
HAL Id: hal-00361288
https://hal.science/hal-00361288v1

Submitted on 17 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predictive maintenance policy for a gradually
deteriorating system subject to stress

Estelle Deloux, Bruno Castanier, Christophe Bérenguer

To cite this version:
Estelle Deloux, Bruno Castanier, Christophe Bérenguer. Predictive maintenance policy for a gradually
deteriorating system subject to stress. Reliability Engineering and System Safety, 2009, pp.418-431.
�10.1016/j.ress.2008.04.002�. �hal-00361288�

https://hal.science/hal-00361288v1
https://hal.archives-ouvertes.fr


Predictive maintenance policy for a gradually

deteriorating system subject to stress

E. Deloux a, B. Castanier a, C.Bérenguer b
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Abstract

This paper deals with a predictive maintenance policy for a continuously deteri-
orating system subject to stress. We consider a system with two failure mecha-
nisms which are respectively due to an excessive deterioration level and a shock.
To optimize the maintenance policy of the system, an approach combining Statisti-
cal Process Control (SPC) and Condition-Based Maintenance (CBM) is proposed.
CBM policy is used to inspect and replace the system according to the observed
deterioration level. SPC is used to monitor the stress covariate. In order to assess
the performance of the proposed maintenance policy and to minimize the long-run
expected maintenance cost per unit of time, a mathematical model for the main-
tained system cost is derived. Analysis based on numerical results are conducted
to highlight the properties of the proposed maintenance policy in respect to the
different maintenance parameters.

Key words: predictive maintenance, stochastic modeling, control chart, economic
performance

1 Introduction

Many manufacturing processes or structural systems suffer increasing wear
with usage or age and are subject to random failures resulting from this dete-
rioration [1] and most of them are maintained or repairable systems. Moreover,
for some systems, such as aircrafts, submarines, military systems, and nuclear
systems, it is very important to avoid failure during actual operation because
it can be dangerous or disastrous. Therefore, maintenance of them is necessary
since it can improve reliability. The growing importance of maintenance has
generated an increasing interest in the development and implementation of
optimal maintenance strategies for improving system availability, preventing
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the occurrence of system failures, and reducing maintenance costs of deteri-
orating systems. A lot of models for optimizing the maintenance scheduling
and planning have been proposed [2]. Maintenance can be categorized into
two major classes: corrective and preventive. Preventive maintenance itself
can be categorized into two classes: systematic preventive maintenance and
Condition-Based Maintenance (CBM). CBM approaches are usually more ef-
ficient than systematic preventive maintenance policies based on the a priori
statistical knowledge of the system lifetime [3]. CBM policies are thus particu-
larly justified for critical systems and the collected information on the system
condition can be exploited by the maintenance decision-maker in order to
maximize the availability of the system and to minimize its long-run expected
cost. The price for this higher efficiency is an enhanced modeling work of the
maintained system behavior in order to support correctly the maintenance
decisions [4].
A classical assumption in CBM modeling is that the system failure can be
explained by a deterioration process. One way to model continuous and grad-
ual deterioration process due to wear and tear, e.g. systems subject to erosion
(hydraulic structures, dikes) [5], consumption [6], cumulative wear (cutting
tools) [7], is to represent the time-dependent deterioration by single continuous
state stochastic process. The failure occurs when this deterioration exceeds a
failure threshold [8]. But, in fact, because of the complexity of the systems and
the influence of different variables and stresses [9,10] on the failure mechanism,
it is difficult, in most of the cases, to reduce failure mechanisms to one de-
terioration process. Nevertheless, partial information on the system state can
be tackled by the monitoring of easily-observable covariates (e.g. vibration,
temperature, humidity,. . . ). Some works focused on non-maintained system
reliability, propose relevant degradation models [11] such as hazard rate pro-
cesses [12–15], competing risk processes [16] for example. However, only few
are developed in such a context for CBM applications [17].
Moreover, a system failure can also induce some changes in the environmental
conditions and especially in the previously mentioned easily observable co-
variates. For example, the internal vibration signal can be influenced by the
present of springlers in a ball-bearing. Hence, the observation of such covari-
ates should provide some partial information of the system state. Condition
Monitoring (CM) received a great deal of attention in literature [18,19]. CM
methods, e.g. Statistical Process Control (SPC), applied to systems are used to
detect potential failures or to determine updated failure rate values of sensitive
components. For example, vibration analysis, oil analysis, humidity, temper-
ature and so forth are variables allowing the detection of a failure, because
the stress intensity enhances when a failure has occurred, but also the accel-
eration of the failure mechanisms due to stress. The use of CM techniques
will generally improve plant production availability, and reduces downtime
costs. Finally, modern maintenance paradigm consists of two major elements:
preventive maintenance and condition monitoring decision analysis. Both of
these have received significant development in recent decades but a longstand-
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ing gap continues to exist between these two elements. However, coordinate
SPC and preventive maintenance presents economic performance [20–23]. Cas-
sady et al. [21] performed a preliminary investigation to model and analyze
the relationship between maintenance and quality combining classical age-
based approaches and SPC. Ben-Daya and Rahim [20] provide a framework
for capturing maintenance and quality control interactions leading to models
for their joint optimization. Linderman et al. [23] develop an analytical model
to demonstrate this economic benefit.
In this study, we propose to answer to the different points presented previously,
in particular the proposition of a model for a deteriorating system subject to
stress and the construction and evaluation of a maintenance policy for such
a model. More precisely, we consider a system with two failure mechanisms
which are due to an excessive deterioration level and a shock due to a stressful
environment. We propose here to model the failure process by the introduc-
tion of two explicative variables, a cumulative deterioration process, which is
modeled by a non-decreasing stochastic process, and a stress covariate, which
modeled by a stochastic process fluctuating around a given mean. To optimize
the maintenance policy of the system, a combined SPC and CBM approach is
proposed. CBM is used to inspect and replace the system according to the ob-
served deterioration level. SPC is used to monitor the stress covariate. In this
study, we develop a model which allows us to investigate the influence of the
maintenance decision parameters on the total cost of the maintained system
and we show that the long-run expected maintenance cost per unit of time
can be minimize by an appropriate joint choice of these decision variables.
Furthermore, we perform a sensitivity analysis to highlight the properties of
the optimal maintenance policies when maintenance data and system deteri-
oration characteristics change.
This paper is organized as follows. In section 2, the failure process and the
associated variables are described. Section 3 is devoted to the presentation of
the maintenance policy. In section 4, results from numerical experiments illus-
trate and analyze the behavior of the proposed maintenance policy. Finally,
in Section 4, conclusions are drawn from the work.
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Nomenclature

(Xk)k∈N discrete time process describing the deterioration at time tk

(Yk)k∈N discrete time process describing a stress at time tk

(Zk)k∈N discrete time process describing the system state at time tk

∆t unit time length

tk discrete time

a scale parameter

FA failure acceleration factor due to stress

b sensitivity to stress

L cumulative degradation threshold

m nominal level of Yt

α deterioration parameter

σ standard deviation of Yt

µ drift coefficient

λ stress threshold

ξ preventive replacement threshold

UCL upper control limit

τ X-inspection period

δ routine maintenance action period

θ maintenance data vector

Ξ maintenance decision parameter vector

cix cost per inspection of Xt

ciz minimal inspection cost

cc cost per corrective replacement

cp cost per preventive replacement

cm greasing cost

cu unavailability cost

Nix(tk) number of planned inspections

Niz(tk) number of unplanned inspections

Nm(tk) number of planned routine maintenance

Np(tk) number of preventives replacements

Nc(tk) number of correctives replacements

Du(tk) cumulative unavailability duration

f
(k)
λ probability density function of the deterioration

increment after k periods of time of a non-failed system

rk time since the last routine maintenance



2 Description of the combined stress-degradation failure process

This section is devoted to describe the system failure process, the relationship
between the stress and the system degradation behavior. Then, the associated
mathematical model is derived.

2.1 Description of the system failure process

We consider a single-unit system subject to two failure mechanisms. The first
failure process results from an excessive deterioration level. The second one is
a lethal shock failure process which can be explained, at the same time, by
the deterioration level and the stressful environment [14].
In order to illustrate our model, we will rest our various assumptions on the
analysis of the particular failure mechanisms of a guiding system of a tramway
due to chippings and vibrations.

2.1.1 Cumulative deterioration failure

The first failure mechanism results from an excessive deterioration level which
can be described by a measurable variable. The system stops to fulfill its
function as soon as the aging variable is greater than a predetermined level
L. In this case, either a “hard” failure or a “soft” failure has occurred, viz. an
important deterioration is present which reduces too much the system perfor-
mance and the system is considered as failed, even if it is still working from
e.g. a mechanical point of view. For example, a production system will con-
tinue to produce even if its performance level is not good enough. However,
the resulting products will be of poor quality and should be scrapped and in
this case the system can be considered in the failed state. The threshold L, in
this example, represents the minimum level of system performance in order to
obtain products conform to requirements. The determination of this threshold
rests on a level of expertise and data related to nonconformities. Within the
framework of the safety, L is a tolerance which can be imposed directly by a
regulation, for example, a wear threshold for tyres and brake pads. Further-
more a failure is assumed to be not self-announcing, for example, a bridge,
a dike, . . . may not be able to sustain its nominal load any longer, but an
inspection is necessary to reveal it. Obviously, it is not reasonable to wait for
the structure to collapse before declaring that it failed; it is in a failed state as
soon as it can no longer fulfill its intended function under a given performance
level. The threshold L can thus be seen as a deterioration level which must
not be exceeded for economical or security reasons. An inspection is needed
in order to detect if the deterioration level is greater than this threshold L.
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Let (Xk)k∈N be the continuous increasing stochastic process describing the
deterioration process on an infinite discrete time (tk = k∆t)k∈N. Later in this
paper, the value of the unit time length ∆t will be fixed to 1. We assume that
(Xk)k∈N is modeled by a phase-type distribution with parameter α, i.e. an in-
crement over one fixed time unit, Xk−1−Xk, is exponentially distributed with
parameter α and a probability density function f(x) = αe−αx. This model is
classical and generally well-adapted to cumulative wear, fatigue, crack growth,
corrosion,. . . , with a minimal information on the considered deterioration pro-
cess [24].
The process (Xk)k∈N represents in the example of the rollers, the propagation
of the chipping.

2.1.2 “Stress-failure” process

The second failure mechanism is related to a stress-failure process. Let assume
the system is subject to an environmental stress that can be external to the
system (temperature, humidity, etc.) or a direct consequence of the system
operating mode (internal vibrations, internal temperature, etc.). Let (Yk)k∈N
be the associated stress process where Yk represents the stress intensity at
time tk. (Yk) is assumed to be a classical Gaussian process with a given mean
m and standard deviation σ.
The stress-failure process is modelled by a classical shock process, a failure
can occur because of the stress with a given probability 1− q. The associated
stress-deterioration failure probability 1 − q depends on the stress intensity
Yk. To model the influence of the stress on this probability, a stress threshold
λ is introduced. If Yk < λ, the system is considered in the nominal operating
state and the stress has a low impact on the probability of a failure. On
the other hand, when Yk ≥ λ, the system is considered stressed and this
increases the probability of a failure due to the stress. Let FA be the associated
failure acceleration factor due to stress. Moreover, because the sensitivity of
the system to stress can differ with time and usage [25,26], the probability of
a failure due to stress is a function of the current deterioration level Xk and
the time tk.
Let Zk be the system state indicator. If Zk = 0, the system is in a good state
and Zk = 1 indicates a failed system. The failure due to shock for a non
maintained system is given by the following conditional probability of a shock
given the value of Xk, the magnitude Yk, tk ≥ 1:

 P (Zk = 1|Xk = x < L, Yk < λ) = 1 − e−ax−btk

P (Zk = 1|Xk = x < L, Yk ≥ λ) = 1 − FAe−ax−btk
(1)

where a is the scale parameter, b represents the sensitivity of the system to
vibrations.
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As mentioned previously, the system condition can have some effects on the en-
vironmental stress, especially on the internal operating conditions. Let assume
that a system failure due to an excessive deterioration or a shock increases
continuously the stress intensity in average. In case of failure, a drift coefficient
µ is introduced in the intensity stress process. Hence, the new process (Yk)k∈N
after a failure is a Brownian motion with drift [27].
(Yk)k∈N represents in the example of the rollers the vibration amplitude. In
fact, an increase in vibration can be associated with deteriorated states and
thus a detection of a drift in vibration could prevent failures.
The two failure mechanisms are sketched in Figure 1. The effect of a fail-
ure in the two cases on the stress intensity process is also illustrated in the
representation of (Yk). Finally, a system with a competing failure process is
considered, the conditional probability of failure given the value of Xk and/or
Yk for tk ≥ 1 is obtained by adding to the set of equations (1) the probability
of failure due to an excessive deterioration level:


P (Zk = 1|Xk = x ≥ L) = 1

P (Zk = 1|Xk = x < L, Yk < λ) = 1 − e−ax−btk

P (Zk = 1|Xk = x < L, Yk > λ) = 1 − FAe−ax−btk

(2)

2.2 Reliability function

Let f
(k)
λ be the probability density function of the deterioration increment

after k periods of time of a non-failed system subject to deterioration and
stress. f

(k)
λ is given by:

f
(k)
λ (x) = ((1 − p)FA + p)k αk

ak−1(k − 1)!
(1 − e−ax)k−1e−αx

k∏
j=1

e−bj (3)

with p = P (Yk < λ) = Φ(λ−m
σ

); Φ(·) is the cumulative distribution function
of the normal distribution.
The reliability of the unmaintained system at time tk = k∆t can be obtained
directly by integrating f

(k)
λ between 0 and L. The reliability R(tk) is given by:

R(tk) =
∫ L

0
f

(k)
λ (x)e−axdx

= ((1 − p)FA + p)k
∫ L

0

αk

ak−1(k − 1)!
e−(α+a)x(1 − e−ax)k−1

k∏
j=1

e−bjdx

(4)
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The curves in Figure 2 represent the reliability function (cf. Equation (4)),
the associated probability of failure due to the different failure mechanisms
(shock and excessive deterioration level) and the reliability without any stress
so with a probability of failure due to shocks equal to 0. This figure illustrates
the impact of the “stress-failure” process on the reliability of the system.

3 Definition and evaluation of the maintenance policy

This section presents the maintenance decision framework which corresponds
to a “control limit policy” [28,29]. First, the structure of the maintenance
policy is presented to define when an inspection or a replacement should be
implemented. Then, the mathematical expressions of the associated long-run
maintenance cost per unit of time are developed to optimize the maintenance
decision.

3.1 Structure of the maintenance policy

The maintenance policy is based on the failure model described in the previous
section. Moreover, failures are assumed to be non-obvious, an inspection is
required to know the system state. Two types of inspection are available, an
inspection of the deterioration level (X-inspection) and an inspection of the
system state (Z-inspection). The maintenance policy also offers the possibility
of replacements either preventive or corrective. Finally, a routine maintenance
action can be performed to reduce the impact of the stressful environment.

3.1.1 X-inspection

The cumulative deterioration level Xk can be observed only through costly
inspections. Let cix be the unitary inspection cost. Even if non-periodic in-
spection strategies are optimal [24] from a mathematical point of view, their
implementation in an industrial context remains difficult and a periodic strat-
egy is more frequently used, thus a periodic age-based (versus time-based)
strategy is proposed. The first inspection after a potential replacement of
failed system is scheduled τ time units after the restarting time and then the
system is inspected at regular time intervals (τ, 2τ, . . .) until the next replace-
ment. The benefit of such an assumption is a reduced number of the decision
parameters, only the inspection period τ . This inspection is assumed to be
perfect in the sense that it reveals the exact deterioration level Xk.
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3.1.2 Z-inspection

The stress variable Yk is continuously monitored, i.e. at each time tk. A clas-
sical control chart for individual observations [30] is implemented to detect a
potential failure by the observation of a drift in Yk. If the value Yk is greater
than the Upper Control Limit, UCL, a minimal inspection is performed at
a given unitary cost ciz. This minimal inspection reveals only if the system
is failed or not, i.e. Zk = 0 or Zk = 1, but delivers no information on Xk.
A minimal inspection is less expensive than an inspection on Xk, ciz < cix.
In this paper, the value of UCL is not evaluated in order to minimize the
number of false alarms (Yk > UCL but the system is still functioning) and
non-detections (the system is in the failed state but Yk < UCL), but the
value of UCL should be optimized to balance the cost incurred by the un-
availability time due to a failure (incurred by a non-detection) and the cost
incurred by false alarms (the cost of a false alarm corresponds to the cost of
the system state inspection, ciz). The computations of the number of false
alarms and non-detections are developed in Appendix A.1. It should be noted
that if the system is in the failed state during this inspection and thus a re-
placement is implemented, the next X-inspection is planned τ time units after.

3.1.3 Preventive and corrective replacement

A replacement can take place to renew the system when it is failed (corrective
replacement) or to prevent the failure (preventive replacement). A corrective
replacement is performed when the system is observed in the failed state dur-
ing an X-inspection or during a minimal Z-inspection. The unitary cost of a
corrective replacement cc includes all the direct and indirect costs incurred
by this maintenance action. Only the unavailability cost cu per unit of time
the system is failed has to be added to cc. The decision rule for a preventive
replacement is a classical control limit rule: if ξ is the preventive replacement
threshold, a preventive replacement is performed during the inspection on Xk

if the deterioration level belongs to the interval (ξ, L). Let cp be the preventive
replacement cost (cp < cc). Replacements are assumed to be instantaneous.

3.1.4 Routine maintenance action

A routine maintenance action has to be implemented to reduce the impact of
the stress on the system modeled by a decreasing in the failure hazard func-
tion. This maintenance action would not correspond to a minimal repair.
Routine maintenance is assumed to be instantaneous. In the example of the
tramway, this operation can be e.g. the lubrication of the rails. The effec-
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tiveness of this action decreases with time and a new operation has to be
scheduled. A periodic scheme is proposed for this operation, δ is the time
between two successive actions. Let cm be the unitary operation cost (in the
example, this cost would also include the tramway immobilization due to the
unavailability of the track). Let rk be the time passed since the last action. We

have rk = tk − δ.
[

tk
δ

]
where [·] is the integer part function. To model the effect

of this maintenance on the system, rk is introduced in the conditional proba-
bilities equations (1) instead of tk and thus the following system of equations
is obtained:

 P (Zk = 1|Xk = x < L, Yk < λ) = 1 − e−ax−brk

P (Zk = 1|Xk = x < L, Yk > λ) = 1 − FAe−ax−brk

(5)

Figure 3 represents the influence of the routine maintenance period, δ, on the
reliability and on the different probabilities of failure. The Figure 3(a) high-
lights the impact of the routine maintenance period on the reliability. The
different curves are superimposed until t1 = 1 the time of the routine main-
tenance in the case δ = 1. At t2 = 2 the impact of the routine maintenance
(δ = 1) on the reliability is visible and leads to an increase in the reliabil-
ity of 4.9% when compared to the cases δ = 100 and δ = 3. The curves for
δ = 3 and δ = 100 are superimposed until t3 = 3 the time of the first routine
maintenance in the case δ = 3. At t4 = 4 the reliability on the case of δ = 3
is improved of 17.4% when compared to δ = 100. The routine maintenance
action slows down the decrease of the reliability each time it is performed, see
the reliability curve on Figure 3(a), at times t3, t6, . . .
The curves presented in Figure 3(b) illustrate the impact of the routine main-
tenance on the probability of failure due to shock. As previously mentioned,
the three curves are superimposed until t1 = 1 and then the curves which
correspond to δ = 3 and δ = 100 are superimposed until t3 = 3. On the curves
which correspond to δ = 3, irregularities are visible at t3 = 3; t6 = 6; t9 = 9
times of the routine maintenance.
The curves presented in Figure 3(c) illustrate the impact of the routine main-
tenance on the probability of failure due to an excessive deterioration level.
The routine maintenance has an impact only on the probability of failure due
to shock (cf. Equation (1)), the probability of failure due to an excessive dete-
rioration level is not influenced by this maintenance action, the shape of the
curves is always the same (all the curves are smooth) and only the proportion
of failure due to this failure mechanism changes.

3.1.5 Maintenance decision variables

Finally, the maintenance decision parameters which should be optimized are:
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• τ : the inspection period which allows to balance the cumulative inspection
cost and the early detection or the prevention of a failure;

• ξ: the preventive maintenance threshold which allows to set the ratio be-
tween preventive and corrective replacements;

• UCL: the upper limit control which balances false alarms and failure detec-
tion;

• δ: the maintenance action period which allows for a reduction of the prob-
ability of shock.

An illustration of the evolution of a maintained system and of the maintenance
decision is presented in Figure 4.

3.2 Long-run average cost per time unit

This section is presents the mathematical framework for evaluating the per-
formance of the proposed maintenance policy with respect to the long-run
maintenance cost per unit of time. The optimization criterion is a function
of the maintenance decision parameter vector Ξ = (τ, ξ, UCL, δ), the system
deterioration characteristics θ = (a, b, FA, α, m, µ, σ, λ, L) and the different
maintenance costs.
The expected cumulative maintenance cost up to time tk incurred by the suc-
cessive actions on the system knowing θ the system characteristics vector is
given by the following equation:

E(C(tk)) = cix.E(Nix(tk)) + ciz.E(Niz(tk)) + cp.E(Np(tk)) + (cc − cp).E(Nc(tk))

+cu.E(Du(tk)) + cm.E(Nm(tk)) (6)

where:

• E(.) represents the expected value knowing θ;
• Nix(tk) (respectively Niz(tk)) is the number of X-inspections (respectively

Z-inspections) performed before t;
• Nm(tk) is the number of routine maintenance performed before tk;
• Np(tk) (respectively Nc(tk)) is the number of preventive (respectively cor-

rective) replacement performed before tk;
• Du(tk) is the time that the system passed in failed state over (0, tk) knowing

the system is considered as failed as soon as the system deterioration level
exceeds its critical level L.

By using classical renewal arguments [31], this maintenance criterion can be
expressed on a renewal cycle S defined between two consecutive replacements
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because the system is considered as good as new after a replacement. Then,
the expression of the long-run average maintenance cost per unit of time is :

C∞(Ξ; θ) = lim
tk→∞

C(tk)

tk
=

E(C(S))

E(S)

=
cixE(Nix(S)) + cizE(Niz(S)) + cp + cmE(Nm(S)) + cuE(Du(S))

E(S)

+
(cc − cp)E(Nc(S))

E(S)
(7)

The different expectations in Equation (7) can be evaluated by a function of
the reliability of the maintained system at steady-state, Rm(tk). The difference
between R(tk) (the reliability of the unmaintained system) and Rm(tk) results
in the possibility of preventive replacement after inspection and thus reduces
the possible states from which failure can occur. In order to determine Rm(tk)
for all tk ∈ (0, S), two cases are identified:

• Case 1: no inspection on the system has been made before tk (tk < τ). The
probability density function for the system to be in a good state is only a
function of the observed deterioration level x ∈ (0, L) at time tk and the
consecutive shocks in (0, tk). Hence for tk < τ , we have:

Rm(tk) =
∫ L

0
f

(k)
λ (x)e−axdx (8)

• Case 2: at least one maintenance action has been made at tk (tk ≥ τ).
The probability density function for the system to have been never replaced
is a function of the observed deterioration level x ∈ (0, ξ) during the last
inspection at time ([tk/τ ].τ), (where [.] is the integer part function), the
deterioration level reached since the last inspection y ∈ (x, L) and the con-
secutive shocks in (0, tk). Hence for tk ≥ τ , we have:

Rm(tk) =
∫ ξ

0

∫ L

x
f

(k−[k/τ ].τ)
λ (y − x)f

([k/τ ].τ)
λ (x)e−a(y+x(k−[k/τ ].τ))dydx (9)

The expected length of a regenerative cycle E(S) can be expressed by the four
following exclusive scenarios:

• Scenario 1: A failure occurs between (nτ −∆t; nτ)n∈N (see Figure 5) and is
detected during an X-inspection at time nτ , the system is replaced at this
time.

• Scenario 2: A failure occurs between two inspections at time ti ∈ ((n −
1)τ ; nτ −∆t)n∈N (see Figure 5) and is not detected by the control chart but
only during the following X-inspection at nτ .

• Scenario 3: A failure occurs between two inspections at time ti ∈ ((n −
1)τ ; nτ − ∆t)n∈N (see Figure 5) and is detected by the control chart (a
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Z-inspection) before the next X-inspection.
• Scenario 4: A cycle ends by a preventive replacement during an X-inspection.

Hence we have:

E(S) =
∞∑
i=0

[1{i>0}iτ(Rm(iτ − 1) − Rm(iτ))︸ ︷︷ ︸
Scenario 1

+
(i+1)τ−1∑
j=iτ+1

iτ(Rm(j − 1) − Rm(j))
(i+1)τ−1∏

k=j

P(Yk < UCL|fail.)︸ ︷︷ ︸
Scenario 2

+
(i+1)τ−1∑
j=iτ+1

jP(Yj > UCL|fail.)(Rm(j − 1) − Rm(j))︸ ︷︷ ︸
Scenario 3

]

+ 1{j>iτ+1}

j−1∑
k=iτ+1

j(Rm(k − 1) − Rm(k))
j−1∏
w=k

P(Yw < UCL|fail.)︸ ︷︷ ︸
Scenario 3

+ 1{i>0}iτ

(∫ ξ

0
f

((i−1)τ)
λ (x)dx −

∫ ξ

0
f

(iτ)
λ (x)dx

)
]︸ ︷︷ ︸

Scenario 4

(10)

The computations of the other quantities are obtained similarly and are
presented in appendix.

4 Performance evaluation of the maintenance policy

This section is devoted to illustrate the benefits of the proposed maintenance
policy and compare its performance to classical policies. Numerical experi-
ments are first proposed to highlight the convexity of the cost function and
to analyze the influence of each maintenance decision parameter on the cri-
terion. The economical performance of the proposed policy is illustrated by
a comparison to classical approaches. Then, numerical studies are developed
to illustrate the robustness of the policy when there are uncertainties on the
system characteristics. All the numerical results are provided here by the use
of R (www.r-project.org) software, specific programs are developed to numer-
ically evaluate each expectation in equation (7) and the classical numerical
gradient procedure provided by the R software is used.
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4.1 Influence of the maintenance parameters

To highlight the impact of the four decision parameters (τ, ξ, UCL, δ) and
the benefit of the combination of SPC and CBM, the performance of the
maintenance policy is discussed when the decision parameters values change
for a given set of maintenance data. This set of maintenance data is here a set
of generic values which are arbitrarily fixed: α = 5, a = 0.05, b = 0.025, FA =
0.96, L = 2, m = 10, µ = 0.22, σ = 1, λ = 10.5, cc = 100, cp = 30, cix = 2, ciz =
0.5, cu = 25, cm = 4. The cost curves presented in Figure 6 are obtained when
two of the four maintenance decision parameters change and the two other
parameters are fixed to their optimal value.

4.1.1 Influence of τ

The influence of τ is illustrated in Figures 6(b), 6(d) and 6(e). An inspection
allows for prevention and detection of a failure. When the inspection interval
is too long, the main decision rule is restricted to the corrective replacement
detected by the control chart. This information is illustrated in the flatness
of the curve presented in Figure 6(e), the valley-shape of the curve in Figure
6(d) and in the increase of the cost value when UCL increases in Figure 6(b).
In the last case, the detection of a failure is thus delayed because of the lack
of information on the system. When the inspection interval is small, a lot of
information is available on the system with brief unavailability periods due to
a failure. A monitoring policy is not relevant in this case (see the flatness of
the curve when τ is small in Figure 6(b)).

4.1.2 Influence of ξ

The influence of ξ is illustrated in Figures 6(a), 6(e) and 6(f). The preventive
replacement threshold allows to prevent failure in case of sufficient informa-
tion on the system. If this information is limited, the value of ξ has no more
influence on the criterion (see Figure 6(e) e.g. when τ > 6). When the fre-
quency of the inspection is very high, the shape of the curve in Figure 6(e)
illustrates the excessive cost of a too early preventive replacement. Moreover,
the robustness of the optimal threshold value respectively with the control
chart policy and the routine maintenance action period is illustrated by the
valley-shape curves in Figure 6(a) respectively 6(f).

4.1.3 Influence of UCL

The influence of UCL is illustrated in Figures 6(a), 6(b) and 6(c). As men-
tioned previously in section 4.1.1, the control chart allows to detect the failures.
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This conclusion is clearly illustrated in Figure 6(b) for high values in τ and
UCL. Another aspect of the control chart illustrated in the decrease in the
first part (UCL < 10) of the curve in Figure 6(b) when τ is very high (τ = 10)
is the balance with the detection of a failure and false alarms. The two other
curves do not provide any relevant information on the impact of UCL because,
finally, a high level of information on the system state is available due to a
relative low optimal value of the inspection interval τ ∗ = 25.

4.1.4 Influence of δ

The influence of δ is illustrated in Figures 6(c), 6(d) and 6(f). The routine
maintenance action allows to reduce the probability of failure due to a shock,
thus it influences directly the reliability of the system. This information is
illustrated in Figures 6(c), 6(d) and 6(f), whatever the value of the other
parameters, the optimized value of δ is always the same. So, later in this
paper, the value of this parameter will be fixed to this optimal value, δ∗ = 2.

4.2 Influence of the unit maintenance costs

The global maintenance cost gathers inspection, preventive replacement, cor-
rective replacement, routine maintenance and unavailability costs, see Equa-
tion (7). In this section, the consequences of the variations of those costs on
the optimal maintenance policy parameters are investigated. Optimal main-
tenance parameters have been computed for several unit costs configurations.
An example of the evolution of the optimal preventive threshold, the optimal
upper control limit and the optimal inspection period as a function of the cost
of the inspection on X is given in Figure 7. A low cost of the inspection on
X causes a low inspection period (τ = 1 for cix = 1). Hence as long as no
replacement is triggered, inspections are scheduled as frequently as possible.
The proposed policy is closed to a systematic inspection/replacement one (cf.
Section 3.4.2).
The value of the inspection period τ increases with cix, but in order to bal-
ance the lost due to the increasing value of τ , ξ and UCL decrease. When τ
becomes really high, the upper limit control allows for detection of a failure
between two X-inspections and thus, this proposed policy is closed to a cor-
rective replacement one: only a corrective replacement can be implemented as
soon as a failure is detected by the monitoring of the stress covariate Yk (cf.
Section 3.4.2).
Other numerical experiments have revealed the influence of the other mainte-
nance costs. The inspection period τ and the preventive threshold ξ increase
with cp, whereas UCL decreases. A corrective replacement has to be preferred
to a costly preventive replacement provided that the unavailability time is

15



weakest as possible thanks to the value of the upper limit control. The upper
control limit increases with cc and ciz so, in both of this cases the proposed pol-
icy tends to an inspection/replacement policy. The three maintenance param-
eters decrease with cu and the policy tends again to an inspection/replacement
policy.
In a general way, it is noteworthy that an empirical choice of the mainte-
nance parameters as an exclusive function of the unit costs is quite difficult to
obtain. The separation of their influence remains possible only with some par-
ticular configurations. The last point emphasizes the need for an optimization
procedure.

4.3 Comparison with classical policies

The economical performance of the proposed policy (hereafter denoted Policy
0) is illustrated by a comparison to classical approaches. The following three
classical policies are considered.

• Policy 1 – periodic inspection/replacement. The deterioration level of the
system is periodically inspected with a periodicity τ and the system is pre-
ventively replaced if its deterioration is found to be greater than ξ. In case of
failure, the system is correctively replaced as soon as the failure is detected
by the inspection on X.

• Policy 2 – control chart. Only a corrective replacement (cost cc) could be
implemented as soon as a failure is detected when the stress covariate Yk

becomes greater than UCL.
• Policy 3 – block replacement policy. No inspection is performed. The system

is replaced every time T . The replacement time has to be optimized to
balance the system unavailability and the maintained system lifetime.

4.3.1 Performance of the proposed maintenance policy when system charac-
teristics vary

The economic performance of each policy is evaluated when the system char-
acteristics vary. All the results presented in this study are obtained for the
optimized values of the decision parameters, only the maintenance action pe-
riod δ is fixed (cf. results Section 3.1). Let denote (τ0, ξ0, UCL0) (respectively
(τ1, ξ1), UCL2 and T3) the optimized decision parameters for Policy 0 (respec-
tively Policy 1, 2 and 3).
The curves in Figure 8(a) are the respective representation of the optimized
cost criterion calculated for the different policies. They are obtained when the
scale parameter varies for 0 to 0.09. All the other system characteristics are
fixed. From the analysis of the curves, we can conclude that:
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• Policy 0 is always the policy which minimizes the cost criterion.
• When a tends to 0, Policy 0 tends to Policy 1. The gap between Policy 0

and 1 when a = 0 is due to UCL which permits to detect failure between
the inspections on X.

• When a increases Policy 0 tends to Policy 2. If the scale parameter would
continue to increase, Policy 0 would tend to Policy 2. The probability of
failure due to a shock becomes so big that only corrective replacements
should be performed when a failure is detected by the drift in Yk.

The curves in Figure 8(b) represent respectively the optimized cost criterion
calculated for the different policies when the deterioration speed varies from
1 to 10. For a low deterioration speed, the probability of failure is mainly due
to an excessive deterioration level, and the conditional maintenance policy
used for Xk allows to prevent failure. So Policy 0 tends to Policy 1 for a low
deterioration speed. When the deterioration speed increases, the probability
of failure due to a shock increases to, and Policy 0 tends to Policy 2.
The results are not presented here, but when the sensitivity to stress param-
eter and acceleration factor vary, Policy 1 is still the policy which minimizes
the cost criterion and tends to one of the other policy in some extreme con-
figurations.

4.3.2 Performance of the proposed maintenance policy when maintenance
costs vary

The economic performance of each policy is evaluated when the unit main-
tenance cost vary. The curves in Figure 9 are the respective representation
of the optimized cost criterion calculated for the different policies. They are
obtained when the cost of the inspection on X varies for 0 to 12. All the other
costs are fixed. Policy 0 is again the policy which minimizes the cost criterion.
When the inspection cost cix tends to 0 the inspection period decreases and
tends to 1. The failure is only detected during an inspection on X, thus Policy
0 tends to Policy 1. When the inspection cost cix increases, Policy 0 tends
to Policy 2. In order to reduce the influence of the increase in the inspection
cost, the optimal inspection period increases whereas, in the same time, the
optimal preventive threshold decreases and the optimal upper limit control
decreases to reduce the unavailability of a failed system. For a high cix, the
inspection period should be so long that only corrective replacements should
be performed when a failure is detected by the drift in Yk.
The same analysis has been made when the other maintenance costs vary
and the results are the same: the proposed policy is always the policy which
minimizes the cost criterion or in particular configuration the proposed policy
tends to a classical policy.

The observations made in this section show the adaptability of the proposed
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policy to very different system characteristics. The proposed maintenance pol-
icy is demonstrated to be more general than the three others which can be,
however, emulated by the proposed structure and can be considered as “limit”
cases. As a result, the proposed policy shows all its interest in non-extreme
configurations, i.e. when the behavior of the system is less predictable and
when none of the unitary costs is negligible: in these cases, it is necessary to
combine the condition-based maintenance policy and the statistical process
control.

4.4 Sensitivity analysis

Collecting data in practical situation can be quite difficult in respect with
the lack of data and the measurement variability. Hence, the quality of the
different estimations is directly influenced by the data collection. The objective
of this section is to analyze the robustness of the proposed maintenance policy
when the estimations of the system characteristics are biased.

4.4.1 Sensitivity analysis when the failure threshold (L) varies

In practical application, it is not a simple task to identify with precision the
value of the failure threshold, some errors of measurement or estimation can
be made.
Figure 10 represents the influence of the error made on the failure threshold.
Figure 10(a) proposes to compare the average cost obtained with the opti-
mized maintenance policy from the value L = 2 while an uncertainty on this
parameter has been made (the full line) and the average optimized cost that
we would have obtained if any uncertainty had been made (the dotted lines).
Figure 10(b) illustrates the relative loss, expressed as a percentage, to this
uncertainty. The proposed maintenance policy seems to be sufficiently robust
with the uncertainty on the parameter L: less than 0.65% of relative loss is
obtained in the worst case for an uncertainty of −10% on the parameter L.

4.4.2 Sensitivity analysis of other system characteristics with the “One-Factor-
At-A-Time” method

The same studies as previously for the failure threshold have been made for the
other system characteristics: the deterioration rate (α), the failure acceleration
factor due to stress (FA), the scale parameter (a), the sensitivity to stress (b),
the stress threshold (λ) , the nominal level of the stress (m), the standard
deviation of the stress (σ) and the drift of the stress (µ). In all the cases,
when an uncertainty is made on one parameter, we obtained less than 0.45% of
relative loss in the worst case. By using the “One-Factor-At-A-Time” method,
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Table 1
Impact of the error made on the system characteristics vector on the maintenance
cost

Error made on the system characteristics vector −10% 0 +10%

Cost with uncertainties 9.814 12.253 15.050

Optimal cost 9.729 12.253 14.885

Relative lost compared to the optimal cost 0.866% 0 1.096%

the robustness of the model is highlighted when only one factor at a time varies
for the given system characteristics vector (a = 0.05, b = 0.025, FA = 0.96, α =
5, m = 10, µ = 0.22, σ = 1, λ = 10.5, L = 2).

4.4.3 Sensitivity analysis of the system characteristics vector

Previously, the “One-Factor-At-A-Time” method has been used, when one pa-
rameter varies, others remain constant. But in a practical case, the parameters
vary simultaneously and the effect of each input on the output is not neces-
sarily linear. In order to move away from the hypothesis of the linearity and
to evaluate the effect an uncertainty of the system characteristics vector, the
worst cases are considered, i.e. each parameter is set to its value correspond-
ing to a relative error of −10% or +10%. The results presented in Table 1 are
obtained by using a Monte Carlo approach. Less than 1.1% of relative loss is
obtained in the worst case.
Finally, given the results, the model seems to be robust to uncertainties made
on the estimation of the system characteristics vector.

5 Conclusion

The main interests of this work are the two following points. Firstly, the con-
struction of a failure model for continuously deteriorating systems subject to
environmental influence which combines a degradation model well controlled,
known and a model by shock for which uncertainties on the failure mechanism
can be integrated. Secondly, the construction and the evaluation of mainte-
nance policies for this model is proposed. We provide a simple and relevant
maintenance policy which takes advantage of all the information available for
the system state description. The combination of SPC and CBM provide an
accurate decision-making tool for a system with several failure mechanisms.
The associated stochastic model of the maintenance cost has been developed
in order to assess the policy performance. The development of the cost model
has been supported by the evaluation of the reliability of the maintained sys-
tem. Numerical experiments have demonstrated the good performance of the
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proposed maintenance structure, namely its adaptability to different system
characteristics, its lower cost when compared to classical maintenance policies
and its robustness when system characteristics are estimated with uncertainty.
Even if the proposed structure for maintenance decision has shown interest-
ing performance when compared with classical maintenance policies, a lot
of research work remains to be done. It could be interesting to relax some
assumptions in order to consider more complicated situations, such as depen-
dencies between the deterioration process and the stress covariate. Moreover,
in general the system is not subject to a single stress phenomenon, but to
several stress sources, so, it could be interesting to integrate several stresses
in our model. Furthermore actually the stress is modeled by a discrete process
but it could be interesting to model it with a continuous-time process.

A Appendix

A.1 Evaluation of the expected number of inspections

• Niz(S) is the number of inspections of Ztk . The expected number of in-
spections of Ztk is given by the expected number of false alarms and the
expected number of true alarms.

E(Niz(S)) =
∞∑
i=0

[
(i+1)τ−1∑
j=iτ+1

[P(Yj > UCL|nofailure)Rm(j)

︸ ︷︷ ︸
false alarms

+ P(Yj > UCL|fail.)(Rm(j − 1) − Rm(j))
iτ−1∏
w=j

P(Yw < UCL|failure)

︸ ︷︷ ︸
true alarms

]]

(A.1)

• E(Nix(S)) is the expected number of inspections of Xt before S, it is given
by:

E(Nix(S)) =
∞∑
i=0

[
1{i>0}Rm(i − 1)

+
iτ+1∑

j=(i−1)τ+1

(Rm(j − 1) − Rm(j)) ×
iτ−1∏
k=j

P(Yk < UCL|failure)


(A.2)
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A.2 Evaluation of the expected number of maintenance actions

• E(Nm(S)) the expected number of routine maintenance

E(Nm(S)) =
∞∑
i=1

[
1{i=δ.[ i

δ ]}(Rm(i − 1)

+
iτ+1∑

j=(i−1)τ+1

(Rm(j − 1) − Rm(j)) ×
iτ−1∏
k=j

P(Yk < UCL|failure))


(A.3)

• E(Nc(S)) is the expected number of a corrective replacements, it is given
by:

E(Nc(S)) =
∞∑
i=0

[1{i>0}(Rm(iτ − 1) − Rm(iτ))

+
(iτ−1)∑

j=(i−1)τ+1

(Rm(j − 1) − Rm(j)) ×
iτ−1∏
k=j

P(Yk < UCL|failure)

+
(i+1)τ−1∑
j=iτ+1

P(Yj > UCL|failure) ∗ [(Rm(j − 1) − Rm(j))

+1{j>iτ+1}

j−1∑
k=iτ+1

(Rm(k − 1) − Rm(k)) ×
j−1∏
w=k

P(Yw < UCL|failure)]]

(A.4)

A.3 Evaluation of the expected cumulative unavailability duration

• E(Du(S), the expected value of the cumulative unavailability duration be-
fore S is given by:

E(Du(S)) =
∞∑
i=0

(i+1)τ−1∑
j=iτ+1

(Rm(j − 1) − Rm(j))
(i+1)τ−1∏

k=j

P(Yk < UCL|failure)


(A.5)
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(b) Influence of the deterioration speed

Fig. 8. Influence of the system characteristics
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Fig. 9. Influence of the system characteristics: cost variation when cix increases

31



−0.10 −0.05 0.00 0.05 0.10

12
.0

12
.2

12
.4

12
.6

12
.8

error made on the parameter L

C
os

t

Real cost obtained
Optimal cost
L=2

(a) Comparison of the average cost obtained
and the optimized cost

−0.10 −0.05 0.00 0.05 0.10

−
0.

6
−

0.
5

−
0.

4
−

0.
3

−
0.

2
−

0.
1

0.
0

error made on the parameter L

lo
ss

 c
om

pa
re

d 
to

 th
e 

op
tim

al
 c

os
t

(b) Loss compared to the optimal cost

Fig. 10. Influence of the error made on the failure threshold:
cc = 100; cp = 30; cix = 2; ciz = 0.5; cu = 25; cm = 4;α = 5; a = 0.05;FA = 0.96; b = 0.025
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