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Abstract—We propose modifications in the TCP-Friendly Rate
Control (TFRC) congestion control mechanism from the Data-
gram Congestion Control Protocol (DCCP) intended for use with
real-time traffic, which are aimed at improving its performance
for long delay (primarily satellite) links. Firstly, we pro pose an
algorithm to optimise the number of feedback messages per round
trip time (RTT) rather than use the currently standard of at l east
one per RTT, based on the observed link delay. We analyse the
improvements achievable with proposed modification in different
phases of congestion control and present results from simulations
with modified ns-2 DCCP and live experiments using the modified
DCCP Linux kernel implementation. We demonstrate that the
changes results in improved slow start performance and a reduced
data loss compared to standard DCCP, while the introduced
overhead remains acceptable.

I. I NTRODUCTION

Despite of an undeniable success of the TCP service as
the primary means to carry reliable data over IP networks,
an increasing number of new multimedia applications have
found TCP too limiting. This is one of the reasons that pushed
IETF to propose a new transport protocol called Datagram
Congestion Control Protocol (DCCP) [1] which is particularly
adapted to carry multimedia traffic that does not need a reliable
service.

DCCP includes multiple congestion control algorithms
which can be selected based on the user applications and which
are identified by the Congestion Control ID (CCID).

We consider improvements for CCID3 [2], the TCP-
Friendly Rate Control (TFRC) algorithm which is suitable
for traffic with smooth changes in sending rates, such as
telephony or video streaming. The CCID3 is based on the TCP
throughput equation [3] and is designed to be reasonably fair
when competing with TCP flows.

There has been an increasing deployment of satellite net-
works in recent times [4], [5], [6] and an increasing trend
towards their use in residential and small business environ-
ments, rather than the previously used dedicated environments
i.e. governmental, military or oil/gas/mining remote sites. This
increases the applicability of new protocols like DCCP for use
in those networks, as the networks will have an increasing
amount of multimedia and real time traffic and the primary
purpose of introducing DCCP was to better handle such traffic
and provide a degree of transmission control which is not
integrated in UDP. As the performance of TCP over satellite

and wireless links has been extensively evaluated with a
number of proposed protocol enhancements, [7] it is likely that
the DCCP algorithms (which reproduce a congestion control
similar as the one of TCP) should also have performance
difficulties over these networks.

In this paper, we show that the current feedback mes-
sages frequency is suboptimal in the context of long delay
network and that a dynamic evaluation of this frequency can
improve the goodput of the DCCP/CCID3 connection. Thus,
we propose an algorithm to determine the optimum number of
feedback messages (as opposed to using the currently standard
of at least one per round trip time RTT) in DCCP/CCID3
(DCCP with TFRC congestion control). This algorithm is
based on the observed link delay and is dynamically applied
in the DCCP receiver. We first analyse the improvements
achievable with our modifications in different phases of TFRC
congestion control and present results from ns-2 simulator. In
addition to simulation, we drive real measurements on a live
satellite link by implementing our proposal inside the Linux
kernel DCCP/CCID3 . We demonstrate that the modification
results in a reduced data loss and higher data rates while the
overhead introduced remains acceptable. In a previous work
[8], we have introduced the idea of increasing the number of
feedback messages and have presented results of experimental
evaluation of the performance of DCCP/CCID3 for example
values of the increased number of feedback messages. In this
paper, we push further this idea with the proposition of a
dynamic algorithm able to compute efficiently the optimal
number of feedback messages.

The rest of the paper is structured as follows: section II
provides an overview of the related work. Section III presents
the proposed changes to the TFRC rate control. Section IV
presents the simulation and experimental setup and Section
V analyses how the changes affect the different stages of
congestion control. Section VI presents results of live satellite
tests and additional analysis. Conclusions and a discussion of
future work is presented in Section VII.

II. RELATED WORK

DCCP/CCID3 [1], [2] and its variant for small packet sizes,
DCCP/CCID4 [9], use TFRC congestion control. TFRC is
an equation-based congestion control mechanism in which



the sender and receiver jointly compute an optimal sending
rate based on the monitored network conditions. TFRC uses
equation (1):
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Where:
• X is the transmit rate in bytes/second;
• s is the packet size in bytes;
• RTT the round trip time in seconds;
• p is the loss event rate, between 0 and 1.0, to represent

the number of loss events as a fraction of the number of
packets transmitted;

• RTO is the TCP retransmission timeout value in seconds.
TFRC results in a smoother sending rate and lower data

throughput variations compared to TCP, which makes it suit-
able for multimedia streaming and VoIP applications. The
reliance on receiver feedback, as shown in [10], makes TFRC
respond slower to changes in available bandwidth compared to
TCP in the case of long delay. Furthermore, the DCCP/CCID3
and CCID4 performances in the context of satellite delay
have been recently studied [11]. In order to palliate some
drawbacks of TCP and TFRC, the authors evaluate in [11],
[12], using ns-2 [13] simulation, the impact of Quick Start
[14] and Fast Restart [15] transport protocol mechanisms
on the overall DCCP performance and show that these new
mechanisms do not provide a consistent improvement to poor
TFRC performances over a long delay network.

In this paper, we propose an alternative method to improve
the performance of DCCP/CCID3 which uses a combination
of already available parameters to dynamically adjust the way
DCCP control behaves in long delay networks. As the equation
based (1) mechanism uses measured RTT and loss and the
measurement is done within each feedback period, the whole
feedback-based algorithm is both slow and late to respond to
network changes in long delay networks. Our proposal [8] to
increase the number of feedback messages per RTT has shown
significant improvements on live satellite links. However,our
choice of experimental values was heuristic and to realise the
potential of proposed changes we needed to characterise the
optimum choice of parameter value and come up with an
algorithm which can be applied dynamically to produce the
optimum value.

III. PROPOSEDIMPROVEMENTS

This section presents proposed improvements. In the fol-
lowing section, we analyse the effect of the proposed improve-
ments in different stages of TFRC congestion control.

We propose to increase the number of feedback messages
based on the measured delay and taking into consideration the
received data rate and packet size. We argue that in a rate
based algorithm, changes can be applied at any time, rather
than needing to follow the logic of a window based algorithm
where the changes are applied once every RTT. Care needs to
be taken to prevent oscillations, as has been identified in [3].

We define an observation intervalO as the length of time
used for all calculations on which receiver feedback is based,
with O = RTT in the standard TFRC implementations and
O = RTT/NFb with NFb being defined as the number of
feedback messages per RTT in our proposal. The optimum
NFb is calculated as:

NFb = min(max(round(
RTT

RTTref

), 1),
RTT ∗ Xrec

s
) (2)

Where:Xrec is the received rate in bytes/second;RTTref is
the reference (standard) link delay;s the mean size packet; and
round: a function that roundsRTT/RTTref to the nearest
integer.

We note that the receiver can only measure the received
data rate and the average loss interval used for calculatingthe
loss event ratep based on the fully received packets, and as a
minimum needs to receive and process one packet inO. This
results in a lower bound for the number of feedback messages
per RTT in equation (2).

Please note that all the parameters are already calculated as
part of the TFRC congestion control algorithm.

IV. SIMULATION AND EXPERIMENTAL SETUP

We use ns-2.32, patched to include the proposed modifica-
tions inside the official TFRC implementation. The simulation
parameters include RTT, error rate and a congestion bottleneck
equivalent to a representative satellite link bandwidth. We have
chosen the parameters to closely match the IPSTAR satellite
link we have at NICTA Laboratory in Sydney, Australia. Other
than the proposed improvements, the standard DCCP/CCID3
default parameters, as recommended in [16], are used for all
simulation and live tests. The DCCP packet size used in all
experiments is 1000 bytes and the referenceRTTref used is
100msec which is consistent with measurements in [17].

Previous experimental results [8] characterised the IPSTAR
satellite network, which we consider a good representativeof
the growing number of IP based satellite services. IPSTAR
uses shared access over radio channels and consequently can
have both congestion and errors on the link. The network RTT
and loss characterised during our long term experiments show
an average RTT of around 1200msec and a packet error rate
(PER) ranging from 0.24% to 0.42%. Other satellite networks
e.g. DVB-RCS [18] have a specified BER of lower than10−9,
resulting in a similar lower bound for PER for the packet size
we have used in experiments and analysis.

The experimental setup is presented in Figure 1. For live
satellite link tests, the DCCP-capable application using a
DCCP protocol client is connected to the DCCP protocol
server and the application server, through a satellite link
which is connected to the public Internet through a local
(Australian based) gateway. The ns-2 configuration includes
an intermediate router and two links, one of which has a
limited bandwidth and delay to match the representative link
parameters.



Figure 1. Experimental setup: (a) for live tests and (b) ns-2simulation

V. A NALYSIS

This section presents analysis of the potential gains achiev-
able with the modified TFRC algorithm. We demonstrate that
the lager number of (accurate) feedback messages will result
in a more responsive control mechanism and illustrate the
analysis with results from ns-2 simulations.

A. Slow start

In the slow start phase, the sender increases the rate based
on receiver feedback. For long delay links, the rate of growth
can be very slow as the feedback is provided once every RTT,
which is very likely to be less than once per second (as per
observed RTT times on IPSTAR).

The minimum delay (Dmin) with which the sender will
receive feedback from the receiver can be viewed as:

Dmin = RTT + O + tdelay (3)

with t delay being the time elapsed between the receipt
of the last data packet and generation of this feedback report
in the receiver as per [3]. For an observation interval of RTT,
the sender will therefore make a rate adjustment based on the
receiver feedback approximately every2 ∗ RTT .

In our proposal, the observation interval is shortened to
RTT/NFb From the point in time where the receiver starts
seeing a measurable amount of received data in the observation
interval, the minimum delay with which the sender will receive
feedback from the receiver will now be:

Dmin =
NFb + 1

NFb

∗ RTT + tdelay (4)

Applied in a feedback loop in which the value of the
sender rateX is adjusted on receiving every feedback, the
improvement in a time periodt (assuming the starting rateX
of one packet per second as per) can be approximated by:

Xt = s ∗ 2
t

2∗RT T (5)

with standard rate control and

Xt = s ∗ 2
t∗N

F b

(N
F b

+1)∗RT T (6)

with NFb feedbacks per RTT.

B. Congestion avoidance phase

Once the receiver detects the first loss event of the connec-
tion, TFRC mechanism enters into the congestion avoidance
phase. During this phase, the sending rate is computed using
the equation (1), with packet loss ratep and RTT as parameters.
The p value is estimated at the receiver based on loss interval
durations (number of packets between two loss events), using
a weighted moving average algorithm which includes a history
of previous loss interval durations and the number of packets
received in the current error free interval. The value of RTT
is computed at the sender using the receiver feedback on the
recorded one-way packet delay and is also a weighted average
over the duration of the observation interval.

In the error free periods, we can analyse the impact of
the increased frequency of feedbacks on the resulting sender
rate separately for the loss event rate estimation and for RTT
estimation.

The packet-loss-rate estimation algorithm is the reason why
increasing the number of feedback messages will have a
positive effect on the estimation of the loss event rate in periods
with no errors or congestion, as the increasing amount of data
received, with more frequent observations, will be recorded
faster and the loss event rate will therefore be reduced more
quickly which will in turn result in a higher value of sender
rate.

Having more frequent feedback with shorter observation
intervals results in reported RTT values which are closer to
the RTT values for individual packets. This is particularly
important when RTT values increase, which is an arguable
indication of getting closer to congestion. The variation of RTT
will result in accordingly adjusted values of sender rate. In a
dynamic environment, as will be shown in Section VI, the RTT
changes will have a greater impact on the equation (1) based
sender rate during the periods with no errors, as RTT in these
periods varies more thanp.

C. Demonstration of performance improvement in ns-2

This section presents the improvement achieved with in-
creasing the number of feedback messages per RTT in ns-2.

Figure 2 shows result of ns-2 simulation of the
DCCP/CCID3 performance with standard and with dynamic
feedback, with RTT of 1sec on the nominal satellite link with
a 1Mbit/s downlink rate, patched to include the same number
of errors and RTT values on exiting slow start phase. In this ex-
periment, it can be observed that there is a 14sec improvement
with the dynamic feedback algorithm the standard algorithm
when exiting the slow start. It can also be observed that the
proposed modification results in about 20 sec improved loss
recovery after the slow start phase. Please note that all the
TFRC safeguards in regards to maximum rate increase as
defined in [3] are still followed.
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Figure 2. Slow start and error recovery on a representative satellite link, ns-2
simulation, standard and dynamic feedback DCCP/CCID3

The on-going congestion avoidance is more complex and
the simplistic ns-2 simulation could not demonstrate the dy-
namic range of the RTT and error rate changes, therefore we
have based the analysis on the results of experiments done on
live satellite links, presented in the section below.

VI. RESULTS OFL IVE TESTS AND PERFORMANCE

ANALYSIS

We have performed extensive experiments over the IPSTAR
satellite network and the below figures show representative
receiver rates for the standard TFRC and for the dynamic
feedback algorithm.

The experiments were done a number at different times
of the day (as the IPSTAR network peak congestion times
coincide with business hours) and with different durations. A
summary of the results from 50 download experiments are
presented in Table I. The loss is the actual packet loss rate for
each experiment (not the loss event rate used in TFRC rate
control).
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Figure 3. Measured throughput with the standard TFRC (1 feedback message
per RTT by default)

It can be observed that the average download rates are on
consistently higher by 33% and that the majority of the results
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Figure 4. Measured throughput with the dynamic feedback algorithm

Table I
DCCPDOWNLOAD PERFORMANCE ONIPSTAR

Avg. rate Std. Dev. Avg.
download (kbit/s) download (kbit/s) Loss (%)

Standard TFRC 372 35.6 2.9%
Dynamic Fb TFRC 529 44.1 1.9%

are consistent, i.e. higher rates are achieved with the dynamic
feedback version.

To aid with analysis, we also show the representative loss
event ratep values calculated at the receiver and sender-
observed RTT values in the Figures 5 and 6. As the slow start
is exited when the receiver detects the first error, we can also
use thep values to observe the difference in slow start phase
for both algorithms.
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Figure 5. Loss event rate measured at the receiver for standard and dynamic
feedback DCCP/CCID3

A. Slow start phase

It can be observed, consistent with the observations in the
controlled environment of ns-2, that the slow start phase isalso
exited earlier for the dynamic feedback algorithm. This occurs
close to 3 seconds earlier for dynamic feedback TFRC.
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Figure 6. RTT measured at the receiver for standard and dynamic algorithms

B. Congestion avoidance phase

The on-going congestion control, as indicated by the results
in Table I, shows a marked improvement for the dynamic
feedback algorithm. The values ofp and RTT can be directly
correlated with received rates, which logically follows from
the formula based algorithm. E.g. the error events recorded
around 82 and 160sec from Figure 5 correspond to lowered
rates recorded in the standard DCCP in Figure 3. For the
dynamic feedback, higher RTT values around 90 sec from
Figure 6 result in lower rate values in the same period in Figure
4, followed by a more noticeable rate drop from error events
occurring between [100, 110] sec in Figure 5. We note that
while the relation of sender rate top is clearly reactive, i.e.
after reported error events, the influence of RTT can be seen
as both predictive and reactive i.e. the sender will reduce the
rate based on higher values of RTT, which occurs both in error
free intervals and after error events.

C. Discussion on the performance results

We believe the main benefit of the dynamic feedback mech-
anism in the congestion avoidance phase to be the increased
accuracy of the RTT measurements, which are arguably an
indicator of congestion, as demonstrated by the proposed TCP
Vegas [19]. While a higher increase in the number of feedback
messages may further improve the adjustments to dynamic
network conditions and provide highest possible gains, it is
important not to overload the return channel with control
messages. The proposed dynamic feedback algorithm adjusts
the number of feedback messages to the level of feedback
traffic equivalent to what DCCP/CCID3 would generate on a
standard internet link.

VII. C ONCLUSIONS ANDFUTURE WORK

We have proposed a change in the DCCP/CCID3 TFRC
congestion control mechanism to improve it’s performance for
long delay links. Our proposal is an algorithm to increase
the number of feedback messages based on the link delay
parameter. As the link delay is already measured within the
DCCP protocol, the proposal does not significantly increase

the complexity of the control mechanism. We have analysed
the performance of the proposed modifications and present
results from ns-2 simulations and tests over a live satellite link.
We have demonstrated that the proposed changes results in
improved performance of DCCP/CCID3, while the increased
overhead introduced remains acceptable.

We plan to further investigate DCCP over satellite and
consider a TFRC-Vegas-like modification to rate control in
order to predict and minimise error events.
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