence of thermal effect 

Figure 4 shows a magnification of the central area of the previous scene for radiance in band III 

(Fig. 3). The radiometric profile along the measurement line is presented with distance on the X-

coordinate axis and radiances along the Y-coordinate axis. Below the distance 0 m, values of 

radiance are arbitrary and should not be taken into account. In this picture, we especially focused 

on three areas that are typical of what is observed in infrared images. Variation along the profile is 

analysed from left to right. 

Area #1 is a currently sunlit area in the left of the figure. As the Sun is moving from East to West, 

shadows always scan the scene from West to East related to buildings location. In this case and 

because it is 11:00 am, this area was shadowed during the first hours of the day. Taking into 

account current time and scene geometry in this area, an element far from the buildings receives 

more solar energy than an element close to the buildings because it was not shadowed at all. Its 

temperature is then higher than temperature of elements near to the buildings. Reflected fluxes are 

the same in the whole area, and consequently the closer the element to the buildings the smaller 

the radiance. The continuous decrease of radiance from 35.8 to 28.4 Wm-2sr-1 over a distance of 33 

m illustrates this effect of thermal persistence. In the whole image, radiance ranges from 26.3 to 

42.0 Wm-2sr-1. Variation in this shadowed area represents more than 47% of total range of the 

signal. Taking into account the angle between the measurement line and the orientation of the 

building, and the evolution in time, this radiance variation occurs over 24 m from the buildings to 

the end of the landscape. It represents a period of 3 h, from 8:00 to 11:00 am. Area #3 illustrates 

the same phenomenon but in an opposite way. While in Area #1 the ground is coming out of the 

shadow, it is going in Area #3. The consequence is the same: the closer the pixel to the buildings, 

the smaller the radiance. 
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Figure 4. Radiance profile along the measurement line at 11:00 am – band III. 

 

Area #2 illustrates the variation of radiance as a function of the height of the pixel. This segment is 

on the vertical facade of the building; the height of the pixel at 68 m is larger than that of the pixel 

at 94 m. The ground does not carry as much energy as the atmosphere to the facade and the major 

factor to change in temperature is the flux from the atmosphere. As the highest pixel was exposed 

earlier to the Sun than the lowest one, its temperature is larger. As the emissivity is homogeneous 

for the facade, one may observe a small increase of radiance with height. 

To better illustrate the important effects of the solar shadow, a 1-D simulation is presented in 

Figure 5. The daily profile of the surface temperature of an object sunlit all the day long is shown 

in dashed line while the surface temperature of an object shadowed from sunrise to 10:00 am is in 

solid line. During this period, the temperature of the second (shadowed) object increases slower 

than the temperature of the first object. Then, when the Sun illuminates the second object, its 
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temperature increases rapidly and nearly reaches the other curve 4 h later. This phenomenon is 

called the persistence of shadow effects and has been illustrated in the previous example. 

 

Figure 5. Daily profile of surface temperature (in Kelvin). In dashed line, temperature of an object 

sunlit all the day long. In solid line, temperature of an object shadowed from sunrise to 10:00 am. 

 

Impact of the spectral band 

Another interesting point for a better understanding of infrared images is the difference in 

behaviour between two different spectral bands. In the visible domain, the blue, green or red 

channels do not carry the same information. For instance, blue channel is used for ocean colour 

studies whereas the red one is preferred for vegetation studies. A similar situation is encountered 

in the infrared range, especially between band II and band III. Fig. 6 displays the spectral 

reflectance of four materials that were used in the previous examples: concrete and red brick for 

facade, terra cotta tiles and slate stone for roofing. Integrated values are reported in Table 1. Note 

the large value of reflectance for aluminium roofing, greater than 90 % in bands II and III. These 
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values exceed what would be encountered in actual landscape; nevertheless, in a simulation 

context such an exaggeration helps in understanding the physical phenomena. 
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Figure 6. Spectral reflectance variations of materials used in the simulation between 3 and 12 µm. 

 

Materials Reflectance – Band II (in %) Reflectance – Band III (in %) 

Front – Red smooth-faced brick 28.5 7.7 

Front – Construction concrete 5.6 3.4 

Roofing – Terra cotta tiles 7.8 5.7 

Roofing – Slate stone shingle 13.6 17.3 

Roofing – Aluminium  91.6 95.0 

Table 1. Spectral reflectance value of materials used in the simulation for band II and band III. 

 

Another simulation is presented in Figure 7. Fifteen buildings with six different geometries and 

material compositions are presented. For each building, materials are the followings: 

� buildings #1 and 4: facade made of red smooth-faced brick, roofing with terra cotta tiles, 
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� buildings #2 and 6: facade made of concrete, roofing covered by a thin sheet of 

aluminium, 

� building #3: facade made of concrete, roofing with terra cotta tiles, 

� building #5: facade made of concrete, flat parts of the roof covered by aluminium, and 

slope roof made of slate stone shingle. 

The ground is made of asphalt. Images were simulated in band II and III at 11:00 am and 9:00 pm. 

Because of the  large variation in radiance between bands II and III, the images are encoded on 8 

bits with their maximum amplitude; for each of them, the grey scale in upper left corner shows the 

minimum radiance value – in darkest black – and the maximum radiance value – in white. It is 

important to note that the radiance is always between four and ten times larger in band III than in 

band II.  



Poglio T., Mathieu-Marni S., Ranchin T., Savaria E., Wald L., OSIrIS: a physically based simulation tool to 
improve training in thermal infrared remote sensing over urban areas at high spatial resolution. Remote 
Sensing of Environment, 104, 238-246, 2006, doi:10.1016/j.rse.2006.03.017 

 

 
18 

 

Radiance in band II – 11:00 am Radiance in band III – 11:00 am 

 

Radiance in band II – 9:00 pm Radiance in band III – 9:00 pm 

Figure 7. Four images of the same scene at 11:00 am and 9:00 pm in bands II and III. Units are 

Wm-2sr-1 

 

In band II – and during daytime – the scene reflects an important part of the incoming solar flux. It 

represents about 30% of the signal coming from the scene. The shadows of buildings appear on the 

ground with an important contrast compared to sunlit areas. Persistence of shadow effect is not 

clearly visible because it is masked by the instantaneous effect of the shadow on the reflection. In 



Poglio T., Mathieu-Marni S., Ranchin T., Savaria E., Wald L., OSIrIS: a physically based simulation tool to 
improve training in thermal infrared remote sensing over urban areas at high spatial resolution. Remote 
Sensing of Environment, 104, 238-246, 2006, doi:10.1016/j.rse.2006.03.017 

 

 
19 

shadowed areas, thermal effects of shade are less than 250 mWm-2sr-1: the contrast in radiance is 

less than 9% of the maximum radiance. 

On the contrary, these thermal persistency effects clearly appear in band III, during daytime and 

also during night. In addition, the multi-reflection phenomenon can be observed in this band 

especially during night: radiance is greater near the corner of the building #3 than on the other 

parts of the facade. This happens in other parts of the image. 

Another interesting phenomenon is highlighted in this simulation. At night, contrasts in bands II 

and III appear similar. This is not exactly true because of differences in emissivity between both 

bands for the same material. Looking carefully at the roof of buildings 4 and 5 (terra cotta tiles and 

slate stone shingle), one may note a difference of contrast between radiance in bands II and III that 

is due to different emissivities (Table 1). The ratio of band II over band III is larger for terra cotta 

tiles than for slate stone shingle. Because these roofs appear with the same radiance in band II, it 

means that the roof of building 4 is warmer than that of building 5. Combined to different 

reflectance values in band III, this effect is clearly visible: radiance of building 5 is 10% larger 

than that of building 4. This example illustrates the complementarities of the two spectral bands 

and the great difficulty of interpreting such images. 

Conclusion 

A simulator of realistic images should reproduce faithfully physical interactions between objects to 

be of high interest in training. The validation and assessment of accuracy of the outgoing radiances 

are a problem for such a simulator. The models used in OSIrIS have been assessed by their 

respective authors by comparison with in situ data and results were published. These models are 

combined to produce temperature prediction in a way similar to that of the simulator SPIRou. The 

comparisons between simulations performed with OSIrIS and SPIRou of known quality are very 

good (Poglio, 2002) taking into account that SPIRou is limited to a 2-D description of the 

landscape and a resolution of 2 m (Jaloustre-Audoin, 1998; Jaloustre et al. 1997). Nevertheless, the 

whole simulator OSIrIS has not been extensively assessed yet. The large number of parameters to 

input to the simulator is an obstacle to the validation. Such a validation would request a very 
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extensive and expensive campaign of measurements with well calibrated and accurate sensors: 

meteorology, moisture content and objects properties should be measured with great care. A 

comparison between OSIrIS outcomes and real infrared images of high spatial resolution shows 

that OSIrIS is capable of reproducing features in radiances and in gradient. What remains to be 

assessed is the exact accuracy of these synthesized features. 

OSIrIS is helpful to users as it allows visualizing changes in radiance as a function of changes in 

input parameters. This capability is important for training, education and courses, including users 

self-training. By playing with input parameters and using their own simulation requirements 

(scene, dates, etc.), trainees can obtain various images that help them to better understand changes 

in image radiance. 

The first lesson learnt in these past years is that training in infrared images is mandatory. Analysis 

of such images is not obvious and not as natural as it can be for images in the visible range. The 

second lesson is that an accurate simulator is necessary. The major physical phenomena should be 

reproduced with a very good accuracy, leading to images close to reality. More exactly, it is 

important to reproduce the heterogeneities that are generated by the complex structure of the urban 

fabrics, especially at high spatial resolution (for example, multiple reflections, multiple masking, 

complex shadows) or that are due to the variability of the meteorological fields induced by this 

geometric complexity, mostly wind and humidity fields. 

The OSIrIS simulator and similar tools have other purposes. They help designers of new 

spaceborne or acquisition systems: 

� to study the different system concepts and select the most relevant to the mission, 

� to produce images that demonstrate the future system performances, 

� to analyse the impact of the specifications on the delivered image. 

They are also capable of delivering images that may serve as tests to detection and inversion 

algorithms, such as target recognition or temperature retrieval. 
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