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Abstract

In the context of a reconfigurable transport protocol framework, we propose a
QoS-aware Transport Protocol (QSTP), specifically designed to operate over QoS-
enabled networks with bandwidth guarantee. QSTP combines QoS-aware TFRC
congestion control mechanism, which takes into account the network-level band-
width reservations, with a Selective ACKnowledgment (SACK) mechanism in order
to provide a QoS-aware transport service that fill the gap between QoS enabled
network services and QoS constraint applications. We have developed a prototype
of this protocol in the user-space and conducted a large range of measurements
to evaluate this proposal under various network conditions. Our results show that
QSTP allows applications to reach their negotiated QoS over bandwidth guaranteed
networks, such as DiffServ/AF network, where TCP fails. This protocol appears to
be the first reliable protocol especially designed for QoS network architectures with
bandwidth guarantee.
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1 Introduction

Specifications of transport layer protocols have traditionally considered only
basic QoS parameters such as reliability and order constraints. Some solu-
tions to provide QoS-oriented information to the application, such the Real-
time Transport Protocol (RTP) [1], have been proposed but these solutions,
above the transport layer, require an application support for QoS control be-
cause they do not provide any explicit QoS control mechanisms. Following
the increase of end-systems and network performances, new application QoS
requirements have emerged and induce new QoS constraints in underlying
communication services, such as delay or bandwidth requirements. These new
requirements drive an evolution toward QoS awareness of the two fundamental
layers of any communication architecture: the network and transport layers.
At the network layer level, many architectures have been proposed such as
IntServ, DiffServ or MPLS [2] [3] [4]. In particular, the DiffServ architecture
provides two classes of service, the first one, Expedited Forwarding (EF), of-
fers bounds for the delay and the jitter. The second class, Assured Forwarding
(AF), provides a high delivery probability as long as the aggregated traffic
does not exceed the negotiated rate (also called target rate). The DiffServ/AF
class is well suited for continuous multimedia streaming applications as well
as bulk data transfer, which need some level of bandwidth guarantee and are
resilient to packets losses. Nevertheless, these kinds of network services do not
address the whole set of applications requirements (e.g. reliability, order).

As a result, a transport protocol aims at complementing the underlying net-
work service. The use of TCP in this context is still very popular. However,
TCP is designed for applications that, in the context of the classical best-effort
(BE) Internet service, need reliable and ordered packets delivery without con-
sidering other QoS constraints (e.g. time constraints). Several studies have
shown that TCP does not fit well with network-level QoS services [5]. Some
new transport layer mechanisms or protocols have been recently introduced in
order to deliver a transport service more compliant with multimedia applica-
tion QoS constraints. In particular, the TCP Friendly Rate Control mechanism
(TFRC) [6] entails smoother rate variations than the AIMD based TCP con-
gestion control mechanism. Nevertheless, neither TCP nor TFRC take into
account the QoS guarantee offered at the network-level by the DiffServ/AF
service.

Therefore, to date, there is no transport protocol able to take into account
consistently both multimedia applications needs and the QoS offered by an
underlying QoS network infrastructure. This paper aims to fill that gap and
to deliver an efficient mapping between application QoS needs and QoS net-
work services while enforcing flows’ TCP friendliness of their out-profile part
(i.e. best-effort). The new QoS-aware Transport Protocol (QSTP) introduced
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in this paper is implemented in a reconfigurable transport framework [7],
that makes possible to combine dynamically several transport mechanism (or
micro-protocols) for delivering the transport service that best fits to the appli-
cation needs and to the underlying network services. QSTP results from the
specialization of the TFRC congestion control mechanism and its composition
with a Selective Acknowledgment error control mechanism.

The present contribution also aims at demonstrating how the combined use
of a TFRC specialization (guaranteed TFRC) and SACK can improve a TCP
compliant transport service, especially during losses bursts. Indeed, these
mechanisms share the common goal of improving the QoS delivered to flows by
offering respectively a mechanism for enhancing flows’ rate smoothness and a
mechanism for loss recovery. Their combined use offers potential performance
improvements that this paper aims at exploring. Therefore, we show how two
QoS parameters, i.e. bandwidth and reliability, can be managed jointly in a
non conflicting way (i.e. conversely to TCP) for delivering a better transport
service than TCP, regardless the underlying class based network service. In
addition, the composition of the SACK and TFRC has two other main ad-
vantages: first, SACK allows fully or partially reliable error control disciplines
to be achieved; second, the SACK information can be easily integrated within
TFRC feedback packets.

In order to illustrate the benefit of using QSTP over bandwidth guaranteed
network services, we show that QSTP is able to deliver throughput guaran-
tee either on top of the DiffServ/AF class of service or on top of a generic
guaranteed bandwidth network service.

This paper is structured as follows: section 2 briefly presents related work
about transport protocol over DiffServ/AF class. Then, section 3 introduces
the context of this study and provides some background information about
the mechanisms used in QSTP. Section 4 presents in details the design of
QSTP protocol and section 5 is dedicated to the performance evaluation of
the proposed protocol. Finally, section 6 provides some conclusions and future
directions.

2 Related Work

The DiffServ/AF class has been specifically designed for elastic traffic such as
the TCP traffic. Nevertheless, guaranteeing a minimum throughput to a TCP
flow associated to this class of service is not feasible under certain network
conditions [5]. In order to cope with this problem, many research works have
focused on efficient TCP traffic conditioning. Unfortunately, the numerous
proposed solutions [8–11] are still much sensitive to the network conditions
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and sometimes difficult to implement. In summary, we can say that TCP
is not able to efficiently map its transport service toward network layer AF
differentiated service without specific conditioning scheme. Moreover, TCP
conditioning is complex since the timescales used respectively by the network
and transport layer are different (i.e., the network uses a packet timescale and
TCP uses an Round Trip Time (RTT) timescale). Finally, the parameters
that allow a good flow conditioning to be achieved are hard to evaluate at the
network level. Indeed, loss probability and RTT are difficult to measure in a
passive manner at the edge of the network.

The main potential source of discrepancy between TCP and the AF service
results from the TCP congestion control mechanism. Indeed, following packet
losses, the TCP congestion control mechanism strongly reduces the sending
rate and is totally oblivious of the rate guarantee offered by the underlying
network service. Therefore, we have previously proposed the use of a QoS-
aware congestion control mechanism to solve this issue [12].

3 Context

This study is achieved in the framework of the EuQoS project 1 funded by the
6th framework European research program. The EuQoS project aims at de-
signing and experimenting scalable multi-domain communication architecture
for the global delivery of QoS-centred communication services. In the context
of the EuQoS project, we have investigated the concept of adaptive transport
architecture simultaneously aware of the QoS application needs and underly-
ing network services. The resulting adaptive transport architecture aims to be
configured from a set of fundamental transport layer mechanisms (i.e. conges-
tion, rate, error, order, or even time control) for applying the most efficient
adaptation between the application needs and the available network services.
We detail in the following of this paper a specific instance of this generic trans-
port framework which results from the composition of two specific mechanisms,
that are, a congestion control (i.e. TFRC) and an error control mechanisms
(i.e. SACK).

3.1 The TFRC congestion control

A TFRC sender [6] estimates its TCP equivalent sending rate X from equation
(1) which takes as parameters the mean packet size s and two periodically

1 http://www.euqos.eu/
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processed parameters, the packet loss event rate p, and the round trip time
RTT . In this equation RTO refers to the retransmission timeout value.

X =
s

(RTT ·

√

p·2

3
+ RTO ·

√

p·27

8
· p · (1 + 32 · p2))

(1)

During the initialization phase, TFRC acts as TCP during the slow start
algorithm. This slow start phase can also occur during the transfer if the RTO
timeout expires. This phase is followed by a congestion avoidance phase, driven
by equation (1), as soon as the receiver detects a loss. During the congestion
avoidance phase, TFRC needs an estimation of the loss event rate in order to
compute the sending rate, X. The packet loss rate is evaluated at the receiver
side with the help of a sliding window based structure that maintains a history
of loss events [6].

3.2 SACK mechanism

The concept of Selective ACKnowledgments (SACK) was originally introduced
in [13] as a TCP option that aims to optimize its fully reliable service by
allowing faster recovery of bursts of packet losses [14]. By sending selective
acknowledgments, the receiver of data can inform the sender about which
segments or packets have been successfully received and which ones have to be
selectively retransmitted. On the other hand, SACK can make easier the design
of a partially reliable transport service in accordance with the application data
units importance [15].

4 QSTP Design and Implementation

This section presents the core mechanisms used to build the QSTP protocol.
Firstly, the QoS-aware TFRC specialisation mechanism (gTFRC) is presented.
Secondly, we will show how reliability is performed through an adaptation of
SACK to gTFRC.

4.1 gTFRC

In the DiffServ/AF service class, the throughput of a flow is divided into two
parts. The first one is a fixed part which corresponds to a minimum assured
throughput; packets belonging to this part are marked in-profile. The second
one is an elastic part which corresponds to an opportunist flow of packets
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marked out-profile. In the event of network congestion, the in-profile packets
are preserved from losses. At the contrary, out-profile packets are conveyed on
a best-effort principle and are dropped first if congestion occurs.

In case of excess network bandwidth, the application can send more than its
target rate (i.e. more than its in-profile part), according to this policy, in this
case the network has to mark out-of-profile the excess traffic. Conversely, when
the network becomes congested, out-of-profile packets losses occur and the re-
sulting loss rate estimated by TFRC, that integrates both in profile and out
profile packets, can fall down bellow the target rate requested by the applica-
tion. TCP would react in the same situation by halving its congestion window.
As for TCP over the AF class [5], the TFRC mechanism is not aware that the
loss is operated on out-profile packets and that it should not decrease its ac-
tual sending rate below the target rate. Concerning TCP, solutions proposed
in [10,11] introduce a conditioner able to better mark the TCP flows by taking
into account their sporadic nature. As TFRC explicitly computes the actual
sending rate thanks to equation (1), gTFRC directly constraints this resulting
rate to avoid the under-utilization of the allocated network bandwidth. The
aim of this TFRC specialization consists in making the sending rate estimator
aware of the target rate. This scheme avoids the cost of traffic conditioners
while enhancing efficiently performances in terms of application throughput
and TCP-friendliness.

In the TFRC standard algorithm, when the loss event rate p is not nil, the
update of the sending rate X is basically computed as a minimum between
the rate computed by the TFRC equation and two times the estimated rate of
the receiver 2 . Our proposed TFRC specialization to the AF service consists
in enforcing the TFRC rate estimation to be always higher than the target
rate as follows:

X = min(max(Xcalc, g), 2 ∗ Xrecv) (2)

Where: X is the updated transmit rate in bytes/second, g is the target rate
in bytes/second, Xcalc is the rate in bytes/second computed from equation (1)
and Xrecv the estimated received rate. This mechanism has been thoroughly
evaluated through ns-2 simulation and implementation. Further details about
gTFRC measurements and design are respectively available in [12] and [16].

2 In any cases a minimum rate of one packet every 64 seconds is insured.
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4.2 Reliable gTFRC

The previous section focuses on the first component of our QoS-aware re-
liable transport protocol. Indeed, gTFRC allows the target rate negotiated
by the application to be insured while being TCP friendly. The next step is
the integration of gTFRC with a SACK-based mechanism to provide a reliable
transport service. We have seen in section 3 that SACK offers a powerful foun-
dation to provide a sophisticated error control mechanism much more efficient
than the basic Go back N error recovery mechanism even in its TCP variant.
As specified in [14], the SACK mechanism aims to return information about
the set of missing TPDU 3 . Since TFRC is a datagram oriented mechanism
and SACK is byte stream oriented, we adapt SACK to a datagram oriented
transport service.

In Fig. 1, the two first protocol data units represent respectively the TFRC
header and the new header that results from the composition of gTFRC and
SACK. The two last PDU represent respectively the feedback given by the
receiver for the classical TFRC protocol and TFRC/SACK composition. In
these headers, each field is either 4 or 8 bytes encoded field except for the proto
ID (one byte), the type (one byte) and the SACK payload (variable length).
The datagram oriented SACK mechanism is defined in the same way as the
stream oriented one. The SACK payload is constituted by a sequence of pairs
of sequence numbers 4 . These pairs represent the edge of intervals of correctly
received contiguous packet. The length represents the number of pairs to
analyse for the sender. Finally the Offset represents the sequence number
of the first packet of the first pair. We can note that the SACK mechanism
can help to implement a partial order transport service that would retransmit
mandatory packets only.

3 Transport Protocol Data Unit
4 this SACK structure could also be implement as a bit field
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4.3 Discussion about the composition of the SACK and gTFRC mechanisms

In our proposal, the application has to provide the target rate negotiated
with the QoS network to the transport protocol. This is done at the socket
level through a setsockopt() function. Such an approach could potentially
allow the application to abuse the network by giving a higher value than
the guarantee g. Another potential issue is the case where the QoS service
provider gives a wrong configuration to the application and the edge router.
In the following sections, we tackle both problems.

4.3.1 Preserving the provider interest against a denial of service

As we give the possibility to instantiate through a setsockopt() function
the target rate negotiated between the network service provider and the user,
we can easily envisage that a misbehaving user could take part of feature by
giving to g a higher value than the negotiated one.

In the context of a DiffServ/AF class, the edge router marks in-profile the
packets according to the negotiated profile and out-profile the excess part. A
misbehaving client will increase its out-profile traffic part and when a network
congestion occurs, the dropping precedence set in the core router will entail
the dropping of this excess traffic. Therefore, the misbehaving application will
increase its own packet loss rate and will not get any bandwidth advantage.
In summary, increasing the value of g at the user level does not impact on the
in-profile traffic that is bounded by the SLA between the service user and the
provider. Therefore, this kind of denial of service is avoided by the DiffServ
conditioning mechanisms.

4.3.2 Preserving the network service user and provider against wrong net-
work configurations

This second case can potentially induce issues both for the network service
user and provider. Indeed, in this case a discrepancy between the user and
provider configurations either would induce a risk for the service user to get
a poorer service than the negotiated one or for the service provider a risk to
dedicate to the service user more resources than needed. For instance, such
an inconsistency could occur if the service provider miscalculates the resource
needed for the related service layer agreement. In a DiffServ context, the in-
profile traffic is not guaranteed anymore when a QSTP flows gets losses while
emitting below its target rate. In such a case, two actions are possible for the
sender. The first one is to pursue to emit at the guaranteed rate, g. This is a
legitimate behavior since the service provider must provide to his client the
service he has paid for. The second type of action would be to react to the
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observed congestion and to warn the application or the user that the SLA
has been broken off. This can be done thanks to an additional mechanism
that would be able to detect that a bunch of losses occurred in the in-profile
part. Anyway, in the case of an under-provisioned network, TCP (and TFRC)
would react as if the target rate is lower than the expected one.

The TFRC algorithm prevents in a certain manner these problems. Indeed, the
algorithm will not return a sending rate higher than twice the receiving rate
(given by 2 ∗ Xrecv in (2)). However, we believe that these security concerns
are out of the transport layer scope. We claim that it is definitely not the
responsibility of the protocol to detect a selfish user behaviour or to react
to a wrong setting. We therefore do not present results concerning an under-
provisioning network.

4.4 Implementation

In this section we present the implementation of QSTP protocol based on
a compositional transport protocol framework [7]. Basically, this framework,
developed in Java language, allows to easily instantiate transport layer mech-
anisms and to compose them to build a transport protocol which applies an
efficient adaptation between application needs and underlying network char-
acteristics [7]. Fig. 2 gives an overview of the micro-protocols (i.e. processing
modules) that have been composed for the instantiation of the QSTP pro-
tocol. QSTP is composed on both sides by seven Processing Modules (PM)
respectively dedicated to (see Fig. 2(a) for details):

• the processing of the outgoing flow (Add Header, Set Header-Rate Ctrl

and Send Sock);
• the processing of the ingoing flow (Remove Header, Process IN, Receive
Sock);

• the Process Feedback and the Create Feedback deal with the manage-
ment of the feedback messages (i.e. creation and analysis).

The main components of QSTP are:

• the Process IN component: this component implements, at the sender side,
the gTFRC mechanism;

• the buffer Application Buffer IN: this buffer is the transmission queue
upstream the rate control component, packets to retransmit are placed on
top of this queue;

• the buffer Retransmission Buffer: this buffer stores sent data but not yet
acknowledged;

• the Process Feedback component: this component is in charge of the pro-
cessing of feedback messages. This component applies error control on pack-
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Fig. 2. Internal mechanisms of the protocol at the sender and receiver side

ets stored in the Retransmission Buffer;
• the Create Feedback component: this component computes the loss event

rate and creates the Feedback message with the SACK structure.

Detailed descriptions of this framework can be found in [7].
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5 Performance evaluation of QSTP

This section evaluates the QSTP service over a bandwidth guarantee networks.
We firstly present the experimentation model used and the general hypoth-
esis. Then, the results and their analysis are provided over various network
conditions. In a sake of comparison, the chosen parameters are those used in
other well-known papers about TCP over AF such as [5,8–10].

5.1 Model and general hypothesis

QSTP is implemented in Java language and evaluated over the DiffServ topol-
ogy presented in Fig. 3. All the nodes are PC, the end-hosts run GNU/Linux
and the routers run FreeBSD with ALTQ [17] in order to implement the Diff-
Serv service and at the core router dummynet [18] is used to emulated the
network. The experiments have been carried out using the following configu-
ration:

• the packet size is fixed to 1500 bytes;
• a two-colour token bucket marker with a bucket size of 104 bytes is used on

the edge router [19];
• routers are configured with a queue size of 50 packets and RIO 5 parame-

ters in the core router correspond to (minout, maxout ,pout ,minin, maxin,
pin)=(10, 20, 0.1, 20, 40, 0.02);

• the bottleneck between the core and the egress router has a fixed capacity
of 1000Kbits/s;

• measurements are carried out 10 times during 180sec for an FTP-like trans-
fer.

1 Mbits/s

100 Mbits/s

B

DC

A

Edge Router Core Router Edge Router

Fig. 3. The testbed topology for DiffServ experiments

5 RED In Out queue
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We made experiments with a large set of different initial Round Trip Time
delays (i.e. minimum measured RTT) and target rates. Only a representative
part of these results are given in the next section. The choice of these re-
sults has been made since the various scenarii presented represent some of the
worst cases for a unique flow (TCP and TFRC) to reach its target rate. In
the following section we measure in a first time the throughput obtained at
the network level at the receiver side. Then we present the “goodput” which
measure the throughput at the application level. Finally, we present the jitter
obtained for TCP and QSTP flow.

5.2 Analysis of the QSTP behaviour over a standard DiffServ/AF network
scenario

This section aims at illustrating the QSTP behaviour above a DiffServ service.
The measurements presented in Fig. 4 gives the corresponding instantaneous
throughput at the network level on the receiver side. This throughput is com-
puted using a time-sliding window algorithm of one second as explained in
[20].
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Fig. 4. Throughput of one TCP, TFRC/SACK, QSTP flow versus a 15 TCP flows
aggregate

In this first experiment, we analyse the behaviour of one flow (i.e. a TCP,
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TFRC, or QSTP flow) versus a TCP aggregate of 15 micro-flows 6 .As QSTP
provides an end-to-end per-flow guarantee, the aim of this first experiment
is to verify whether QSTP is able to maintain the target rate negotiated
whatever the network load. All the flows have an RTT of 30ms. This flow has
a target rate of 500Kbits/s and crosses the (A, B) path of the DiffServ testbed
while the TCP flows aggregate has a target rate of 300Kbit/s and crosses the
(C, D) path. In all experiments, the TCP aggregate has always outperformed
its target rate. In Fig. 4, we only report the results for the flow alone against
the TCP aggregate. First, we give the result obtained by a TCP flow in Fig.
4(a). As explained in [5], the TCP flow is not in the best condition to reach
its target rate since it has the highest target rate. Moreover, because of the
TCP multiplexing behaviour, when two aggregates with a different number of
micro-flows are in a network, the larger outperforms the smaller [5]. Fig. 4(a)
shows that the TCP flow does not reach its target rate.

In the next Fig. 4(b), we give the result obtained for a TFRC/SACK flow mul-
tiplexed with the same 15 micro-flows aggregate. In this experiment, TFRC/
SACK does not reach its target rate either. Since TFRC reproduces the TCP
window congestion control behaviour and since we have added a reliability
mechanism, we could expect to obtain a behaviour almost similar to TCP on
average. Nevertheless, the smoothing TFRC property makes the TFRC/SACK
flow less aggressive than the TCP ones. As the bottleneck of the network be-
comes loaded, the RTT and the losses in the network increase. As a result, we
can see between t = [40sec, 100sec] that TFRC mechanism recovers slowly to
the after a transient congestion [22].

To cope with the unawareness problem, the QSTP protocol composes gTFRC
and SACK mechanisms. The results depicted in Fig. 4(c) illustrates that, con-
versely to the TCP and TFRC flows, the QSTP flow is able to achieve the
requested target rate. As a conclusion, thanks to the composition of these two
mechanisms, QSTP can be considered as a DiffServ/AF compliant reliable
protocol. Indeed, we only use for these experiments standardized and imple-
mented DiffServ mechanisms such as the token bucket two-colour marker on
the edge and the RIO queue on the core.

The next section will focus on the study of the impact of these three transport
services on the QoS offered to the application layer (i.e. the transport service
user). In this context, measurements focus on the application throughput (or
goodput) at receiver side. In case of a FTP transfer, it corresponds to the
throughput data transfer.

6 We define as a microflow, a single instance of an application-to-application flow
of packets which is identified by source address, destination address, protocol id,
and source port, destination port (where applicable) following [21]. And we define
an agregate a set of two or more microflows
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5.3 Impact of QoS perceived at the user level

In this study, one flow (from host A to host B) is in competition with a
variable size aggregate. The aggregate (from host C to host D) has a variable
number of micro-flows ranging from 1 to 20. The RTT of all flows is set to
30ms and target rates of (A, B) and (C, D) are equal to 400Kbits/s. Fig. 5
gives the results obtained for TCP, TFRC/SACK and QSTP flow versus the
variable aggregate.
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Fig. 5. Average throughput according to the number of micro-flows in the aggregate

We report in Fig. 5 the average throughput of the single flow and the aver-
age throughput of the aggregate (both computed after 150 seconds) with the
min/max values of ten consecutive measurements As already evaluated in a
DiffServ network [5], Fig. 5(a) illustrates that TCP flow does not reach its
target rate. Concerning the TFRC/SACK composition, Fig. 5(b) shows that
the distance between the throughput variation amplitude is inferior to the
one of TCP. This is due to the smoother property of TFRC congestion con-
trol. Nevertheless, on average, the obtained throughput is in the same order of
magnitude than TCP. Finally, Fig. 5(c) confirms the previous results, showing
that the QSTP flow (A, B) reaches the requested target rate no matter the
number of micro-flows in competition in the (C, D) aggregate.

Note that the difference between the target rate at the network level and
the throughput delivered at the user level is simply due to the QSTP/IP
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protocol overhead. Moreover, the min/max interval is the smallest one. The
measurement overhead at the application level explains the gap between the
target rate line (expressed at network level) and the QSTP average application
throughput in Fig. 5(c). For the sake of accuracy and in order to quantify the
min/max values, we give separately in Fig. 6 the standard deviation of these
results. This figure confirms the stability of TFRC and gTFRC over a differ-
entiated network. Indeed, we can see that the standard deviation for these two
congestion controls mechanism is small. The non-compliant TCP behaviour
with a DiffServ network is highlighted by its large standard deviation.
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Fig. 6. Throughput Standard Deviation

5.4 Illustration over a QoS network with a bandwidth guarantee

In this section, we focus on the behaviour of QSTP on top of another network
level QoS mechanism. This allows us to verify that the proposed protocol can
be used over any kind of network providing a bandwidth guarantee. To perform
this evaluation, we configure a QoS network with a Class Based Queueing
(CBQ) scheduling mechanism [23] that provides a guaranteed pipe of 300kbit/s
for the studied flow (i.e. TCP or QSTP). The network topology used in these
experiments remains identical to the one presented in Fig. 3. The emulated
QoS network does not use any admission control. The CBQ is configured
in “borrow mode”. It means that in case of non-congestion, the BE traffic
can borrow bandwidth into the reserved pipe. This case of configuration is
more general as this kind of scheduling algorithm is currently available in
commercial routers such as CISCO 4000 and above series. Fig. 7(a) and Fig.
7(b) show respectively the throughput of TCP and QSTP at the sender and
receiver side. Fig. 7(c) and Fig. 7(d) show the jitter of these two flows. In these
experiments, both flows compete with an UDP flow.

During the experiment, the UDP flow emits at 300kbit/s except between
[60, 120] seconds where it emits at 1000kbit/s. As a result, during this in-
terval the bottleneck is full. Figs. 7(a) and 7(b) give the throughput measured
at the sender and receiver side. Once the congestion occurs, the CBQ algo-
rithm starts (i.e. when the UDP flow sends above 700Kbit/s). Thanks to the
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Fig. 7. Jitter of one TCP, QSTP flow versus a UDP flow with various throughputs

CBQ scheduling, both flows obtain their guarantee as shown in these figures.

Figs. 7(c) and 7(d) give the network level jitter in milliseconds obtained by
both flows. We can see that TCP 7(c) obtains a higher jitter than QSTP 7(d).
This is an expected result as TFRC congestion control algorithm has the
property to emit a non-bursty traffic. In an obvious way, the resulting jitter
must be lower. However, these graphs show that the composition of TFRC
with SACK does not impact on this standard behaviour and the resulting
jitter for QSTP is lower than for TCP.

6 Conclusion and future works

In this paper, we have presented the design of a QoS transport protocol based
on TFRC congestion control and SACK mechanisms. This proposal has been
implemented and evaluated in the context of a compositional transport pro-
tocol framework. QSTP proposes a transport service that results from the
composition of a reliability mechanism with a QoS-aware congestion control
mechanism. Measurements show that this composition defines the first reliable
transport protocol compliant with DiffServ/AF class. In particular, we show
that applications by using QSTP obtain their negotiated target rate with a
small standard deviation under various network conditions.
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The next step of this work is the deployment and the performance evalua-
tion of QSTP over a large scale European QoS aware network designed in
the framework of the EuQoS European project. We expect a large range of
measurements in order to complete this study with real network conditions
and various DiffServ/AF classes. We are currently starting a standardization
process of this protocol at the IETF. A first draft concerning the gTFRC con-
gestion control is under revision [16]. We expect to integrate the full definition
of the presented protocol into the next draft version.
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