Akisato Kubo 
email: akikubo@fujita-hu.ac.jp
  
Jean-Pierre Lohéac 
email: jean-pierre.loheac@ec-lyon.fr
  
  
Existence and Non-existence of Global Solutions to Initial Boundary Value Problems for Nonlinear Evolution Equations with the Strong Dissipation

Keywords: evolution equation, strong dissipation, blow-up, global existence 2000 MSC: 35L70, 35L15, 35L20, 58K55

The main purpose in this paper is to investigate existence and non-existence of global solutions of the initial Dirichlet-boundary value problem for evolution equations with the strong dissipation. Many authors studied classes consisting of such type of equations for which initial boundary value problems possess global solutions. For this purpose we consider a related problem and seek global solutions and blow-up solutions of it depending on whether it belongs to such classes or not.

Introduction

In this paper our main concern is the initial Dirichelt-boundary value problem for a nonlinear evolution equation with the strong dissipation with respect to v := v(x, t):

(DB)            v tt -λv xxt -dv xx = A(v x )v xx in (0, π) × (0, T ) (1.1)
v(0, t) = 0, v(π, t) = 0 on (0, T ) (1.2) v(x, 0) = h 0 (x), v t (x, 0) = h 1 (x) in (0, π) (1.3) where the nonlinear term is of the form:

A(v x ) = av x + σ(v x ) (1.4)
and λ > 0, a ̸ = 0 and d ̸ = 0 are constants and σ(v x ) will be specified in section 2. The sign of d plays a very important role to discuss the existence of global in time solutions to (DB). In fact, if d < 0, we obtain not only blow-up solutions but also global solutions to (DB) depending on the choice of initial data. If d > 0, it will be shown that for any intial data, there exist global solutions such that they decay exponentially as t → ∞. Hence initial data of the solutions to (DB) will be classified from this standpoint in section 2.

There is a number of papers of the initial-Dirichlet boundary value problem for the type of the equation (1.1). Greenberg [START_REF] Greenberg | On the existence, uniqueness, and stability of solutions of the equation ρ 0 X tt = E(X x )X xx + λX xxt[END_REF] considered the intial Dirichlet boundary value problem:

(G)            ρ 0 u tt = E(u x )u xx + λu xxt ,
(x, t) ∈ (0, 1) × (0, T ) (1.5) u(x, 0) = x, u t (x, 0) = V 0 (x) u(0, t) = 0, u(1, t) = 1 where ρ 0 and λ are positive constants. He proved the existence of the generalized solution to the problem in (0, 1) × [0, T ] for each T > 0 provided that in [0, 1] × R+

E(u x ) = ∫ ux 1 e(ξ)dξ, E(u x ) > 0. ( 1.6) 
(1.5) describes a local statement of balance of momentum for materials for which the stress is related to strain rate through some constitutive equation(cf [START_REF] Greenberg | On the existence, uniqueness, and stability of solutions of the equation σ ′ (u x )u xx + λu xtx = ρu tt[END_REF]). In a more general situation M.Tsutumi [START_REF] Tsutumi | Some nonlinear evolution equations of second order[END_REF] treated with the problem on some Hilbert spaces. Kakita [START_REF] Kakita | Time periodic solutions of some nonlinear evolution equations[END_REF] obtained the existence of weak periodic solution for the type of the equation (1.5). Since then, many authors have investigated the global existence as well as the asymptotic behavior of solutions to the type of the problem (G) under assumptions analogous to (1.6)(see Ebihara [START_REF] Ebihara | On some nonlinear evolution equations with the strong dissipation[END_REF]- [START_REF] Ebihara | On some nonlinear evolution equations with the strong dissipation, III[END_REF], Yamada [START_REF] Yamada | Some remarks on the equation y tt -σ(y x )y xx -y xxt = f[END_REF], Kawashima-Shibata [START_REF] Kawashima | Global existence and exponential decay of small solutions to nolinear viscoelasticity[END_REF] and Kobayashi-Pecher-Shibata [START_REF] Kobayashi | On a global in time existence theorem of smooth solutions to nonlinear wave equation with viscosity[END_REF] and the referrences cited in these papers). Ebihara [START_REF] Ebihara | On some nonlinear evolution equations with the strong dissipation, II[END_REF] considered the following problem :

(E)            u tt -∆u t = F (x, t, u, u x i , u x i x j , u t , u tx i ), (x, t) ∈ Ω × [0, ∞) (1.7) u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), u| ∂Ω = φ(x)
where Ω is a bounded domain in R n and (1.7) is of a much more general form than (1.1)(cf [2][4]). He proved the local in time existence of solutions to (E) in [START_REF] Ebihara | On some nonlinear evolution equations with the strong dissipation, II[END_REF]. In fact, in section 2 we will find blow-up solutions of (DB), which is a special case of (E). Ebihara [START_REF] Ebihara | On some nonlinear evolution equations with the strong dissipation, II[END_REF] also considered a restricted case of (E):

(E) ′            u tt -∆u t = P (∇u)∆u, u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x), u(ξ, t) = S(ξ), ξ ∈ ∂Ω under the condition P (0, • • •, 0) = 0, P (a 1 , • • •, a n ) ≡ δ > 0 (1.8)
where P (∇u) is a polynomial in

u x i (i = 1, 2, •••, n) and S(ξ) =
∑ n j=1 a j ξ j (a j :constant). He proved the existence of the global solution by using a transformation u(x, t) = e -δt v(x, t) + S(x). It can be observed that (E) ′ is a general case of (G), too.

In [START_REF] Ebihara | On some nonlinear evolution equations with the strong dissipation, II[END_REF] and [START_REF] Greenberg | On the existence, uniqueness, and stability of solutions of the equation ρ 0 X tt = E(X x )X xx + λX xxt[END_REF], as stated above, the conditions (1.6) and (1.8) are required to obtain existence theorems of global solutions respectively. In order to discuss non-existence of global solutions of (G) and (E) ′ if such conditions are not satisfied we consider a related problem as

(GE)            u tt -λu xxt = (au x + σ(u x -1))u xx in (0, π) × (0, T ) u(0, t) = 0, u(π, t) = π. on (0, T ) u(x, 0) = x, u t (x, 0) = V 0 (x). in (0, π) Putting u(x, t) = x + v(x, t), (GE) is reduced to (GE) ′            v tt -λv xxt -av xx = (av x + σ(v x ))v xx v(0, t) = 0, v(π, t) = 0 v(x, 0) = 0, v t (x, 0) = V 0 (x)
which is the type of the problem (DB).

Recently in [START_REF] Othmer | Aggregation, blowup, and collapse: The ABC's of taxis in reinforced random walks[END_REF] Othmer and Stevens derived a parabolic-ODE system modeling reinforced random walk proposed by Davis [START_REF] Davis | Reinforced random walks[END_REF], which is applied to chemotactic aggregation of myxobacteria etc.. Mathematical analysis of this model was done by Levine and Sleeman [START_REF] Levine | A system of reaction and diffusion equations arising in the theory of reinforced random walks[END_REF](see also Sleeman and Levine [START_REF] Sleeman | Partial differential equations of chemotaxis and angiogenesis[END_REF]). They consider the following problem arising from the parabolic-ODE proposed by Othmer and Stevens:

(C)            u tt -D∆u t -dD∇ • (u t ∇u) = 0 in Ω × (0, T ) ∂ ν u| ∂Ω = 0 on ∂Ω × (0, T ) u(x, 0) = u 0 (x), u t (x, 0) = u 1 (x) in Ω.
where D is a positive constant and d is a real number. When n = 1 and D = 1, they construct both global and blow-up in finite time solutions to (C) for d = 1 and -1 respectively. Yan-Chen-Liu [START_REF] Yang | On existence and non-existence of global solutions to a system of reaction-diffusion euations modeling chemotaxis[END_REF] extended their result by improving their method. Making use of Levine and Sleeman's way we will seek both global and blow-up solutions to (DB).

The main purpose in this paper is to investigate existence and non-existence of global solutions to (DB) and properties of solutions. In section 2 we will construct blow-up in finite time solutions to (DB) for d < 0, and global solutions for d > 0. In subsection 2.3, comparing our result to known results [START_REF] Ebihara | On some nonlinear evolution equations with the strong dissipation, II[END_REF] and [START_REF] Greenberg | On the existence, uniqueness, and stability of solutions of the equation ρ 0 X tt = E(X x )X xx + λX xxt[END_REF] we discuss the relationship between existence and non-existence of global solutions of (GE) and the property of the non-linear term.

Existence and non-existence of global solutions

Construction of solutions

By an analogous manner to the way used in Levine and Sleeman [START_REF] Levine | A system of reaction and diffusion equations arising in the theory of reinforced random walks[END_REF], we will construct blow-up solutions and global solutions to (DB). In fact we will seek the solution to (DB) in the form of

v(x, t) = ∞ ∑ n=1 a n exp(cN nt) sin(N nx), (x, t) ∈ (0, π) × (0, T )
where a n and c are suitably chosen in the following lemma and N is a positive integer. We sometimes use the following notations

E n (t) = exp(ncN t), S n (x) = sin(nN x) and C n (x) = cos(nN x) for our convenience. Lemma 1. Put a n = -4λcε n /(an). Then v(x, t) = -4λc a ∞ ∑ n=1 ε n exp(cN nt) n sin(N nx) (2.1) satisfies v tt -λv xxt -dv xx -av x v xx = 4c 2 λ 2 N 3 a ∞ ∑ n=2 ε n exp(cN nt) ∑ k+l=n k sin(N (k -l)x) (2.
2) in a formal sense where ε is a parameter and c is a solution of an indicial equation

c 2 + λN c + d = 0. Proof. Substituting v(x, t) of the form ∑ I n=1 a n exp(cN nt) sin(N nx) into (1.1) we have for an integer I ≥ 2 v tt -dv xx -λv txx = N 2 I ∑ n=1 a n n 2 (c 2 + λN nc + d) exp(cN nt) sin(N nx) (2.
3) and in the right hand side of (1.1)

av x v xx = -aN 3 I ∑ n=2 ∑ k+l=n k 2 a k la l exp(cN (k + l)t) sin(N kx) cos(N lx) = -a 2 N 3 I ∑ n=2 ∑ k+l=n k 2 a k la l exp(cN (k + l)t) • (sin(N (k + l)x) + sin(N (k -l))) = -a 2 N 3 I ∑ n=2 exp(cN nt) sin(N nx) n-1 ∑ k=1 k 2 a k (n -k)a n-k (2.4) - a 2 N 3 I ∑ n=2 exp(cN nt) ∑ k+l=n k 2 a k la l sin(N (k -l)x). (2.5)
In the case of n = 1, for any a 1 we determine c so that it satisfies

c 2 + λN c + d = 0. (2.6)
Then taking account of (2.3) and (2.4) we determine a n , n = 2, 3,

• • •, I so that it holds n 2 (c 2 + N λnc + d)a n = - a 2 N n-1 ∑ k=1 k 2 (n -k)a k a n-k equivalently 4nλca n = -2a n(n -1) n-1 ∑ k=1 k(ka k )((n -k)a n-k ).
(2.7)

For a n = -4λcε n /(an), (2.8) the right hand side of (2.7) gives

- 2λ 2 n(n -1)a n-1 ∑ k=1 k • 4cε k • 4cε n-k = - 32c 2 λ 2 n(n -1)a ε n n-1 ∑ k=1 k = - 16 a c 2 λ 2 ε n
which is equal to the left hand side of (2.7). Thus putting

v I (x, t) = 4 I ∑ n=1 -λc na ε n E n (t)S n (x)
we obtain the following equality in a formal sense

v Itt -λv Ixxt -dv Ixx -av Ix v Ixx = 4N 3 c 2 λ 2 a I ∑ n=2 ε n E n (t) ∑ k+l=n kS k-l (x). (2.9)
Letting I → ∞ in (2.9), we obtain (2.2). Hence the proof is complete.

Next we further represent the right hand side of (2.2) in a explicit form. Lemma 2. Under the same assumption as in lemma 1 and |ε| exp(cN t) < 1, we see that the right hand side of (2.2):

4c 2 λ 2 N 3 a ∞ ∑ n=2 ∑ k+l=n kε n exp(N nct) sin(N (k -l)x) = - N λc(ε exp(N ct)) 2 1 -(ε exp(N ct)) 2 v xx in a formal sense, that is, (2.2) is rewritten by v tt -λv xxt -dv xx -av x v xx = - N λc(ε exp(N ct)) 2 1 -(ε exp(N ct)) 2 v xx . (2.10) Proof. The proof is consist of two parts. i) In the case of n = 2i + 1, i = 1, 2, • • •, (I -1)/2, we have for k + l = 2i + 1 2i ∑ k=1 kS k-l = 2i ∑ k=i+1 kS k-l - 2i ∑ l=i+1 kS l-k = 2i ∑ k=i+1 (k -l)S k-l = 2i ∑ k=i+1 (2k -2i -1)S 2k-2i-1 putting k = i + j = i ∑ j=1 (2j -1)S 2j-1 .
We get in the right hand side of (2.9) for k + l = 2i + 1:

4N 3 λ 2 c 2 a 2i ∑ k=1 ε n E n (t)kS k-l = 4N 3 λ 2 c 2 a i ∑ j=1 ε 2i+1 E 2i+1 (t)(2j -1)S 2j-1 (x). (2.11)
Therefore (2.11) yields that the right hand side of (2.9):

4N 3 λ 2 c 2 a (I-1)/2 ∑ i=1 i ∑ j=1 ε 2i+1 E 2i+1 (t)(2j -1)S 2j-1 (x) = 4N 3 λ 2 c 2 a (I-1)/2 ∑ j=1 ε 2j+1 E 2j+1 (t)(2j -1)S 2j-1 (x) (I-1)/2-j ∑ s=0 (e 2cN t ε 2 ) s = (I-1)/2 ∑ j=1 g 2j-1 (t)(2j -1)S 2j-1 (x) (2.12)
where

g 2j-1 (t) = 4N 3 λ 2 c 2 (εE 1 (t)) 2 a ε 2j-1 E 2j-1 (t)(1+e 2cN t ε 2 +•••+(e 2cN t ε 2 ) (I-1)/2-j ).
ii) In the case of n = 2i, i = 2, • • •, I/2 we have in the same way as in i) for

k+l = 2i 2i-1 ∑ k=1 kS k-l (x) = i-1 ∑ j=1 2jS 2j .
Therefore we get the right hand side of (2.9):

4N 3 λ 2 c 2 a I/2 ∑ i=2 i-1 ∑ j=1 ε 2i E 2i (t)(2j)S 2j (x) = 4N 3 λ 2 c 2 a I/2-1 ∑ j=1 ε 2j+2 E 2j+2 (t)(2j)S 2j (x)(1 + e 2cN t ε 2 + • • • + (e 2cN t ε 2 ) I/2-1-j ) = I/2-1 ∑ j=1 g 2j (t)(2j)S 2j (x) (2.14)
where

g 2j (t) = 4N 3 λ 2 c 2 (εE 1 (t)) 2 a ε 2j E 2j (t)(1 + e 2cN t ε 2 + • • • + (e 2cN t ε 2 ) I/2-1-j ).
Consequently we obtain by combining (2.12) with (2.14) the right hand side of (2.9) =

I-2 ∑ n=1 g n (t)nS n (x). (2.15) Since taking I → ∞ in (2.15) we have for |εE 1 (t)| <1 g n (t)nS n (x) = 4N 3 λ 2 c 2 (εE 1 (t)) 2 a ε n E n (t)(1 + (εe cN t ) 2 + (εe cN t ) 4 + • • •)nS n (x) = 4N 3 λ 2 c 2 (εE 1 (t)) 2 a ε n E n (t) 1 1 -e 2cN t ε 2 nS n (x), as I → ∞ we see the right hand side of (2.9) = N λc(εE 1 (t)) 2 1 -(e cN t ε) 2 ∞ ∑ n=1 4cλ a ε n E n (t)N 2 nS n (x) = - N λc(εE 1 (t)) 2 1 -(εE 1 (t)) 2 v xx . (2.16)
Hence it is seen that v(x, t) satisfies in a formal sense

v tt -λv xxt -dv xx -(av x - N λc(εE 1 (t)) 2 1 -(E 1 (t)ε) 2 )v xx = 0
which completes the proof.

Let x 0 ∈ [0, π] be such that cos(N x 0 ) = sgn(ε) and let us define

σ(v x )(t) = - (av x (x 0 , t)) 2 16N cλ -8av x (x 0 , t) .
(2.17)

In the following lemma, we give explicit expressions of v(x, t), v x (x, t) and v t (x, t). Lemma 3. i) Under the same assumptions as in lemma 1 v(x, t) and its first derivatives with respect to x and t converge for |ε| < 1 and (x, t) ∈ (0, π) × [0,T (ε, N )). They can be written as follows,

v x (x, t) = -4cλN a εE 1 (t) C 1 (x) -εE 1 (t) 1 -2εE 1 (t)C 1 (x) + (εE 1 (t)) 2 , (2.18) v t (x, t) = -4c 2 λN a εE 1 (t) S 1 (x) 1 -2εE 1 (t)C 1 (x) + (εE 1 (t)) 2 , (2.19) and v(x, t) = -4λc a arctan ( ε exp(cN t) sin(N x) 1 -ε exp(cN t) cos(N x) ) (2.20)
where

T (ε, N ) = -log |ε|/(N c) in the case of c > 0 and T (ε, N ) = ∞ in the case of c <0.
ii) We have the following expression of the coefficient of the right hand side of (2.10)

-cλN (ε exp(cN t)) 2 1 -(ε exp(cN t)) 2 = σ(v x )(t). Proof. i) It is easily seen that for 0 ≤ t < T (ε, N ) and 0 < |ε| < 1 (2.

1) and its first derivatives converge absolutely in

[0, π] × [0, T ). It is well known that ∞ ∑ n=1 a n n sin(nx) = arctan ( a sin x 1 -a cos x ) , -π < x < π, |a| < 1.
Due to the above expression we obtain

v(x, t) = -4λc a ∞ ∑ n=1 ε n exp(cN nt) n sin(N nx) = -4λc a arctan ( ε exp(cN t) sin(N x) 1 -ε exp(cN t) cos(N x)
) , which gives the explicit expressions of v x and v t by a simple calculation.

Hence we arrive at (2.18)-(2.20).

ii) It is seen by (2.18) that for x 0 satisfying cos(N x 0 ) = sgn(ε)

v x (x 0 , t) = -4 a N cλ|ε| exp(N ct) 1 -|ε| exp(N ct) 1 -2|ε| exp(N ct) + |ε| 2 exp(2N ct) = -4 a N cλ|ε| exp(N ct) 1 1 -|ε| exp(N ct) , in [0, T (ε, N )). (2.21)
Then, since by (2.21) we easily see that v x (x 0 , t) ̸ = 4a -1 N cλ for any t ∈ [0, T (ε,N )), (2.21) also yields that

|ε| exp(N ct) = v x (x 0 , t) -4a -1 N cλ + v x (x 0 , t) . ( 2 

.22)

By using (2.22) we see

N λc(ε exp(N ct)) 2 1 -(ε exp(N ct)) 2 = v 2 x (x 0 , t) 16 a 2 N cλ -8 a v x (x 0 , t) (2.23)
Hence we obtain ii) of lemma 3.

Remark. Note that by (2.21) and (2.23) we have for a < 0(> 0) v x (x 0 , t) > 0 and σ(v x ) < 0 in the case of c > 0 and v x (x 0 , t) < 0(> 0) and σ(v x ) > 0 in the case of c < 0 respectively. Namely, v x (x 0 , t) and c/a have opposite signe, as well as σ(v x ) and c.

From lemma 3 and (2.10), we easily deduce

v tt -λv xxt -dv xx -av x = -σ(v x )v xx , in (0, π) × [0, T (ε, N )) (2.24)
in a formal sense and it will be justified in the next subsection.

Existence and non-existence of global solutions to (DB)

We denote the solutions of (2.6) by

c 1 = -λN + √ λ 2 N 2 -4d 2 , c 2 = -λN - √ λ 2 N 2 -4d 2 (2.25) and c i is further denoted by c - i if d < 0 and c + i if d > 0 for i = 1, 2, respectively. It is easily seen that c - 1 > 0 and c - 2 , c + 1 , c + 2 < 0. Denote initial data of (DB) by (h 0 (x), h 1 (x)) = ( -4cλ a arctan ( ε sin(N x) 1 -ε cos(N x) ) , 4c 2 λN a ε sin(N x) 1 -2ε cos(N x) + ε 2 ).
Hence we defone the following four families of initial data,

Θ ± i (ε 0 ) = {(h ± 0i (x), h ± 1i (x))/N > 1, 0 < |ε| ≤ ε 0 < 1 }, i = 1, 2.
Then we state non-existence theorem of (DB).

Theorem 2.1. Let initial data (h 0 (x), h 1 (x)) ∈ Θ - 1 (ε 0 ). Then there exists T > 0 such that v(x, t) is the solution of (DB) for 0 < t < T, and v t (x, t) and v x (x,t) blow up in finite time t = T at some point x ∈ [0, π].

Proof.

First of all we show that v(x, t) is a solution of (DB) for 0 ≤t < T - 1 = -log |ε|/(N c - 1 ). From (2.9) it follows that for v I := v I (x, t) = ∑ I n=1 a n exp(cN nt) sin(N nx) and any test function φ := φ(x, t) ∈ D((0, π)× (0, T )) we have

(v Itt -λv Ixxt -dv Ixx -(av Ix v Ixx - I-2 ∑ k=1 g k (t)k sin(N kx)), φ) = (v I , φ tt ) -λ(v It , φ xx ) -d(v I , φ xx ) + ( a 2 v 2 Ix + I-2 ∑ k=1 g k (t)N -1 cos(N kx), φ x ) by Lemma 3 ii) → (v tt -λv xxt -dv xx -(av x - N λc(ε exp(N ct)) 2 1 -(ε exp(N ct)) 2 )v xx , φ) = 0 as I → ∞.
Thus by (2.25) we see that v(x, t) is a solution of (DB) for initial data (h 0 (x), h 1 (x)) ∈ Θ - 1 (ε 0 ). I( Blow-up of v x (x, t)). In the case of cos(N x 0 ) = sgn(ε), blow-up occurs in (2.18), since from (2.21) it follows that

v x (x 0 , t) = -4 a N |ε|c - 1 λ exp(N c - 1 t) 1 1 -|ε|e N c - 1 t → +∞ as t → T - 1 = -log |ε|/(N c - 1
). Hence we see that v x (x, t) blows up at (x 0 , T - 1 ). II(Blow-up of v t (x, t)). Next we consider about the asymptotic behavior of v t (x, t). We see that v t (x 0 + δ, t) exists and possesses the same expression as (2.19) 

in [0, T - 1 ] for 0 < |δ| < π 2 . In fact, since for 0 < |δ| < π 2N we have 0 <| cos(N (x 0 + δ))| < 1, it holds that |ε exp(N c - 1 t) cos(N (x 0 + δ))| < 1, for 0 ≤ t ≤ T - 1 , which gurantees the convergence of v t (x 0 + δ, t) in [0, T - 1 ] and for t ≤ T - 1 it is represented by v t (x 0 +δ, t) = -4N c - 1 2 λε a exp(N c - 1 t) sin(N (x 0 + δ)) 1 -2ε exp(N c - 1 t) cos(N (x 0 + δ)) + ε 2 exp(2N c - 1 t)
.

On the other hand we have for ε > 0

1 -2ε exp(N c - 1 T - 1 ) cos(N (x 0 + δ)) + ε 2 exp(2N c - 1 T - 1 ) = 2 -2 cos(N (x 0 + δ)) = 4 sin 2 (N (x 0 + δ)/2)
and for ε < 0

1 -2ε exp(N c - 1 T - 1 ) cos(N (x 0 + δ)) + ε 2 exp(2N c - 1 T - 1 ) = 4 cos 2 (N (x 0 + δ)/2).
Hence it follows that for ε > 0

v t (x 0 +δ, T - 1 ) = -4 a N c -2 1 λε exp(N c - 1 T - 1 ) 2 sin(N (x 0 + δ)/2) cos(N (x 0 + δ)/2) 4 sin 2 (N (x 0 + δ)/2) = - 2 a N c -2 1 λε exp(N c - 1 T - 1 ) cos(N (x 0 + δ)/2) sin(N (x 0 + δ)/2) (2.26)
and that for ε < 0 

v t (x 0 + δ, T - 1 ) = - 2N c -2 1 λε a exp(N c - 1 T - 1 ) sin(N (x 0 + δ)/2) cos(N (x 0 + δ)/2) . (2.27) Considering into sgn(ε) = cos(N x 0 ) = 2 cos 2 (N x 0 /2)-1 = 1-2 sin 2 (N x 0 /2), we have cos 2 (N x 0 /2) = 1 + sgn(ε) 2 and sin 2 (N x 0 /2) = 1 -sgn(ε) 2 . ( 2 
|v t (x 0 + δ, T - 1 )| ≥ N λc -2 1 a lim δ→0 1 | sin(N (x 0 + δ)/2)| = ∞.
When ε < 0, by the same manner as above and using (2.27) and (2.28) we have lim

δ→0 |v t (x 0 + δ, T - 1 )| ≥ N λc -2 1 a lim δ→0 1 | cos(N (x 0 + δ)/2)| = ∞.
Consequently for any constant L > 0, there exists δ 0 > 0 such that for 0 < |δ| < δ 0 lim t→T -

1 |v t (x 0 + δ, t)| ≥ L
which means that we find a blow-up point of v t (x, t) at (x 0 , T - 1 ) in such a sense. Hence the proof is complete.

In the case of c = c - 2 < 0, in the same way as above we obtain another solution of (DB) for d < 0

v(x, t) = -4λc - 2 a ∞ ∑ n=1 ε n exp(c - 2 N nt) n sin(N nx).
In the same argument as used in the proof of lemma 3 there exists a constant 1 > ε 0 > 0 such that v(x, t) converges for any 0 < |ε| ≤ ε 0 and we obtain the same type of representations of

v(x, t) = -4λc - 2 a arctan ( ε exp(c - 2 N t) sin(N x) 1 -ε exp(c - 2 N t) cos(N x)
)

and its derivatives with respect to x and t as (2.18) and (2.19) respectively for c = c - 2 < 0 and (x, t) ∈ (0, π)×(0, ∞). Then we have the following result. Theorem 2.2. For initial data (h 0 (x), h 1 (x)) ∈ Θ - 2 (ε 0 ) there exists a solution v(x, t) of (DB) for 0 < t such that it holds that for a constant C > 0

|∂ i t ∂ j x v(x, t)| ≤ Ce N c - 2 t , 0 ≤ i + j ≤ 1 (2.30)
Proof. For |ε| <1 we see

1 -2ε exp(N c - 2 t) cos(N x) + ε 2 exp(2N c - 2 t) > (1 -ε exp(N c - 2 t
)) 2 > 0 for any t > 0. Hence the representations of v(x, t), v x (x, t) and v t (x, t) show that they decays exponentially as t → ∞ and that (2.30) holds.

In the same way as in the proof of theorem 2.2 we have the following result.

Theorem 2.3. For initial data

(h 0 (x), h 1 (x)) ∈ Θ + 1 (ε 0 ) or Θ + 2 (ε 0 ), there exists a solution v(x, t) of (DB) for t > 0 such that it holds for a constant C > 0 ∑ i+j≤1 |∂ i t ∂ j x v(x, t)| ≤ Ce N c + i t , i = 1, 2. ( 2 

.31)

Proof. By the analogous way to the proof of Theorem 2.2 we obtain the decay estimate (2.31) considering into c + i < 0, i = 1, 2. Hence we omit the proof.

Existence and non-existence of global solutions to (GE)

In this subsection, we discuss existence and non-existence of global solutions of a generalized problem of (GE) :

(GE) p            u tt -λu xxt = A p (u x ) = (au x + σ(u x -p π ))u xx , (0, π) × (0, T ) u(0, t) = 0, u(π, t) = p u(x, 0) = h 0 (x) + p π x, u t (x, 0) = h 1 (x).
where p is a real number. In fact, putting p = π, h 0 (x) ≡ 0 and h 1 (x) ≡ V 0 (x), (GE) p coincides with (GE). By setting u(x, t) = px/π+v(x, t), (GE) p is reduced to

(GE) ′ p            v tt -λv xxt -pa π v xx = (av x + σ(v x ))v xx v(0, t) = 0, v(π, t) = 0 v(x, 0) = h 0 (x), v t (x, 0) = h 1 (x).
Since (GE) ′ p is the same type of the problem as (DB), by theorems 2.1-2.3 we obtain the following result.

Corollary 2.1. i) In the case of pa < 0, for intial data given in theorem 2.1 there exists the solution v(x, t) of (GE) ′ p in 0 < t < T - 1 such that u x (x, t) and u t (x, t) blow up at t = T - 1 for the solution u(x, t) = px/π + v(x, t) of (GE) p and some points x ∈ [0, π]. For intial data given in theorem 2.2 there exits the global solution v(x, t) of (GE) ′ p such that v(x, t) satisfies for a positive constant k v(x, t) = o(e -kt ),

and the solution u(x, t) = px/π + v(x, t) of (GE) p satisfies lim t→∞ u x (x, t) = p π . ( 2 

.32)

ii) In the case of pa > 0, for intial data given in theorem 2.3 there exists the global solution v(x, t) of (GE) ′ p such that v(x, t) satisfies v(x, t) =o(e -kt ) for a positive constant k and the solution u(x, t) = px/π + v(x, t) of (GE) p satisfies (2.32).

By corollary 2.1 we discuss the relationship between the property of A p (u x ) and existence and non-existence of the solutions comparing with conditions (1.6) and (1.8) given by Greenberg and Ebihara respectively. For the simplicity, p is assumed to be positive below.

1) If such conditions are not satisfied, generally there do not exist global solutions to the problems. In fact, since by corollary 2.1 i) we have v x (x 0 , t) > 0 and lim

t→T - 1 -0 v x (x 0 , t) = +∞
for the solution v(x, t) of (GE) ′ p with a < 0 and (h 0 (x), h 1 (x)) ∈ Θ - 1 (ε 0 ), taking account of Remark, it is seen that

A p (u x ) = a( p π + v x ) + σ(v x ) < 0 → -∞ as t → T - 1 -0,
which does not necessarily satisfy (1.6) and (1.8).

2) On the other hand, corollary 2.1 i) also implies that there exist time global solutions u(x, t) of (GE) ′ p for a < 0 and (h 0 (x), h 1 (x)) ∈ Θ - 2 (ε 0 ) even if (1.6) and (1.8) do not hold for A p (u x ). In fact in this case it is seen that for sufficiently large T > 0 we have by the expression of σ(v x ) in (2.17 3) Next, since the solution u(x, t) to (GE) p for a > 0 and (h 0 (x), h 1 (x)) ∈ Θ + i (ε 0 ), i = 1, 2, possesses the same asymptotic property as (2.32), considering into Remark we see that

A p (u x ) = a( p π + v x ) + σ(v x ) > 0, t ≥ T
holds for sufficiently large T > 0 in (GE) p . Consequently our result about (GE) p for a < 0 is a counter part of results of Greenberg [START_REF] Greenberg | On the existence, uniqueness, and stability of solutions of the equation ρ 0 X tt = E(X x )X xx + λX xxt[END_REF] and Ebihara [START_REF] Ebihara | On some nonlinear evolution equations with the strong dissipation, II[END_REF] and for a > 0 it is corrsponding to their results.

  ), A p (u x ) = a( p π + v x ) + σ(v x ) < 0, t ≥ T,taking account of Remark and v(x, t) = o(e -kt ).
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