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Control systems of zero curvature are not necessarily

trivializable

Ulysse Serres ∗

Abstract

A control system q̇ = f(q, u) is said to be trivializable if there exists local
coordinates in which the system is feedback equivalent to a control system of the
form q̇ = f(u). In this paper we characterize trivializable control systems and
control systems for which, up to a feedback transformation, f and ∂f/∂u commute.
Characterizations are given in terms of feedback invariants of the system (its control
curvature and its centro-affine curvature) and thus are completely intrinsic. To
conclude we apply the obtained results to Zermelo-like problems on Riemannian
manifolds.

Keywords: Control systems, control curvature, state-feedback equivalence, Zermelo-
like problems.

MSC2000: 34K35; 37C10; 37E35; 53B99; 93C10; 93C15

1 Introduction

In the present paper smooth objects are supposed to be of class C∞.
Dynamics of the classical Riemannian geodesic problem on surfaces locally read

q̇ = cos ue1(q) + sinue2(q), q ∈M, u ∈ S1,

where (e1,e2) is a local orthonormal frame for the Riemannian structure on M . It is
well known that such a system is trivializable if and only if the Gaussian curvature of
the surface vanishes identically. In the Riemannian case trivializability also means that
all geodesics can be simultaneously rectified.

Let M and U be two smooth manifolds of respective dimension two and one. Our
goal in this paper is to find similar conditions for fully nonlinear two-dimensional control
systems with scalar input. More precisely, we consider smooth control systems of the
type

q̇ = f(q, u), q ∈M, u ∈ U, (1.1)
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Vandœuvre-lès-Nancy Cedex, France; email: ulysse.serres@iecn.u-nancy.fr

1



u. serres 2

whose curves of admissible velocities (or indicatrices at q) u 7→ f(q, u) are strongly
convex (or concave). In other words, we suppose that (1.1) satisfies the regularity
assumptions

f(q, u) ∧
∂f(q, u)

∂u
6= 0,

∂f(q, u)

∂u
∧
∂2f(q, u)

∂u2
6= 0, q ∈M, u ∈ U. (1.2)

We aim to determine under which conditions system (1.1) is trivializable in the sense
of the following

Definition 1.1. A control system q̇ = f(q, u) is said to be trivializable if there exists
local coordinates in which the system is (state-)feedback equivalent to a control system
of the form q̇ = f(u).

It is worth mentioning that as well as the class of two-dimensional Riemannian
manifolds, the class of two-dimensional Finsler manifolds is a particular case of control
systems we treat here (see the book [3] as a basic and recent reference on Finsler
geometry). Indeed, if we suppose that the curves of admissible velocities of our control
system are closed simple curves (in addition with the strong convexity hypothesis (1.2)),
there exists a canonically defined Finsler structure on the base manifold M whose
geodesics are the minimum time solutions of the optimal control problem driven by
equation (1.1).

The Finsler analogue of the control curvature is the notion of Riemann or flag
curvature (see [3]). Some work has been done in order to give some geometric char-
acterizations of Finsler spaces with vanishing Riemann curvature. In particular Mo
has shown [5] that Finsler manifolds having zero Riemann curvature are characterized
by the fact that the horizontal distribution of the projective sphere bundle has a flat
foliation. The literature on curvature problems in Finsler geometry is vast and we do
not plane to observe it here. Let us only mention the very recent paper [6] on the clas-
sification of Finsler metrics with scalar flag curvature and the paper by Bao and Chern
[2] where the authors addressed the following question: describe the Finsler Spaces for
which the Riemannian part of the curvature vanishes.

Although the first part of our main result Theorem 3.1 asserts that the horizontal
distribution is integrable, the characterization of trivializable control systems we pro-
pose here has not been treated in the framework of Finsler geometry. For this reason we
do think that the present paper can be of interest not only to people from the control
theory community but also to people from the Finsler geometry community.

Section 2 contains the basics on the curvature of two-dimensional smooth control
systems. The main results are stated and proved in Section 3 which ends with some
examples. Section 4 ends the paper with a summary of differences between trivializ-
ability in Riemannian geometry and trivializability of control systems in the sense of
Definition 1.1 (notice this definition of trivializability coincide with the definition of
flatness given by Dazord in [4] for Finsler manifolds).
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2 Preliminaries

In this section we briefly describe the principal feedback-invariants of two-dimensional
control systems. For more details on the subject we refer the reader to [1, 7].

2.1 Counting the principal invariants

Systems of the form (1.1) are considered up to state-feedback equivalence, i.e., up to
transformations of the form

Θ(q, u) = (φ(q), ψ(q, u)), (2.1)

where φ is a diffeomorphism of M which plays the role of a change of coordinates and ψ
is a reparametrization of the set U of controls in a way depending on the state variable
q ∈M . First of all, let us roughly estimate the number of parameters (invariants) in this
equivalence problem. In this case, if the coordinates on the manifold are fixed, a (germ
of) control system of type (1.1) is parametrized by two functions of three variables,
and the group of state-feedback transformations of type (2.1) is parametrized by two
functions of two variables and one function of three variables. Indeed, in any local
coordinate chart q = (q1, q2) on the base manifold M , the control system reads

q̇1 = f1(q, u)

q̇2 = f2(q, u),
(2.2)

and an element of the group of state-feedback transformations takes the form

Θ(q, u) = (φ1(q, u), φ2(q, u), ψ(q, u)),

where f1, f2, φ1, φ2 and ψ are real valued functions. Therefore, we can a priori
normalize only one function among the two functions defining control system (2.2).
Thus, we expect to have only 2 − 1 = 1 “principal” feedback invariant, i.e., a function
of three variables and a certain number of feedback-invariant functions of less than
three variables, in this equivalence problem.

2.2 Curvature of two-dimensional smooth control systems

In this section, we briefly recall some basic facts concerning the curvature of smooth
control systems in dimension two. We begin with a lemma that exhibits the duality
between the set VecM of smooth vector fields on M , and the set Λ1(M) of smooth
one-forms on M .

We denote by [X,Y ] the Lie bracket (or commutator) X ◦ Y − Y ◦ X of vector
fields X, Y ∈ VecM . It is again a vector field and in local coordinates on M the Lie
bracket reads [X ,Y ](q) = (∂Y /∂q)X(q) − (∂X/∂q)Y (q).

Lemma 2.1. Let (ω1, . . . , ωn) ⊂ Λ1(M) and (f1, . . . ,fn) ⊂ VecM be two local dual
basis. Then, dωk =

∑

i<j c
k
ij ωi ∧ ωj, for all k ∈ {1, . . . , n}, if and only if

[

f i,f j

]

=

−
∑n

k=1 c
k
ijfk, for all i, j ∈ {1, . . . , n}.
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Let us fix some notations. For a two-dimensional smooth manifold M , π : T ∗M →
M is the projection of the cotangent bundle to M . We denote by s the canonical
Liouville one-form on T ∗M , sλ = λ ◦ π∗, λ ∈ T ∗M . If X is a smooth vector field on a
manifold, we denote by LX the Lie derivative along X .

Consider the following time-optimal smooth control problem

q̇ = f(q, u), q ∈M, u ∈ U,

q(0) = q0, q(t1) = q1, (2.3)

t1 → min (or max),

where M and U are connected smooth manifolds of respective dimension two and one.
Denote by h = maxu∈U 〈λ,f(q, u)〉, λ ∈ T ∗

q M , q ∈ M , the (normal) Hamiltonian
function resulting from the Pontryagin Maximum Principle (PMP for short), by H the
level set h−1(ǫ) ⊂ T ∗M , ǫ = ±1, and by ~h the Hamiltonian field associated with the
restriction of h to H. Under the regularity assumptions of strong convexity on the
curves of admissible velocities

f(q, u) ∧
∂f(q, u)

∂u
6= 0,

∂f(q, u)

∂u
∧
∂2f(q, u)

∂u2
6= 0, q ∈M, u ∈ U, (2.4)

the curve Hq = H ∩ T ∗
q M admits, up to sign and translation, a natural parameter

providing us with a vector field vq on Hq and by consequence with a vertical vector
field v on H. The vector field v is characterized by the fact that it is, up to sign, the
unique vector field on H such that

L2
vω = −ǫω + bLvω, ω = s|H (2.5)

where b is a smooth function on the level H. The function b, which is by definition a
feedback-invariant, is called the centro-affine curvature.

The vector fields ~h and v which are, by definition, feedback-invariant satisfy the
nontrivial commutator relation

[

~h,
[

v,~h
]]

= κv, (2.6)

where the coefficient κ is defined to be the control curvature or simply the curvature
of the optimal control problem (2.3)-(2.4). The control curvature is by definition a
feedback-invariant of the control system and a function on H (and not on M as the
Gaussian one). Moreover, κ is the Gaussian curvature (lifted on H) if the control
system defines a Riemannian geodesic problem.

From now on, if θ denotes a parameter in the fiber such that ∂/∂θ = v, we denote
the Lie derivative Lv = L∂/∂θ = ′ . In (q, θ) coordinates, the curvature has the form

L~h
′c− L~h

c′, (2.7)

where c(q, θ) is defined by
dω = c ǫω ∧ ω′. (2.8)
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Remark 2.2. Notice that the coefficient c(q, θ) is not feedback-invariant. Indeed, θ is
only defined up to translations; in other words, any parameter ϑ = θ + ϕ(q) is such
that ∂/∂ϑ = ∂/∂θ = v.

This remark will be of peculiar importance in the proof of Theorem 3.1.
(ǫω, ω′) ∈ Λ(M) is a coframe of differential forms on M parametrized by θ. Its dual

frame is (f ,f ′) ∈ VecM . The structural equations for (ǫω, ω′, dθ) are equation (2.8)
and

dω′ = (c′ + bc)ǫω ∧ ω′. (2.9)

The duality of the frames and Proposition 2.1 imply

[f ,f ′] = −ǫcf − (c′ + bc)f ′. (2.10)

2.3 Relation between the principal invariants of the equivalence prob-

lem

The two relations (2.5) and (2.6) define two feedback invariants, the centro-affine curva-
ture b and the control curvature κ. Both b and κ are functions on the three-dimensional
level surface H, so that they are principal feedback invariants of our control system.
Since our feedback equivalence problem admits only one invariant these functions are
not “independent”. Indeed we have the following proposition.

Proposition 2.3. The feedback invariants b and κ satisfy the following equation

Lvκ+ bκ+ L2
~h
b = 0. (2.11)

Before proving the proposition we need an auxiliary lemma.

Lemma 2.4. Let θ be a parameter on the fiber Hq such that v = ∂/∂θ. Then, the
structure constant c(θ, q) defined by dω = c ǫω ∧ ω′ satisfies

c′′ + bc′ + ǫc = L~h
b. (2.12)

Proof. Differentiating the structure equation (2.9) with respect to θ leads, on the one
hand, to

(

dω′
)′

= (c′′ + b′c+ bc′)ǫω ∧ ω′ + (c′ + bc)ǫω ∧ ω′′

= (c′′ + b′c+ bc′)ǫω ∧ ω′ + (c′ + bc)ǫω ∧ (−ǫω + b ω′)

= (c′′ + 2bc′ + b′c+ b2c)ǫω ∧ ω′,

and, taking into account (2.5), on the other hand, to

(dω′)′ = dω′′ = d(−ǫω + b ω′) = −c ω ∧ ω′ + dqb ω
′ + b(c′ + bc)ǫω ∧ ω′

= (−ǫc+ Lfb+ bc′ + b2c)ǫω ∧ ω′.

Summing up, we get

c′′ + 2bc′ + b′c+ b2c = −ǫc+ Lfb+ bc′ + b2c,
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or equivalently,
c′′ + bc′ + ǫc = Lfb− b′c = L~h

b,

which ends the proof of the lemma. �

We are now ready to prove Proposition 2.11.

Proof of Proposition 2.3. From lemma 2.4 it follows that
[

∂

∂θ
,

[

~h,
∂

∂θ

]]

= −~h
′′

= −f ′′ + c′′
∂

∂θ
= ǫf + bf ′ + (L~h

b− bc′ − ǫc)
∂

∂θ

= ǫ~h + b~h
′
+ L~h

b
∂

∂θ
.

If we now compute the Lie bracket of the previous relation with ~h, we get for the right
hand side

[

~h, ǫ~h + b~h
′
+ L~h

b
∂

∂θ

]

= L~h
b~h

′
+ b

[

~h,~h
′
]

− L~h
b~h

′
+ L2

~h
b
∂

∂θ
= (bκ+ L2

~h
b)
∂

∂θ
,

and using Jacobi’s identity, we get for the left hand side
[

~h,

[

∂

∂θ
,

[

~h,
∂

∂θ

]]]

= −

[

∂

∂θ
,

[[

~h,
∂

∂θ

]

,~h

]

−

[[

~h,
∂

∂θ

]

,

[

~h,
∂

∂θ

]]

= −

[

∂

∂θ
, κ

∂

∂θ

]

= κ′
∂

∂θ

and the equation follows. �

Notice that equation (2.11) shows that in the special case of Riemannian problems,
the curvature κ is a function on the base manifold M without any computation. Indeed,
since Riemannian problems are characterized by the vanishing of function b, (2.11)
reduces to Lvκ = 0.

3 Trivializable systems

In Riemannian geometry it is well known that if the Gaussian curvature of the surface
is nonzero then, one cannot rectify simultaneously the geodesics by a change of coordi-
nates. Only Riemannian trivializable systems, i.e., systems for which the geodesics are
“straight lines” have this property. For control systems the situation is quite different.
It is obvious that the extremals of a trivializable control system are simultaneously rec-
tifiable and, that the latter implies that the curvature of the system vanishes identically,
but, in general, the converse implications do not hold.

We present here two new theorems, the first one characterizes control systems whose
extremals can be simultaneously rectified and, the second one characterizes trivializ-
able control systems. Because these two characterizations are given in terms of the
feedback invariants κ and b, they are intrinsic.
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3.1 The results

We are now ready to state our main result:

Theorem 3.1. There exists a feedback transformation such that the vector fields f and
∂f/∂u commute if and only if the feedback invariants κ and L~h

b are identically equal
to zero. Moreover, if u is such a parameter, then the infinitesimal generator of the
diffeomorphism Pu ∈ Diff (M,R2) such that

Pu∗

(

f(·, u),
∂f(·, u)

∂u

)

=

(

∂

∂q1
,
∂

∂q2

)

, (3.1)

is the vector field

Xu = (a1(u) ± q2)
∂

∂q1
+ (a2(u, q2) − q1)

∂

∂q2
, (3.2)

where the ± sign in the expression of Xu depends on whether the curves of admissible
velocities of system (1.1) are strongly convex or strongly concave.

Proof. In this proof, we freely use the chronological calculus notation for which we
refer to [1, Chapter 2]. Suppose that κ and L~h

b are identically equal to zero for control
system (1.1). Then, equation (2.6) reduces to

[

~h,
[

v,~h
]]

= 0. (3.3)

In particular, the flows et
~h and et [v,~h] commute. Therefore, the vector fields ~h and

[v,~h] are good candidates in order to define a system of local coordinates. Let θ be a
parameter in the fiber Hq such that v = ∂/∂θ. This choice of parameter θ defines a
foliation of the three-dimensional manifold H, the leaves of which are formed by the

trajectories of the fields ~h and ~h
′
, i.e.,

H =
⋃

λ∈Hq

Cλ, Cλ =
{

es
~h

′

◦ et
~h(λ)

∣

∣

∣
(s, t) ∈ R

2
}

.

Recall that this choice of θ is not feedback invariant. Indeed, the parameter θ is only
fixed up to feedback transformations of the form

θ 7→ ±θ + g(q). (3.4)

Now fix this parameter θ in such a way that its value on the leaf Cλ0 is constant. In
other words we choose the function g in (3.4) such that

θ|Cλ0
= θ0. (3.5)

Recall that in coordinates (θ, q) on H vector fields ~h and ~h
′
take the form

~h = f − c
∂

∂θ
, ~h

′
= f ′ − c′

∂

∂θ
,
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which, in addition to (3.5), implies that c|Cλ0
and c′|Cλ0

are zero. Because L~h
b = 0

identically, it follows from Proposition 2.11 that c is solution to the Cauchy problem:

c′′ + bc′ + ǫc = 0, c|Cλ0
= 0, c′|Cλ0

= 0,

from which it follows that c = 0 identically on H. Hence, ~h = f and ~h
′
= f ′ which,

according to (3.3), is equivalent to [f , ∂f/∂u] = 0. The first implication is thus proved.
We now prove the converse. Let u be a control parameter such that f and ∂f/∂u

commute. In particular,

〈

ω,

[

f(·, u),
∂f(·, u)

∂u

] 〉

= 0,

where, as usual ω denotes the Liouville one-form in restriction to H. According to
(2.10), one infers that

0 =

〈

ω,

[

f ,
dθ

du
f ′

] 〉

=

〈

ω,
dθ

du

[

f ,f ′
]

+

(

Lf
dθ

du

)

f ′

〉

=

〈

ω,
dθ

du

(

−ǫcf − (c′ + bc)f ′
)

+

(

Lf
dθ

du

)

f ′

〉

= −c
dθ

du
. (3.6)

Because dθ/du never vanishes (see [1, Chapter 23, page 355]), the above equation
implies that c = 0 identically on H. In this case, equations (2.7) and (2.12) obviously
imply that κ and L~h

b are zero identically. The first part of the theorem is thus proved.
In order to parametrize control systems with zero curvature such that f and ∂f/∂u

commute, we will use the classical Moser’s homotopy method. If a control system is
such that [f , ∂f/∂u] holds, it follows from Frobenius theorem that the vector fields
f and ∂f/∂u can be rectified simultaneously. Thus for every u ∈ U there exists a
diffeomorphism Pu ∈ Diff M such that

Pu∗

(

f(·, u),
∂f(·, u)

∂u

)

=

(

f(·, u0),
∂f

∂u
(·, u0)

)

. (3.7)

In order to get the expression (3.2) we use Moser’s homotopy method the key idea of
which is to determine the diffeomorphisms Pu by representing them as the flow of a
family of vector fields Xu on M . We thus suppose that

d

dt
Pu = Pu ◦ Xu, Pu0 = Id,

or equivalently that

Pu =
−→
exp

∫ u

u0

Xv dv.
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The expression of Xu in coordinates will follow from the differentiation with respect
to u of (3.7). But, after multiplication of both sides by P−1

u∗ , (3.7) is equivalent to

f(·, u) = Ad
−→
exp

∫ u

u0

Xv dv f(·, u0),

∂f(·, u)

∂u
= Ad

−→
exp

∫ u

u0

Xv dv
∂f

∂u
(·, u0),

which, after differentiation with respect to u gives

∂f

∂u
(·, u) = Ad

−→
exp

∫ u

u0

Xv dv ad Xu (f(·, u0)) = P−1
u∗ [Xu,f(·, u0)],

∂2f

∂u2
(·, u) = Ad

−→
exp

∫ u

u0

Xv dv ad Xu

(

∂f

∂u
(·, u0)

)

= P−1
u∗

[

Xu,
∂f

∂u
(·, u0)

]

,

which, according to (3.7) is equivalent to

∂f

∂u
(·, u0) = [Xu,f(·, u0)], (3.8)

Pu∗
∂2f

∂u2
(·, u) =

[

Xu,
∂f

∂u
(·, u0)

]

. (3.9)

Fix a system of local coordinates q = (q1, q2) on the base manifold such that

f(·, u0) =
∂

∂q1
,

∂f

∂u
(·, u0) =

∂

∂q2
,

and denote

Xu = X1(q, u)
∂

∂q1
+X2(q, u)

∂

∂q2
.

In these coordinates, equation (3.8) reads

−
∂X1

∂q1
= 0, −

∂X2

∂q1
= 1,

which implies that

X1(q, u) = α1(q2, u), X2(q, u) = α2(q2, u) − q1,

where α1, ans α2 are C∞ functions. Recall that f(·, u) satisfies the second order ODE

∂2f

∂u2
(·, u) = −ǫf(·, u) − b(·, u)

∂f

∂u
(·, u).

Thus, according to (3.7), equation (3.9) reads
[

Xu,
∂f

∂u
(·, u0)

]

= Pu∗
∂2f

∂u2
(·, u) = −ǫPu∗f(·, u) − Pu∗

(

b(·, u)
∂f

∂u
(·, u)

)

= −ǫf(·, u0) − b(Pu(·), u)Pu∗
∂f

∂u
(·, u)

= −ǫf(·, u0) − b(Pu(·), u)
∂f

∂u
(·, u0).
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So in our system of local coordinates on M this last equation reads

−
∂X1

∂q2
= −

∂α1

∂q2
= −ǫ, −

∂X2

∂q2
= −

∂α2

∂q2
= −b(Pu(q), u),

from which it follows that

X1(q1, q2) = a1(u) + ǫq2, X2(q1, q2) = a2(q2, u) − q1,

which is the required expression for the field Xu and ends the proof. �

Remark 3.2. Notice that commutativity between vector fields f and ∂f/∂u is not a
feedback-invariant property. When the curvature is identically zero the Theorem 3.1
shows that equation L~h

b = 0 reduces to the nonautononous ODE dq/du = Xu(q).

Remark 3.3. Using the variation formula described in [1, Chapter 2, Section 2.7], one
easily sees that the diffeomorphism Pu takes the form

Pu =
−→
exp

∫ u

u0

e(s−u0)( 0 ±1
−1 0)

(a1(s)
a2(q2,s)

)

ds ◦ e(u−u0)( 0 ±1
−1 0).

The following theorem characterizes trivializable control systems.

Theorem 3.4. A control system of type (1.1) is trivializable if and only if its feedback
invariants κ, L~h

b and L[v,~h]b vanish identically.

Proof. Suppose that the system under consideration is trivializable . By definition
this system is feedback equivalent to a system of the form q̇ = f(u). For such a system
it is obvious that the feedback invariant b depends only on the control parameter u
and that the Hamiltonian is horizontal. Therefore, the feedback invariants κ, L~h

b and
L

[v,~h]
b vanish identically.

We now prove the converse. It follows from Theorem 3.1 that the vanishing of κ
and L~h

b implies that, up to a feedback, the vector fields ~h and [v,~h] are horizontal.
Therefore, the vanishing of L~h

b and L[v,~h]b is equivalent to the vanishing of Lfb and

L[v,f]b, from which it immediately follows that the invariant b depends only on the
control parameter u. In this case, the infinitesimal generator of the one-parameter
family of diffeomorphisms defined by (3.1) is

Xu = (a1(u) ± q2)
∂

∂q1
+ (a2(u) − q1)

∂

∂q2
.

Thus,
(

−→
exp

∫ u

u0

Xv dv

)

(q) = e(u−u0) ( 0 ±1
−1 0)(q) +

∫ u

u0

e(u−v) ( 0 ±1
−1 0)

(a1(v)
a2(v)

)

dv

from which it follows that

f(q, u) = Ad
−→
exp

∫ u

u0

Xv dv

(

1

0

)

= f(u).

That ends the proof. �
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3.2 Examples

In this section (M,g) denotes a two-dimensional Riemannian manifold and (e1,e2)
denotes a local g-orthonormal frame.

Example 3.5. Trivializable Riemannian manifolds.
Both Theorems 3.1 and 3.4 imply the following classical theorem.

Theorem 3.6. A two-dimensional Riemannian manifold is trivializable if and only if
its Gaussian curvature vanishes identically.

In the Riemannian case, the control curvature is the Gaussian curvature (see e.g.
[1, 7]). Moreover, in this case the feedback invariant b vanishes identically, which shows
that Theorems 3.1 and 3.4 lead to the same thesis. If we denote by (e1,e2) a local
orthonormal basis for the Riemannian structure on the manifold, we then see that
Theorems 3.1 and 3.4 reduce to

κ ≡ 0 ⇔ there exists a feedback such that

[

f ,
∂f

∂u

]

= [e1,e2] = 0.

On the other hand, if [e1,e2] = 0, according to the Frobenius theorem, one can find a
system of local coordinates on M such that e1 = ∂/∂q1, e2 = ∂/∂q2, i.e., such that the
dynamics of the Riemannian problem read

q̇ = cos u
∂

∂q1
+ sinu

∂

∂q2
= f(u).

Consequently, the system is trivializable . Moreover, if we fix local coordinates on the
base manifold and set b = 0 in the proof of Theorem 3.1 we see that trivializable Rie-
mannian problems are parametrized by the vector field

Xu = q2
∂

∂q1
− q1

∂

∂q2
.

Example 3.7. Trivializable Zermelo-like problems. Zermelo’s navigation prob-
lem on a two-dimensional Riemannian manifold (M,g) is the time-optimal control prob-
lem:

q̇ = X(q) + u, q ∈M, u ∈ S1,

q(0) = q0, q(t1) = q1

t1 → min,

The restriction to h−1(1) of the Hamiltonian vector field associated to the maximized
Hamiltonian function h reads (see [7, Chapter 3])

~h(q, u) = X(q) + cos ue1 + sinue2 − cZ(q, u)
∂

∂u
,
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where

cZ(q, u) = cos2 uLe2X1 + cos u sinu(Le2X2 − Le1X1) + sin2 uLe1X2

+(1 + cos uX1 + sinuX2)(c1 cos u+ c2 sinu), (3.10)

X1(q) = 〈X(q),e1(q)〉g , X2(q) = 〈X(q),e2(q)〉g .

Suppose that a Zermelo’s navigation problem Theorem 3.1. Hence, according to the
proof of the same theorem, there exists a vertical parameter ϑ such that ∂/∂ϑ = v and
[f ,f ′] = 0. For any smooth functions f , g and any smooth vector fields X, Y , the
general relation [fX, gY ] = fg[X,Y ] + fLXgY − gLY fX and an easy calculation
imply that vector fields f and ∂f/∂u satisfy the nontrivial commutation relation

[

f ,
∂f

∂u

]

= −
ǫcZ
ϕ

f + α
∂f

∂u
+ β

∂

∂u
, α, β ∈ C∞(H).

Then, a similar computation as the one made to obtain (3.6) shows that there exists
a system of local coordinates on M such that cZ(q, u) equals to zero identically. In
particular, in such a coordinates system we have

2c1 = cZ(q, 0) − cZ(q, π) = 0, 2c2 = cZ(q, π/2) − cZ(q,−π/2) = 0,

which shows that the Riemannian manifold must be trivializable . If we choose local
coordinates on M in which e1, e2 commute, then, according to (3.10), the vanishing of
cZ implies in particular that

2Le1X1 = cZ(q, π/4) + cZ(q,−π/4) = 0, Le2X1 = cZ(q, 0) = 0,

2Le1X2 = cZ(q, π/4) − cZ(q,−π/4) = 0, Le2X2 = cZ(q, π/2) = 0,

which trivially implies that the coordinates X1, X2 of the drift in (e1,e2) have to be
constant.

Summing up, we have proved the following

Theorem 3.8. A Zermelo navigation problem on a Riemannian manifold is trivializ-
able if and only if the Riemannian manifold is trivializable and the drift vector field is
constant in any system of local coordinates in which e1 and e2 commute.

We now turn our attention to the co-Zermelo problem for which we refer the reader
to [8] for details. Let Υ be a one-form on M such that |Υ|g < 1. We call co-Zermelo
problem of the pair (g,Υ) the following time-optimal control problem on M

q̇ =
u

1 + 〈Υq, u〉
, q ∈M, u ∈ TqM, |u|g = 1,

q(0) = q0, q(t1) = q1,

t1 → min .
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The Hamiltonian function of PMP is of this problem reads

h(λ) =
−

〈

λ,Υπ(λ)

〉

g
+

√

〈

λ,Υπ(λ)

〉2

g
+

(

1 − |Υπ(λ)|2g
)

|λ|2g

1 − |Υπ(λ)|2g
.

Let (e1,e2) be a g-orthonormal frame and parametrize fibers by u in such a manner that
〈

λ− Υπ(λ),e1(π(λ))
〉

= cos θ,
〈

λ− Υπ(λ),e2(π(λ))
〉

= sin θ. Then, the Hamiltonian
field takes the form

~h(q, u) =
1

ϕ(q, u)

(

cosue1(q) + sinue2(q) + (cg(q, u) + Ω(q))
∂

∂u

)

,

where Ω ∈ C∞(M) and ϕ ∈ C∞(H) are the functions defined by

dΥ = −Ω dVg, ϕ(q, u) = 1 + cos u 〈Υq,e1(q)〉 + sinu 〈Υq,e2(q)〉 ,

and the curvature reads

κ(g,Υ)
coZ = ϕ−2

(

κg + Ω2 + sinuLe1Ω − cos uLe2Ω − S(ϕ)
)

, (3.11)

where S(ϕ), the Schwartzian derivative of ϕ is defined by

S(ϕ) = ϕL~h

(

L~h
ϕ

2

)

−

(

L~h
ϕ

2

)2

.

An easy computation and [8, Proposition 3.4 and Corollary 3.5], (which assert that
a given co-Zermelo problem on (M,g) is feedback-equivalent to a Zermelo problem on
the same manifold M equipped with a Riemannian metric g̃ generally different from g)
imply the following

Corollary 3.9. A co-Zermelo problem on a Riemannian manifold is trivializable if and
only if the Riemannian manifold is trivializable and the drift one-form is constant in
any system of local coordinates in which e1 and e2 commute.

4 Conclusion

The differences, exhibited by Theorems 3.1 and 3.4, between the Riemannian and the
control cases (RC and CC respectively) can be summarized as follows:

RC: trivializable ⇔ [f ,f ′] = 0 (up to a feedback) ⇔ κ ≡ 0
CC: trivializable ⇒ [f ,f ′] = 0 (up to a feedback) ⇒ κ ≡ 0

We want to point out that the existence of a feedback such that extremals project onto
M as straight lines neither implies that the control system is trivializable , nor the
existence of a feedback such that f and ∂f/∂u commute. It can be easily seen if one
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considers a co-Zermelo problem on the Euclidean plane R
2 whose drift is an exact form

Υ = df . In this case the Hamiltonian field ~h dynamic on M reads (see [8])

~h =
1

ϕ(q, u)

(

cos u
∂

∂q1
+ sinu

∂

∂q2

)

, ϕ(q, u) = 1 + cos u
∂f

∂q1
+ sinu

∂f

∂q2
,

and, according to (3.11), the curvature reads κ = −S(ϕ), which has no reason to
be identically zero. Indeed, one can check that taking f = q21 + q22 leads to κ =
3(1 + 2q1 cos u+ 2q2 sinu)−4.
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