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Flat Parametric Counter Automata

Marius Bozgd, Radu losit, and Yassine Lakhneéh

VERIMAG, 2 Avenue de Vignate, 38610 Gieres, France
bozga, i osif, | akhnech@mag. fr

Abstract. In this paper we study the reachability problem for paraimdtat
counter automata, in relation with the satisfiability pevhl of three fragments
of integer arithmetic. The equivalence between non-pattéeniéat counter au-
tomata and Presburger arithmetic has been establisheidysivby Comon and
Jurski [5]. We simplify their proof by introducing finite seaautomata defined
over alphabets of a special kind of graphs (zigzags). Thiméwork allows one
to express also the reachability problem for parametricraata with one control
loop as the existence of solutions olgarametric linear Diophantine systems
The latter problem is shown to be decidable, using a nuntismretic argument.
Finally, the general reachability problem for parametrat ffounter automata
with more than one loops is shown to be undecidable, by rextufrom Hilbert’s
Tenth Problem [9].

1 Introduction

Flat counter automata [5, 6, 3, 4] have been extensivelyiedfuds an important class
of infinite-state systems, for which the reachability peshlis decidable. The results
obtained so far have been used in a number of successfutadnfi tools, like FAST
[2], LASH [18] or TREX [1].

Comon and Jurski show in [5] that the reachability problemédlat counter au-
tomaton can be expressed in Presburger arithmetic, giwrht automata have tran-
sition guards that are conjunctions of relations of the formy < ¢, wherex andy
denote either the current or the future (primed) values efdbunters, and is an in-
teger constant. To our knowledge, their result concernsrtbst general class of flat
counter automata, considered so far.

The contributions of the present paper are many fold. Rivetgive an alternative,
easier, proof of the result of [5], using finite state autardafined over alphabets of
graphs (zigzags). Second, we consider a more general dlfiss counter automata,
in which, besides integer constants, parameters are &tsweal to occur in transitions.
This class is useful in modeling open programs, whose beh&viparameterized by
some input values, e.g. procedures in a larger program.ddahability problem in the
latter class of automata amounts to checking satisfialwfiiophantine systenid 2].

Third, we give an effective decision procedure for the fwilog problem: given
a linear system with unknowns, ..., x,, the coefficients being polynomials of any
degree imm, is there a constamte N, such that the system resulting from substituting
m with ¢ has a positive solution? This result gives an effective ritlgm to decide
reachability for parametric counter automata with one dop, whereas in the case
of more than one control loop, the reachability problem fatssystems is undecidable.



1.1 Related Work

Work on the decidability of reachability problems for coemnautomata starts with the
negative result of Minsky [14] regarding two counter maesinThe two most studied
restrictions of this model are theversal bounde@-way counter machines [10] and
theflat counter automat#s, 6, 3]. The class of flat counter automata that is closest to
the one considered in this paper is the one studied by Conmbdwaski [5], where the
transition relations are conjunctions of inequalitiestd formx —y < ¢, with c € Z.
Their result is that the set of reachable configurationsdchsutomata is definable in
Presburger arithmetic. Our result considers paramesitsttion relations of the form
x—y < f(z), and defines the set of reachable configurations as solutioadinear
Diophantine system with one parameter. Decision procediorehis class of systems
have been independently found by O. Ibarra and Z. Dang in [isihg a result from
the theory of reversal-bounded counter automata, and by atiyllsevich [13]. The
latter result uses a similar number theoretic argumenthauproof is based on a more
involved case analysis.

2 Preliminaries

Let x = {x1,...,%} be a finite set of variables (counters) ranging oferandx’ =
{y' | y € x} be the corresponding set of primed variables. For any coyntee denote
by y its value at the next computational step. In what follows wik abusively use
the name of a variable to denote its value also. The (compglsocurrence of a set of
variablesx in a logical formulap is denoted a$(x). By (Z[x],+,-) we denote the ring
of polynomials, and bylinZ[x], +) the monoid of linear polynomials, with variables
and integer coefficients. For a closed formgijave write |= ¢ meaning that it is valid,
i.e. equivalent to true.

Let z= {z,...,z} be a set ofparametervariables, disjoint fronx. A relation
d(x,X’,z) that can be written as a finite conjunction of the form:

/\Xi —Xj < Qjj /\/\X;-n—xnf an/\/\xp—)ﬁgypq/\/\xlr—xlsfars

with 1 <i,j,mn,p,q,r,s <Kk, andaij,Bmn,Ypg, Ors € liNZ[z], is said to be amaffine
relation. Note the formal difference between variable¥ 4nd parametersz) in ¢:
variables are bound to occur both unprimed and primed, valsggarameters can only
occur unprimed in formulae.

A parametric counter automatds a tupleA = (x,z,Q, d,qo), wherex is the set of
working countersz is the set of parameter® is the set ofcontrol statesqp € Q is

theinitial state, andd is the set otransitionsof the form:q X', g, whered is an

affine relation. Aconfigurationof A is a tuplec = (q,xz) consisting of a control state,
and a set of integer values for the counters and parametets 8f the automaton is

a sequence of configuratiors, c1,Cy, .. .,Cn, G = (qj, XZ), such thao = 0, i.e. the
counters are initially set to zero, aqdw gi+1, forall 0 <i < n. Note that the

values of the parameters are not modified throughout theAwontrol stateq is said
to bereachablein Aif and only if A has a run ending in a configuratiog, xz).



A control stater is said to be theuccessopf a stateq if and only if there exists
configurationgq, xz) — (r,x'z), for somex, x’ € ZX, ze Z'. A control pathis a sequence

of control states);,qp, . .., 0y such that, for all 6< i < n, gi+1 is a successor af. The
path is said to be non-trivial ifi > 0. A cycleis a non-trivial control path starting and
ending with the same state. A counter automaton is said ftab@CA) if and only

if each control state belongs to at most one cycle. A contaibswith two or more
successors (in the sense mentioned above) is said tbkznehingstate. A branching
state with exactly two successors is said to Zetmanchingstate. A FCA is said to be
linear (LFCA) if and only if the only branching states are 2-bramghiand every cycle
contains at most one such state. Notice that every FCA caffdatieely turned into a
finite union of LFCA, the only branching state that is not 2diiching, being the initial
state.

It is well-known that the class of affine relations is closedier composition, de-
fined as(d10¢2)(x,x',2) = Iy ¢1(X,y,2) A d2(y,X,z). In other words, the exis-
tential quantifiers can be eliminatgedhe result being written as another affine rela-
tion. As a consequence, we can assume without losing géyethat each control

pathq; 9, O2...0n-1 On1, On, With no incoming edges, is equivalent to a transition

01 $10-0n-1, On. By applying this transformation to the whole counter autton, we

obtain a counter automatonmormal form

Given a counter automata®= (x,z,Q,8,qp) and a control statg € Q, thereach-
ability problemasks whetheq is reachable irA. As we show in the following, this
problem can be defined in various subfragments of the artibroginteger numbers.
Moreover, we can show equivalence of these logical thearitsdifferent subclasses
of flat counter automata. The latter are obtained by restgi¢he number of parameters
and loops on a control path. We denote by F@A) the class of flat counter automata
with at mostp parameters that occur in the transition relations, and atithosin cycles
on each linear component.

3 The Arithmetic of Integers

The undecidability of first-order arithmetic of integeéf +, -,0,1) occurs as a conse-
guence of Godel's Incompleteness Theorem [8]. Moreokerekistential fragment, i.e.
Hilbert’'s Tenth Problenj9] was proved undecidable by Y. Matiyasevich [12]. On the
positive side, the decidability of the arithmetic of integeimbers withaddition and
successor functiof#, >, +,0,1) has been shown by M. Presburger [17].

Let us first introduce the theories of Presburger arithnjgiitand parametric linear
Diophantine systems. Presburger arithméfic>,+,0,1) is the theory of first-order
logic of addition and successor functiof(X) = x+ 1). The interpretation of logical
variables is the set of integefs and the meaning of the function symbol4.0+ is the
natural one.

A Diophantine equations a formula of the formP(x) = 0, whereP € Z[x] is a
polynomial of the formP(x) = ¥, ajti (x) + ao, andt; are multiplicative terms of the

1By e.g. the Fourrier-Motzkin procedure.



form Nl lxI , With ig,...,ij € N. The equation is said to dimear with parameter
1< j <k, if for every multiplicative term of the form above, we hazé&’lmk} i <1.
In other words, the only variable that can occur at a poweatgrehan one ig;, and

moreover, all multiplicative terms contain at most one afle, other thaw;. Note that
any Diophantine linear equation with parametetan be equivalently written as:

i Pi (M)X; + Po(m) =0 (1)

wherep; € Z[m], 0 <i < n are polynomials of arbitrary degree in In the follow-
ing, we denote byd[m] the set of positive boolean combinations of linear Diophment
equations with one parameter, namely

In this paper we show that the following problems are inggttcible:

— the reachability for the class FQ® n) (flat counter automata without parameters
with any number of loops) and satisfiability of Presburgé&hanetic, and

— the reachability for the class FGA, 1) (flat counter automata with any number of
parameters and one loop) and satisfiabilitydi|.

Notice that the notion gbarameterchanges its meaning, depending on whether we are
referring to counter automata, or Diophantine systems.

For the first point, it is already known that, given an arlitrapen Presburger for-
mula ¢(x), one can build a flat counter automaton that generates gxhetlvalues
X € Z satisfying¢. This is a direct consequence of the fact that the set of saicles is
semilinear [7].

To complete the picture, we show the undecidability of thechability problem
for the class FCAp,n) with unrestricted number of parametep énd loops ), by
reduction from Hilbert's Tenth Problem [9].

4 From FCA to Integer Arithmetic

In this section we develop the framework used to define thehadzlity problem of a
FCA as a formula of either Presburger arithmeticodm|. Given a FCAA = (x,z,Q, 8, o),
and a statey € Q, the idea is to build an arithmetic formula 4(x,X’,z) such that,
for everyx,x' € Z¥, z € Z', there is a run imA from (go,xz) to (q x'z) if and only

if =vaq(x,X',z). The reachab|l|ty problem foA andq reduces then to checking the
validity of the formuladx3z . va4(0,X,z).

In order to defin@a q, we first observe that eaghe FCA(p, n) is a union of disjoint
linear flat counter automata, each being composed of a segoénycles, connected by
non-trivial control paths. Without loss of generality, wél\@ssume thaf is in normal
form, i.e. each control path with no incoming edges and nadirang has been reduced
to one transition, by composing the transition relatiorglthe way. It follows that
vagq(x,X’,z) is of the following form:

Jy1.nY1 n\/rmxyl, n N &Y ARG Y2 AX = Ym,
1<j<my



wheremy < n, njj are the affine relations corresponding to the transitiomsésen cy-
cles, andgjj represent the transitive closures of the cycle relatiamsghé following

!

sense: ify X2, gis a cycle, then the transitive closuredpfs the relation between

the input and output values of the counters, adtey number of iterations through the
cycle. Sincenj; are affine relations, it follows thafa q is a formula in the language of
(Z,>,+,0,1), if &; belong to the same language. Moreover,ifpr= 1, va q is a for-
mula of ©[m if &;; are. Itis therefore sufficient to analyze the definability gf, when

!
A has only one transition of the formm g. In the following developments, we
will silently assume that this is indeed the case.

4.1 Constraint Graph Execution Model

In general, an affine relatiaf(x, x’, z) can be represented as a directed weighted graph
whose set of vertices is the set of variabtesx’, and there is an edge with weight
fromxtoyif and only if there is an explicit constrairt-y < a in ¢, wherea € linZ|z].

An n-step execution of LLIUN qis represented by eonstraint graph @, defined as

the minimal graph whose set of verticeg j8_ox', wherex' = {y' |y € x} and, for all
0 <i < n,thereis an edge labeled

— fromx toy, if there is a constraint—y < a in ¢.

— fromx*1 toy"*+1, if there is a constraind —y < a in ¢.
— fromx toy'*1, if there is a constraint—y < a in ¢.

— fromx*1toy!, if there is a constraint —y < o in ¢.

For example, Figure 1 shows the constraint graph for thesitian relationd : x; —x, <

1 AX—X3 < 22 AX3 — X < Z3A X1 — X5 < 4. Intuitively, the nodes in the execution
graph represent the possible values of the counters iaéteps of execution. Define
Gg = Un-0G§. We say that a path i@ stretches between n and for somen < m, if
the path contains at least one node frdifor eachn <i <m.

1 2 _
X(1> 2 X; 21 X{ Xg 1 Z Xrll
Z3 Z3
Z4 Z4 Z4
1 2 _
X X % x5t X
b4) y4) 4]
2 _

Fig. 1. Constraint Graph foxy —x, <21 AX, — X3 <o AX3 —X) < Z3AX —X5 < Z4

If x5 .2yl 0<i,j,< nis a path inGg, let w(1r) denote the sum of all

labels along the path, i.ex(1) = 3¢, ak. Notice thatw(m) € linZ([z], for any constant
m € N. Clearly, we haved —y! < w(m). We define migx' — y!'} = min{w() | m:



X 2L 2m yit. By convention, if there are no paths@}, betweend andy!, we take
min{x' — yl} = «0. On the other hand, if the set of paths betwgeandx! doesn’t have
a minimal element, we take mix' — y/} = —co. Notice that this can only be the case
if Gg has a cycle labeled only with constants, whose sum is lesszé@. With the
latter notation, we havé —y! < min{x' — y!}. Moreover, this is the strongest relation

involving the values ok andy at the execution timeisand j, respectively. Notice that
the satisfiability of any constraint betweghandy! entails the absence of negative
cycles fromGg. The relation between the input and output values of the tevssafter

n steps is:

A\ x=y<min{x®—y°} A X —y <min{x" —y"} A

X,YEX

x—y <min{x0 = y"} A X —y < min{x" —y°} (2)

The next step is to define the functions fih— yi}, i, j € {0,n} using the arithmetic

of integers. These functions are definabléZn>, +,0,1), if ¢ has no parameters, and
in ©[m], otherwise. The reduction method, based on weighted finitenaata, is the
same in both cases, and will be presented in the rest of tti®ee

4.2 The Even and Odd Automata

In the following, we work with a simplified (yet equivalenfrin of the transition re-
lation ¢ (x,x’,z). Namely, all constraints of the form—y < a are replaced by —t’ <

o A t'—y <0, and all constraints of the forxi —y < o are replaced by —t <

o A t—Yy <0, by introducing fresh variabldsZ x. In other words, we can assume
without loss of generality that the constraint graph cqroesling tod is bipartite, i.e.

it does only contain edges frorandx’ and viceversa.

As previously mentioned, the presence of any cycle of negateight withinG{f,
indicates that the constraints represente(ﬁ@wre not satisfiable, i.e. the automaton
has no run of length or greater. On the other hand, a path that has a cycle of y®siti
weight is not minimal, as one can obtain a path of smaller tdy eliminating the
cycle. So, in principle, we need one tool for recognizinglegof negative weight,
and another one for recognizing acyclic paths witGf Both tools will be finite state
automata with weighted transitions, defined on two diffeegphabets.

Intuitively, a wordw of lengthn represents a path between, say’ andx", with
XY € X, as follows: thew; symbol representsmultaneouslall edges oftthat involve
only nodes fromx' Ux!*1, 0 <i < m. Note that, for a path from to y", coded by a
word w, the number of times the; symbol is traversed by the path is odd, whereas for
a path fromx? to y°, or fromx” to y", this number is even. Hence the nameswénand
odd automata

Given an affine relatio (x, x’,z), theeven alphabesdf ¢, denoted a&§, is the set
of all graphs satisfying the following conditions, for ea@ke %§:

1. the set of nodes @ is x UX/,



2. for anyx,y € xux/, there is an edge with labelfrom x to y, only if the constraint
X—y<aoccurs ind.

3. the in-degree and out-degree of each node are at most one.

4. the number of edges frorto x’ equals the number of edges froto x.

Theodd alphabebf ¢, denoted byz§, is defined in the same way, with the exception
of the last condition:

4. the difference between the number of edges fraimx’ and the number of edges
from x’ tox is either 1 or—1.

Let Z$’° = 2§ UZ3. Since, by the previous assumption, @e Z$’° contains edges
of the formx % yorx % Y, the number of edges in alll symbolsxf is even, while the

number of edges in all symbols &§ is odd. The label 06, is the sum of the weights
that occur on its edges. Clearly the weight of a path thro@fhs the weight of the
word it is represented by. We denote tagw) the weight of a wordv € 2§°*. Notice
thatw(w) € linZ[z], for any giverw € 3§°, wherez is the set of parameters ¢f

Given the set of counters= {x, ..., X}, the even and odd automata share the same
transition table, except for the alphabet, whick§sfor the former, and§ for the latter.

Precisely, we hava§® = (Q, ), whereQ = {I,1,Ir,rl, L }¥, andq < ¢ if the following
conditions hold, for all K i <k:

— gi = | iff G has one edge whose destinatior;jsand no other edge involving.

— g = iff G has one edge whose sourcejisand no other edge involving.

— g = r iff G has one edge whose sourcejisand no other edge involving.

— g =r iff G has one edge whose destinatio{isand no other edge involving.

— g =Ir iff Ghas exactly two edges involving one having; as source, and another
as destination.

— o =rl iff Ghas exactly two edges involving, one having( as source, and another
as destination.

— g € {Ir, L} iff G has no edge involving.

— g € {rl, L} iff Ghas no edge involving.

— G has at least one edge betweeandx’.
The odd automaton fay = x1 — X, <1 AX, — X3 < 2 AX3—X; < Z3AX1 — X5 < Z4

is depicted in Figure 2 (a). An example of a run of this aut@mas given in Figure

2 (b). Intuitively, gi; = | means that the nodé] of G§ is traversed from right to left
by a path, and no other path comes across this node. glse; Ir means that there is

a path coming into¢; from x'** (left), and leaving also towardé™* (right), while no
other path comes across this node. The transitioﬁé%bapture the necessary (yet not
sufficient) conditions for a word iig°" to represent a path i6j. Suppose thatg®
has arur: g1 &, d2 S, | .On-1 S, gn. By G(m) we shall denote, in the following,
the graph associated with the run, i.e. the graph whose ravéep;, and there is an
edge fromq; to g1, if and only if g; G, gi+1 andG; has an edge fromg; to x;,, for
all1<i<n,1<j,h<k The edges fromj,1, to gi; are defined symmetrically. Each



r r
L7<rl

Ir

(a) (b)

Fig. 2. The Odd Automaton fox; — X, < z1 AX, —Xg < Zo AXg —X] < Z3AX1 — X5 <

node inG(m) is labeled by a symbol fronl,r,Ir,rl, L}, and we write, e.gqi; = I,
meaning thagj;; is labeled with. We denote by(1r) the weight of the rurm, defined
asw(m) = w(G(m)).

Gn-
Lemma 1. Letrt: g1 S, 02 &, On-1 —— 0n be arun of £°. Then each node g
1<i<n,1<j <Kk, from ), has at most one predecessor and at most one successor.

For some 1< i,j <k, let AS = (A§°,Qo,F) be the (non-deterministigven au-
tomaton defined ovek§, where:

Qo {alg=r,gy=landgne{lr, L}, 1<h<khé&{i,j}} ifi#]
{a]g=qj=Irandgy e {Ir,L},1<h<k h#i} otherwise

is the set of initial states, arfel= {rl, L }*. In the case whein= j, we denoted by AP.

Lemma 2. Forany1<i,j <Kk, i# j, Afj has an accepting run of length at most m if

and only if there exists a path ingGfrom ¥ to x‘f that stretches betwedhand some

n < m. Moreover, if G does not have cycles of negative weight, the minimal weight
among all paths from%to »?, stretching from0 to some n< m, equals the minimal
weight among all accepting runs of length at most m.

Lemma 3. For any1 <i <k, A° has an accepting run of negative weight if and only if
there exists a cycle of negative weight ifj.G

Forsome K i,j <k, letA} = (A3°,Qo,F) be the (non-deterministicdd automa-
ton, defined ove&, where:
Qo=1{qg|gi=randg, € {Ir, L}, 1<h<k h#i}
F={algj=randg, € {rl, L}, 1<h<kh#j}



An example of an odd automaton is given in Figure 2 (a).iFod the initial states are
(r,L,Ir) and(r, L, L). For j = 3 the final state i.L, L,r). An accepting run oA, is
shown in Figure 2 (b).

Lemma 4. Foranyl<i, j <Kk, Aﬁ has an accepting run of length m if and only if there
exists a path in @, from ¥ to X". Moreover, if G does not have cycles of negative

weight, then the minimal weight among all paths frofnto x*J“ equals the minimal
weight among all accepting runs of length m.

4.3 Defining Minimal Accepting Runs

Given a finite automaton with linear weights on transitiome,consider the problem of
defining the set of accepting runs of a given length and of maiveight. This solves
the previous problem of defining the functions fith— y!}, in order to compute the

input-output relation for an FCA.
Let A= (Q,qo,0,F) be a given finite automaton, and: Q x Q — linZ[z] be a
weight function associating each transitipr- r a linear expressiom(q,r) € linZ|z].

If & has no transitiol — r, we takew(q,r) = 0. Now associate with any pair of states

g,r € Q a variablexg and takex to be the sef{xyr | g,r € Q}. Intuitively, xy is the
number of times the transitian— r occurs within a run. Hence we take as an implicit

condition the fact that all suckyr range over positive integers. The formula character-
izing an accepting run of lengthand weightw is:

ol w) 23 \/ 9q () A Y =11 Y xqo(gr)=w ()
qreF q,reQ greQ

wheredq, (X) expresses the necessary and sufficient conditions in csdgrtd corre-
spond to a valid run oA ending withgs. The definition ofpq, in Presburger arithmetic
follows a method described in [5], which is based on the faat the set of stated of
Ais finite.

Notice that, ifA does not have parametegs, is already a formula in the language
of (Z,>,+,0,1), hence we can already define the minimal weiglhdmong all runs
of lengthn by the following formula:ga(n,m) A Vz [z < m— —@a(n,z)]. However,
this is not the case whehhas parameters, due to the multiplicative terms of the form
Xqrw(q, 1) that occur withinga. However, it is possible to build froma, a formula of
©[m| defining minimal runs.

Lemma 5. Given a finite automaton A (Q,do,d,F), and a weight functiom : Q x
Q — linZ[z] associating each transition a linear expression, it is folssbuild a
formula Wa(l,w,z) € ©[m] such that, for any valuesd N and wz € Z, = ya if and
only if w is the weight of the minimal among all accepting rofitength I.

Intuitively, the parametem occurring in the formulapa € ©[m| above, represents
the number of iterations of one control loop in the originatgmetric FCA. It is thus
possible to define the reachability problem for single loapaata in®[m]. As we



show in Section 5, the problem concerning the existencelofisas for such systems is
decidable, hence the decidability of the reachability peobfor the class of FCAp, 1).

However, for an arbitrary number of loops, one can reduckdiiils Tenth Problem
to the reachability problem. In the light of [12] The follawg Lemma entails unde-
cidability of the reachability problem for parametric FCAthvunrestricted number of
loops.

Lemma 6. Given a Diophantine systen{g, it is possible to build a parametric FCA
A= (y,z,Q,0,qp) such thatx C z, such that, for some control state=gQ, and for all
X € Z, we have= S(x) if and only if there exists a run of &yp,02) — ... — (q,yz)

5 Solving Parametric Linear Diophantine Systems

In this section we give a proof for the decidability of thesdaf formulaegd[m]. For a
given system, leD denote the maximum degree of all equations, ¥rid the number
of variables in the system. It is known that Diophantine eys become undecidable
for (D>4AV >2)Vv (D >2AV >9) [15]. For eitheD = 1 orV = 1 the systems are
decidable. We are unaware of any previously published dédity results for the case
2<D<4An2<V <9. The problem considered here has been independentlyddoyve
O. Ibarra and Z. Dang in [11], using a property of reversalizid counter machines.
Another proof has been suggested to us by Y. Matiyasevich i58g a more involved
case analysis. Our proof is more concise, due to a result®bttier [16].

Let us fix a linear Diophantine system with parametei.e. a system of the form
{3521 pij (M)x; +gi(m) = 0}y, with pij, 0 € Z[m]. We are interested in the existence
of a solutionm,xy,...,%, in natural numbers, although this is not a restricone
denote byA(m) the matrix[p;j (m)].

Let us consider first that the system is homogeneousy{#) is the zero polyno-
mial, for all 1 <i < n. The general case will be dealt with in the following, by adgda
new variable<, .1, replacing each occurrence@fm) by g;(m)xn+1, and looking only
after solutions in whick, 1 = 1. LetP(m) be the greatest common divisor of pjj (m)
with respect to (symbolic) polynomial division, i.e. obitad by applying Euclid’s al-
gorithm in Z[m|. SinceP(m) is a polynomial in one variable, its set of roots is finite
and effectively computable. P(my) = 0 for somemy € Z, then (mp, X1, ...,X%,) IS a
solution of the systenA(m)x = 0, for any choice ok;,...,xy € Z. Thus, we assume
in the following thatP(m) # 0, for all m € N, in other words that, for no value of,
pij (M) will all become zero at the same time.

Next, we are interested in the minimal solutions of the systEor a givenm €
N, a solution(xy,...,X,) is said to beminimalif it is a least solution with respect to
the pointwise ordering oR™: (ug,...,Un) < (V1,...,Vn) < Ui <V;, 1<i<n. The
following Theorem has been proved in [16]:

Theorem 1. For a fixed g € N, let xq,...,x, be any minirrr1al solution of (p)x = 0.
Then, for all1 <i < n, we have: x< (n—rg) (W) 0, where p is the rank of
A(mp).

2 The satisfiability problem for integers can be reduced™o!2nstances of the same problem
on natural numbers, by performing a case split on the signgxf, . .., X,.
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LetC > 0 be the maximal absolute value of all coefficientsigfm), 1 <i<r,1<j<
n, andK > 0 be the maximum degree of these polynomials. The followsng direct
consequence of Theorem 1.:

Corollary 1. For a fixed g > max(C,n,r), let x,...,x, be any minimal solution of
(K+3)r+1

A(mp)x = 0. Then, for alll <i < n, we have x< my
Hence, one can enumerate alkOm < maxC,n,r), and stop as soon as a solution
of the linear Diophantine systef(m)x = 0 has been found. Otherwise, for amy>
max(C,n,r) the solutiorxy, . .., X, can be represented in baseising at mosM = (K +

3)r + 1 digits. Let(x)m= ¥ oXijm’, with 0 < x;; < mbe the polynomial representing
Xi in basem. The entire systerA(m)x = 0 can be now represented in baseas will be
explained in the following.

First, we write the system as a set of equations of the fBfm,xs,...,x,) =
Q(m,xq,...,X%n), with all coefficients of° andQ being positive. Sincenwas assumed
to be greater that, the maximal value of all coefficients of the system, we have
(c)m = ¢. The operations of addition, multiplication by a constant @ < m, and
multiplication bym, respectively, can be defined now using Presburger aritbnest
(d)m=SModM, (&)m=SMoeim and(f)m = yMy@m, with 0 < &,&,@ < m. We
have:

M
(F)m=(d)m+ (e)m \ J\Si+&+ri=@+mr
re{0}x{0,1}k-1x{0}i=0
M
(em=c(d)m < \Vi /\ CBi + i = & + i1
re{0}x{0,...,c—1}k-1x {0} i=0
M-1

(@m=md)m <= du=@=0A A\ &=@1
i=0

The result of applying this transformation to the syst&m)x = 0is a formula¥a(m,X)
in Presburger arithmetic, defining all minimal solutiongtoé original systenix; )m =

Z'J'\/I:0Xijmj, form>maxC,n,r), with x = {xij | 1 <i<n, 1< j<r}. The original
system has a solutiofm, x1, ..., xn) if and only if, for somem € N, it has a minimal
solution(x{",...,x7"). HenceWa(m,x) is satisfiable. Dually, ifa(m,x) is satisfiable,
we can construct a solution (not necessarily minimaA@h)x = 0.

The non-homogeneous case is handled in the proof of thenfioltp

Theorem 2. The satisfiability problem for linear parametric Diophamtisystem® [m|
is decidable.

Theorem 2, together with the results of the previous sedrdail the main result:

Corollary 2. The reachability problem for single loop parametric flat oter automata
FCA(p,1) is decidable.

The strength of this result is highlighted by Lemma 6, whiokads the undecidability
of the reachability problem for FC{#p, n) with p > 0 parameters, and sufficiently many
control loops.
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6

Conclusions

We have studied a generalization of the flat counter autociaidered by Comon
and Jurski in [5], obtained by adding parameters to the iiangelations. We reduce
the reachability problem for these automata to either Rirggn arithmetic, in the non-
parametric case, and to linear Diophantine systems witlpar@meter, for single-loop
automata with multiple parameters. The existence of swistifor the latter class of

sy

stems is shown to be decidable. This entails the decitjadiiithe reachability prob-

lem for counter automata with parameters and one contrgl, iatile in general, this
problem is undecidable for flat automata with more than omg¢robloop.
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