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Abstract

The main purpose in this paper is to investigate existence and non-existence
of global solutions of the initial Dirichlet-boundary value problem for evo-
lution equations with the strong dissipation. Many authors studied classes
consisting of such type of equations for which initial boundary value prob-
lems possess global solutions. For this purpose we consider a related problem
and seek global solutions and blow-up solutions of it depending on whether
it belongs to such classes or not.

Key words: evolution equation, strong dissipation, blow-up, global
existence
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1. Introduction

In this paper our main concern is the initial Dirichelt-boundary value
problem for a nonlinear evolution equation with the strong dissipation with
respect to v := v(x, t):
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(DB)


vtt − λvxxt − dvxx = A(vx)vxx in (0, π) × (0, T ) (1.1)

v(0, t) = 0, v(π, t) = 0 on (0, T ) (1.2)

v(x, 0) = h0(x), vt(x, 0) = h1(x) in (0, π) (1.3)

where the nonlinear term is of the form:

A(vx) = avx + σ(vx) (1.4)

and λ > 0, a ̸= 0 and d ̸= 0 are constants and σ(vx) will be specified in
section 2. The sign of d plays a very important role to discuss the existence
of global in time solutions to (DB). In fact, if d < 0, we obtain not only
blow-up solutions but also global solutions to (DB) depending on the choice
of initial data. If d > 0, it will be shown that for any intial data, there
exist global solutions such that they decay exponentially as t → ∞. Hence
initial data of the solutions to (DB) will be classified from this standpoint
in section 2.

There is a number of papers of the initial-Dirichlet boundary value prob-
lem for the type of the equation (1.1). Greenberg [5] considered the intial
Dirichlet boundary value problem:

(G)


ρ0utt = E(ux)uxx + λuxxt, (x, t) ∈ (0, 1) × (0, T ) (1.5)

u(x, 0) = x, ut(x, 0) = V 0(x)

u(0, t) = 0, u(1, t) = 1
where ρ0 and λ are positive constants. He proved the existence of the gener-
alized solution to the problem in (0, 1) × [0, T ] for each T > 0 provided that
in [0, 1] × R̄+

E(ux) =

∫ ux

1

e(ξ)dξ, E(ux) > 0. (1.6)

(1.5) describes a local statement of balance of momentum for materials for
which the stress is related to strain rate through some constitutive equation(cf
[6]). In a more general situation M.Tsutumi [13] treated with the problem
on some Hilbert spaces. Kakita [7] obtained the existence of weak periodic
solution for the type of the equation (1.5). Since then, many authors have
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investigated the global existence as well as the asymptotic behavior of solu-
tions to the type of the problem (G) under assumptions analogous to (1.6)(see
Ebihara [2]-[4], Yamada [15], Kawashima-Shibata [8] and Kobayashi-Pecher-
Shibata [9] and the referrences cited in these papers). Ebihara [3] considered
the following problem :

(E)


utt − ∆ut = F (x, t, u, uxi

, uxixj
, ut, utxi

), (x, t) ∈ Ω × [0,∞) (1.7)

u(x, 0) = u0(x), ut(x, 0) = u1(x),

u|∂Ω = φ(x)

where Ω is a bounded domain in Rn and (1.7) is of a much more general form
than (1.1)(cf [2][4]). He proved the local in time existence of solutions to (E)
in [3]. In fact, in section 2 we will find blow-up solutions of (DB), which is
a special case of (E). Ebihara [3] also considered a restricted case of (E):

(E)′


utt − ∆ut = P (∇u)∆u,

u(x, 0) = u0(x), ut(x, 0) = u1(x),

u(ξ, t) = S(ξ), ξ ∈ ∂Ω

under the condition

P (0, · · ·, 0) = 0, P (a1, · · ·, an) ≡ δ > 0 (1.8)

where P (∇u) is a polynomial in uxi
(i = 1, 2, ···, n) and S(ξ) =

∑n
j=1 ajξj(aj :constant).

He proved the existence of the global solution by using a transformation
u(x, t) = e−δtv(x, t) + S(x). It can be observed that (E)′ is a general case of
(G), too.

In [3] and [5], as stated above, the conditions (1.6) and (1.8) are required to
obtain existence theorems of global solutions respectively. In order to discuss
non-existence of global solutions of (G) and (E)′ if such conditions are not
satisfied we consider a related problem as

(GE)


utt − λuxxt = (aux + σ(ux − 1))uxx in (0, π) × (0, T )

u(0, t) = 0, u(π, t) = π. on (0, T )

u(x, 0) = x, ut(x, 0) = V 0(x). in (0, π)
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Putting u(x, t) = x + v(x, t), (GE) is reduced to

(GE)′


vtt − λvxxt − avxx = (avx + σ(vx))vxx

v(0, t) = 0, v(π, t) = 0

v(x, 0) = 0, vt(x, 0) = V 0(x)

which is the type of the problem (DB).

Recently in [12] Othmer and Stevens derived a parabolic-ODE system
modeling reinforced random walk proposed by Davis [1], which is applied to
chemotactic aggregation of myxobacteria etc.. Mathematical analysis of this
model was done by Levine and Sleeman [10](see also Sleeman and Levine
[11]). They consider the following problem arising from the parabolic-ODE
proposed by Othmer and Stevens:

(C)


utt − D∆ut − dD∇ · (ut∇u) = 0 in Ω × (0, T )

∂νu|∂Ω = 0 on ∂Ω × (0, T )

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω.

where D is a positive constant and d is a real number. When n = 1 and
D = 1, they construct both global and blow-up in finite time solutions to
(C) for d = 1 and −1 respectively. Yan-Chen-Liu [14] extended their result
by improving their method. Making use of Levine and Sleeman’s way we will
seek both global and blow-up solutions to (DB).

The main purpose in this paper is to investigate existence and non- exis-
tence of global solutions to (DB) and properties of solutions. In section 2 we
will construct blow-up in finite time solutions to (DB) for d < 0, and global
solutions for d > 0. In subsection 2.3, comparing our result to known results
[3] and [5] we discuss the relationship between existence and non-existence
of global solutions of (GE) and the property of the non-linear term.
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2. Existence and non-existence of global solutions

2.1. Construction of solutions

By an analogous manner to the way used in Levine and Sleeman [10],
we will construct blow-up solutions and global solutions to (DB). In fact we
will seek the solution to (DB) in the form of

v(x, t) =
∞∑

n=1

an exp(cNnt) sin(Nnx), (x, t) ∈ (0, π) × (0, T )

where an and c are suitably chosen in the following lemma and N is a positive
integer. We sometimes use the following notations

En(t) = exp(ncNt), Sn(x) = sin(nNx) and Cn(x) = cos(nNx)

for our convenience.

Lemma 1. Put an = −4λcεn/(an). Then

v(x, t) =
−4λc

a

∞∑
n=1

εn exp(cNnt)

n
sin(Nnx) (2.1)

satisfies

vtt−λvxxt−dvxx−avxvxx =
4c2λ2N3

a

∞∑
n=2

εn exp(cNnt)
∑

k+l=n

k sin(N(k− l)x)

(2.2)
in a formal sense where ε is a parameter and c is a solution of an indicial
equation c2 + λNc + d = 0.

Proof. Substituting v(x, t) of the form
∑I

n=1 an exp(cNnt) sin(Nnx) into
(1.1) we have for an integer I ≥ 2

vtt − dvxx − λvtxx = N2

I∑
n=1

ann
2(c2 + λNnc + d) exp(cNnt) sin(Nnx)

(2.3)
and in the right hand side of (1.1)

avxvxx = −aN3

I∑
n=2

∑
k+l=n

k2aklal exp(cN(k + l)t) sin(Nkx) cos(Nlx)
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=
−a

2
N3

I∑
n=2

∑
k+l=n

k2aklal exp(cN(k + l)t) · (sin(N(k + l)x) + sin(N(k − l)))

=
−a

2
N3

I∑
n=2

exp(cNnt) sin(Nnx)
n−1∑
k=1

k2ak(n − k)an−k (2.4)

−a

2
N3

I∑
n=2

exp(cNnt)
∑

k+l=n

k2aklal sin(N(k − l)x). (2.5)

In the case of n = 1, for any a1 we determine c so that it satisfies

c2 + λNc + d = 0. (2.6)

Then taking account of (2.3) and (2.4) we determine an, n = 2, 3, · · ·, I so
that it holds

n2(c2 + Nλnc + d)an = −a

2
N

n−1∑
k=1

k2(n − k)akan−k

equivalently

4nλcan =
−2a

n(n − 1)

n−1∑
k=1

k(kak)((n − k)an−k). (2.7)

For
an = −4λcεn/(an), (2.8)

the right hand side of (2.7) gives

− 2λ2

n(n − 1)a

n−1∑
k=1

k · 4cεk · 4cεn−k

= − 32c2λ2

n(n − 1)a
εn

n−1∑
k=1

k = −16

a
c2λ2εn

which is equal to the left hand side of (2.7). Thus putting

vI(x, t) = 4
I∑

n=1

−λc

na
εnEn(t)Sn(x)
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we obtain the following equality in a formal sense

vItt−λvIxxt−dvIxx−avIxvIxx =
4N3c2λ2

a

I∑
n=2

εnEn(t)
∑

k+l=n

kSk−l(x). (2.9)

Letting I → ∞ in (2.9), we obtain (2.2). Hence the proof is complete. ¤

Next we further represent the right hand side of (2.2) in a explicit form.
Lemma 2. Under the same assumption as in lemma 1 and |ε| exp(cNt) <

1, we see that the right hand side of (2.2):

4c2λ2N3

a

∞∑
n=2

∑
k+l=n

kεn exp(Nnct) sin(N(k − l)x) = −Nλc(ε exp(Nct))2

1 − (ε exp(Nct))2
vxx

in a formal sense, that is, (2.2) is rewritten by

vtt − λvxxt − dvxx − avxvxx = −Nλc(ε exp(Nct))2

1 − (ε exp(Nct))2
vxx. (2.10)

Proof. The proof is consist of two parts.
i) In the case of n = 2i + 1, i = 1, 2, · · ·, (I − 1)/2, we have for k + l = 2i + 1

2i∑
k=1

kSk−l =
2i∑

k=i+1

kSk−l −
2i∑

l=i+1

kSl−k

=
2i∑

k=i+1

(k − l)Sk−l =
2i∑

k=i+1

(2k − 2i − 1)S2k−2i−1

putting k = i + j

=
i∑

j=1

(2j − 1)S2j−1.

We get in the right hand side of (2.9) for k + l = 2i + 1:

4N3λ2c2

a

2i∑
k=1

εnEn(t)kSk−l

=
4N3λ2c2

a

i∑
j=1

ε2i+1E2i+1(t)(2j − 1)S2j−1(x). (2.11)

7

ha
l-0

03
61

33
3,

 v
er

si
on

 1
 - 

13
 F

eb
 2

00
9



Therefore (2.11) yields that the right hand side of (2.9):

4N3λ2c2

a

(I−1)/2∑
i=1

i∑
j=1

ε2i+1E2i+1(t)(2j − 1)S2j−1(x)

=
4N3λ2c2

a

(I−1)/2∑
j=1

ε2j+1E2j+1(t)(2j − 1)S2j−1(x)

(I−1)/2−j∑
s=0

(e2cNtε2)s

=

(I−1)/2∑
j=1

g2j−1(t)(2j − 1)S2j−1(x) (2.12)

where

g2j−1(t) =
4N3λ2c2(εE1(t))

2

a
ε2j−1E2j−1(t)(1+e2cNtε2+···+(e2cNtε2)(I−1)/2−j).

ii) In the case of n = 2i, i = 2, · · ·, I/2 we have in the same way as in i) for
k+l = 2i

2i−1∑
k=1

kSk−l(x) =
i−1∑
j=1

2jS2j.

Therefore we get the right hand side of (2.9):

4N3λ2c2

a

I/2∑
i=2

i−1∑
j=1

ε2iE2i(t)(2j)S2j(x)

=
4N3λ2c2

a

I/2−1∑
j=1

ε2j+2E2j+2(t)(2j)S2j(x)(1 + e2cNtε2 + · · · + (e2cNtε2)I/2−1−j)

=

I/2−1∑
j=1

g2j(t)(2j)S2j(x) (2.14)

where

g2j(t) =
4N3λ2c2(εE1(t))

2

a
ε2jE2j(t)(1 + e2cNtε2 + · · · + (e2cNtε2)I/2−1−j).
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Consequently we obtain by combining (2.12) with (2.14)

the right hand side of (2.9) =
I−2∑
n=1

gn(t)nSn(x). (2.15)

Since taking I → ∞ in (2.15) we have for |εE1(t)| <1

gn(t)nSn(x) =
4N3λ2c2(εE1(t))

2

a
εnEn(t)(1 + (εecNt)2 + (εecNt)4 + · · ·)nSn(x)

=
4N3λ2c2(εE1(t))

2

a
εnEn(t)

1

1 − e2cNtε2
nSn(x),

as I → ∞ we see

the right hand side of (2.9) =
Nλc(εE1(t))

2

1 − (ecNtε)2

∞∑
n=1

4cλ

a
εnEn(t)N2nSn(x)

= −Nλc(εE1(t))
2

1 − (εE1(t))2
vxx. (2.16)

Hence it is seen that v(x, t) satisfies in a formal sense

vtt − λvxxt − dvxx − (avx −
Nλc(εE1(t))

2

1 − (E1(t)ε)2
)vxx = 0

which completes the proof. ¤

Let x0 ∈ [0, π] be such that cos(Nx0) = sgn(ε) and let us define

σ(vx)(t) = − (avx(x0, t))
2

16Ncλ − 8avx(x0, t)
. (2.17)

In the following lemma, we give explicit expressions of v(x, t), vx(x, t) and
vt(x, t).

Lemma 3. i) Under the same assumptions as in lemma 1 v(x, t) and
its first derivatives with respect to x and t converge for |ε| < 1 and (x, t) ∈
(0, π) × [0,T (ε,N)). They can be written as follows,

vx(x, t) =
−4cλN

a
εE1(t)

C1(x) − εE1(t)

1 − 2εE1(t)C1(x) + (εE1(t))2
, (2.18)

9
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vt(x, t) =
−4c2λN

a
εE1(t)

S1(x)

1 − 2εE1(t)C1(x) + (εE1(t))2
, (2.19)

and

v(x, t) =
−4λc

a
arctan

(
ε exp(cNt) sin(Nx)

1 − ε exp(cNt) cos(Nx)

)
(2.20)

where T (ε,N) = − log |ε|/(Nc) in the case of c > 0 and T (ε,N) = ∞ in the
case of c <0.
ii) We have the following expression of the coefficient of the right hand side
of (2.10)

−cλN
(ε exp(cNt))2

1 − (ε exp(cNt))2
= σ(vx)(t).

Proof. i) It is easily seen that for 0 ≤ t < T (ε,N) and 0 < |ε| < 1 (2.1)
and its first derivatives converge absolutely in [0, π]× [0, T ). It is well known
that

∞∑
n=1

an

n
sin(nx) = arctan

(
a sin x

1 − a cos x

)
, −π < x < π, |a| < 1.

Due to the above expression we obtain

v(x, t) =
−4λc

a

∞∑
n=1

εn exp(cNnt)

n
sin(Nnx)

=
−4λc

a
arctan

(
ε exp(cNt) sin(Nx)

1 − ε exp(cNt) cos(Nx)

)
,

which gives the explicit expressions of vx and vt by a simple calculation.
Hence we arrive at (2.18)-(2.20).

ii) It is seen by (2.18) that for x0 satisfying cos(Nx0) = sgn(ε)

vx(x0, t) =
−4

a
Ncλ|ε| exp(Nct)

1 − |ε| exp(Nct)

1 − 2|ε| exp(Nct) + |ε|2 exp(2Nct)

=
−4

a
Ncλ|ε| exp(Nct)

1

1 − |ε| exp(Nct)
, in [0, T (ε,N)). (2.21)

Then, since by (2.21) we easily see that vx(x0, t) ̸= 4a−1Ncλ for any t ∈
[0, T (ε,N)), (2.21) also yields that

|ε| exp(Nct) =
vx(x0, t)

−4a−1Ncλ + vx(x0, t)
. (2.22)

10
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By using (2.22) we see

Nλc(ε exp(Nct))2

1 − (ε exp(Nct))2
=

v2
x(x0, t)

16
a2 Ncλ − 8

a
vx(x0, t)

(2.23)

Hence we obtain ii) of lemma 3. ¤

Remark. Note that by (2.21) and (2.23) we have for a < 0(> 0)

vx(x0, t) > 0 and σ(vx) < 0

in the case of c > 0 and

vx(x0, t) < 0(> 0) and σ(vx) > 0

in the case of c < 0 respectively. Namely, vx(x0, t) and c/a have opposite
signe, as well as σ(vx) and c.

From lemma 3 and (2.10), we easily deduce

vtt − λvxxt − dvxx − avx = −σ(vx)vxx, in (0, π) × [0, T (ε,N)) (2.24)

in a formal sense and it will be justified in the next subsection.

2.2. Existence and non-existence of global solutions to (DB)

We denote the solutions of (2.6) by

c1 =
−λN +

√
λ2N2 − 4d

2
, c2 =

−λN −
√

λ2N2 − 4d

2
(2.25)

and ci is further denoted by c−i if d < 0 and c+
i if d > 0 for i = 1, 2,

respectively. It is easily seen that c−1 > 0 and c−2 , c+
1 , c+

2 < 0. Denote initial
data of (DB) by

(h0(x), h1(x)) = (
−4cλ

a
arctan

(
ε sin(Nx)

1 − ε cos(Nx)

)
,
4c2λN

a

ε sin(Nx)

1 − 2ε cos(Nx) + ε2
).

Hence we defone the following four families of initial data,

Θ±
i (ε0) = {(h±

0i(x), h±
1i(x))/N > 1, 0 < |ε| ≤ ε0 < 1 }, i = 1, 2.

11
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Then we state non-existence theorem of (DB).

Theorem 2.1. Let initial data (h0(x), h1(x)) ∈ Θ−
1 (ε0). Then there

exists T > 0 such that v(x, t) is the solution of (DB) for 0 < t < T, and
vt(x, t) and vx(x,t) blow up in finite time t = T at some point x ∈ [0, π].

Proof. First of all we show that v(x, t) is a solution of (DB) for
0 ≤t < T−

1 = − log |ε|/(Nc−1 ). From (2.9) it follows that for vI := vI(x, t) =∑I
n=1 an exp(cNnt) sin(Nnx) and any test function φ := φ(x, t) ∈ D((0, π)×

(0, T )) we have

(vItt − λvIxxt − dvIxx − (avIxvIxx −
I−2∑
k=1

gk(t)k sin(Nkx)), φ) =

(vI , φtt) − λ(vIt, φxx) − d(vI , φxx) + (
a

2
v2

Ix +
I−2∑
k=1

gk(t)N
−1 cos(Nkx), φx)

by Lemma 3 ii)

→ (vtt − λvxxt − dvxx − (avx −
Nλc(ε exp(Nct))2

1 − (ε exp(Nct))2
)vxx, φ) = 0

as I → ∞. Thus by (2.25) we see that v(x, t) is a solution of (DB) for initial
data (h0(x), h1(x)) ∈ Θ−

1 (ε0).

I( Blow-up of vx(x, t)). In the case of cos(Nx0) = sgn(ε), blow-up occurs in
(2.18), since from (2.21) it follows that

vx(x0, t) =
−4

a
N |ε|c−1 λ exp(Nc−1 t)

1

1 − |ε|eNc−1 t
→ +∞

as t → T−
1 = − log |ε|/(Nc

−
1 ). Hence we see that vx(x, t) blows up at (x0, T

−
1 ).

II(Blow-up of vt(x, t)). Next we consider about the asymptotic behavior
of vt(x, t). We see that vt(x0 + δ, t) exists and possesses the same expression
as (2.19) in [0, T−

1 ] for 0 < |δ| < π
2
. In fact, since for 0 < |δ| < π

2N
we have

0 <| cos(N(x0 + δ))| < 1, it holds that

|ε exp(Nc−1 t) cos(N(x0 + δ))| < 1, for 0 ≤ t ≤ T−
1 ,

which gurantees the convergence of vt(x0 + δ, t) in [0, T−
1 ] and for t ≤ T−

1 it
is represented by

vt(x0+δ, t) =
−4Nc−1

2λε

a
exp(Nc−1 t)

sin(N(x0 + δ))

1 − 2ε exp(Nc−1 t) cos(N(x0 + δ)) + ε2 exp(2Nc−1 t)
.
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On the other hand we have for ε > 0

1 − 2ε exp(Nc−1 T−
1 ) cos(N(x0 + δ)) + ε2 exp(2Nc−1 T−

1 )

= 2 − 2 cos(N(x0 + δ)) = 4 sin2(N(x0 + δ)/2)

and for ε < 0

1− 2ε exp(Nc−1 T−
1 ) cos(N(x0 + δ)) + ε2 exp(2Nc−1 T−

1 ) = 4 cos2(N(x0 + δ)/2).

Hence it follows that for ε > 0

vt(x0+δ, T−
1 ) =

−4

a
Nc−2

1 λε exp(Nc−1 T−
1 )

2 sin(N(x0 + δ)/2) cos(N(x0 + δ)/2)

4 sin2(N(x0 + δ)/2)

= −2

a
Nc−2

1 λε exp(Nc−1 T−
1 )

cos(N(x0 + δ)/2)

sin(N(x0 + δ)/2)
(2.26)

and that for ε < 0

vt(x0 + δ, T−
1 ) = −2Nc−2

1 λε

a
exp(Nc−1 T−

1 )
sin(N(x0 + δ)/2)

cos(N(x0 + δ)/2)
. (2.27)

Considering into sgn(ε) = cos(Nx0) = 2 cos2(Nx0/2)−1 = 1−2 sin2(Nx0/2),
we have

cos2(Nx0/2) =
1 + sgn(ε)

2
and sin2(Nx0/2) =

1 − sgn(ε)

2
. (2.28)

Since in the case of ε > 0 (2.28) implies that for sufficiently small |δ|

| cos(N(x0 + δ)/2)| >
1

2
,

we have by (2.26) and (2.28)

lim
δ→0

|vt(x0 + δ, T−
1 )| ≥ Nλc−2

1

a
lim
δ→0

1

| sin(N(x0 + δ)/2)|
= ∞.

When ε < 0, by the same manner as above and using (2.27) and (2.28) we
have

lim
δ→0

|vt(x0 + δ, T−
1 )| ≥ Nλc−2

1

a
lim
δ→0

1

| cos(N(x0 + δ)/2)|
= ∞.
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Consequently for any constant L > 0, there exists δ0 > 0 such that for
0 < |δ| < δ0

lim
t→T−

1

|vt(x0 + δ, t)| ≥ L

which means that we find a blow-up point of vt(x, t) at (x0, T
−
1 ) in such a

sense. Hence the proof is complete. ¤

In the case of c = c−2 < 0, in the same way as above we obtain another
solution of (DB) for d < 0

v(x, t) =
−4λc−2

a

∞∑
n=1

εn exp(c−2 Nnt)

n
sin(Nnx).

In the same argument as used in the proof of lemma 3 there exists a constant
1 > ε0 > 0 such that v(x, t) converges for any 0 < |ε| ≤ ε0 and we obtain the
same type of representations of

v(x, t) =
−4λc−2

a
arctan

(
ε exp(c−2 Nt) sin(Nx)

1 − ε exp(c−2 Nt) cos(Nx)

)
and its derivatives with respect to x and t as (2.18) and (2.19) respectively
for c = c−2 < 0 and (x, t) ∈ (0, π)×(0,∞). Then we have the following result.

Theorem 2.2. For initial data (h0(x), h1(x)) ∈ Θ−
2 (ε0) there exists a

solution v(x, t) of (DB) for 0 < t such that it holds that for a constant C > 0

|∂i
t∂

j
xv(x, t)| ≤ CeNc−2 t, 0 ≤ i + j ≤ 1 (2.30)

Proof. For |ε| <1 we see

1 − 2ε exp(Nc−2 t) cos(Nx) + ε2 exp(2Nc−2 t) > (1 − ε exp(Nc−2 t))2 > 0

for any t > 0. Hence the representations of v(x, t), vx(x, t) and vt(x, t) show
that they decays exponentially as t → ∞ and that (2.30) holds.¤

In the same way as in the proof of theorem 2.2 we have the following result.

Theorem 2.3. For initial data (h0(x), h1(x)) ∈ Θ+
1 (ε0) or Θ+

2 (ε0), there
exists a solution v(x, t) of (DB) for t > 0 such that it holds for a constant
C > 0 ∑

i+j≤1

|∂i
t∂

j
xv(x, t)| ≤ CeNc+i t, i = 1, 2. (2.31)
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Proof. By the analogous way to the proof of Theorem 2.2 we obtain the
decay estimate (2.31) considering into c+

i < 0, i = 1, 2. Hence we omit the
proof. ¤

2.3. Existence and non-existence of global solutions to (GE)

In this subsection, we discuss existence and non-existence of global solu-
tions of a generalized problem of (GE) :

(GE)p


utt − λuxxt = Ap(ux) = (aux + σ(ux − p

π
))uxx, (0, π) × (0, T )

u(0, t) = 0, u(π, t) = p

u(x, 0) = h0(x) + p
π
x, ut(x, 0) = h1(x).

where p is a real number. In fact, putting p = π, h0(x) ≡ 0 and h1(x) ≡
V 0(x), (GE)p coincides with (GE). By setting u(x, t) = px/π+v(x, t), (GE)p

is reduced to

(GE)′p


vtt − λvxxt − pa

π
vxx = (avx + σ(vx))vxx

v(0, t) = 0, v(π, t) = 0

v(x, 0) = h0(x), vt(x, 0) = h1(x).

Since (GE)′p is the same type of the problem as (DB), by theorems 2.1-2.3
we obtain the following result.

Corollary 2.1. i) In the case of pa < 0, for intial data given in theorem
2.1 there exists the solution v(x, t) of (GE)′p in 0 < t < T−

1 such that ux(x, t)
and ut(x, t) blow up at t = T−

1 for the solution u(x, t) = px/π + v(x, t)
of (GE)p and some points x ∈ [0, π]. For intial data given in theorem 2.2
there exits the global solution v(x, t) of (GE)′p such that v(x, t) satisfies for a
positive constant k

v(x, t) = o(e−kt),

and the solution u(x, t) = px/π + v(x, t) of (GE)p satisfies

lim
t→∞

ux(x, t) =
p

π
. (2.32)

ii) In the case of pa > 0, for intial data given in theorem 2.3 there exists
the global solution v(x, t) of (GE)′p such that v(x, t) satisfies v(x, t) =o(e−kt)
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for a positive constant k and the solution u(x, t) = px/π + v(x, t) of (GE)p

satisfies (2.32).

By corollary 2.1 we discuss the relationship between the property of
Ap(ux) and existence and non-existence of the solutions comparing with con-
ditions (1.6) and (1.8) given by Greenberg and Ebihara respectively. For the
simplicity, p is assumed to be positive below.

1) If such conditions are not satisfied, generally there do not exist global
solutions to the problems. In fact, since by corollary 2.1 i) we have

vx(x0, t) > 0 and lim
t→T−

1 −0
vx(x0, t) = +∞

for the solution v(x, t) of (GE)′p with a < 0 and (h0(x), h1(x)) ∈ Θ−
1 (ε0),

taking account of Remark, it is seen that

Ap(ux) = a(
p

π
+ vx) + σ(vx) < 0 → −∞ as t → T−

1 − 0,

which does not necessarily satisfy (1.6) and (1.8).

2) On the other hand, corollary 2.1 i) also implies that there exist time global
solutions u(x, t) of (GE)′p for a < 0 and (h0(x), h1(x)) ∈ Θ−

2 (ε0) even if (1.6)
and (1.8) do not hold for Ap(ux). In fact in this case it is seen that for
sufficiently large T > 0 we have by the expression of σ(vx) in (2.17),

Ap(ux) = a(
p

π
+ vx) + σ(vx) < 0, t ≥ T,

taking account of Remark and v(x, t) = o(e−kt).

3) Next, since the solution u(x, t) to (GE)p for a > 0 and (h0(x), h1(x)) ∈
Θ+

i (ε0), i = 1, 2, possesses the same asymptotic property as (2.32), consid-
ering into Remark we see that

Ap(ux) = a(
p

π
+ vx) + σ(vx) > 0, t ≥ T

holds for sufficiently large T > 0 in (GE)p. Consequently our result about
(GE)p for a < 0 is a counter part of results of Greenberg [5] and Ebihara [3]
and for a > 0 it is corrsponding to their results.
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