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The semi-classical spectrum

and

the Birkhoff normal form

Yves Colin de Verdière∗

February 13, 2009

Introduction

The purposes of this note are

• To propose a direct and “elementary” proof of the main result of [3], namely
that the semi-classical spectrum near a global minimum of the classical
Hamiltonian determines the whole semi-classical Birkhoff normal form (de-
noted the BNF) in the non-resonant case. I believe however that the method
used in [3] (trace formulas) are more general and can be applied to any non
degenerate non resonant critical point provided that the corresponding crit-
ical value is “simple”.

• To present in the completely resonant case a similar problem which is NOT
what is done in [3]: there, only the non-resonant part of the BNF is proved
to be determined from the semi-classical spectrum!

1 A direct proof of the main result of [3]

1.1 The Theorem

Let us give a semi-classical Hamiltonian Ĥ on R
d (or even on a smooth connected

manifold of dimension d) which is the Weyl quantization of the symbol H ≡
H0 + ~H1 + ~

2H2 + · · · .
Let us assume that H0 has a global non degenerate non resonant minimum

E0 at the point z0: it means that after some affine symplectic change of variables
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H0 = E0 + 1
2

∑d
j=1 ωj(x

2
j + ξ2

j ) + · · · where the ωj ’s are > 0 and independent over
the rationals. We can assume that 0 < ω1 < ω2 < · · · < ωd. We will denote
E1 = H1(z0).

We assume also that
lim inf
(x,ξ)→∞

H(x, ξ) > E0 .

Let us denote by λ1(~) < λ2(~) ≤ · · · ≤ λN(~) ≤ · · · the discrete spectrum of
Ĥ . This set can be finite for a fixed value of ~, but, if N is given, λN(~) exists
for ~ small enough.

Definition 1.1 The semi-classical spectrum of Ĥ is the set of all λN(~) (N =
1, · · · ) modulo O(~∞). NO uniformity with respect to N in the O(~∞) is
required.

Definition 1.2 The semi-classical Birkhoff normal form is the following formal
series expansion in Ω = (Ω1, · · · ,Ωd) and ~:

B̂ ≡ E0 + ~E1 +
d

∑

j=1

ωjΩj +
∑

l+|α|≥2

cl,α~
lΩα

with Ωj = 1
2

(

−~
2∂2

j + x2
j

)

. The series B̂ is uniquely defined as being the Weyl
quantization of some symbol B equivalent to the Taylor expansion at z0 of H by
some automorphism of the semi-classical Weyl algebra (see [2]).

The main result is the

Theorem 1.1 ([3]) Assume as before that the ωj’s are linearly independent over
the rationals. Then the semi-classical spectrum and the semi-classical Birkhoff
normal form determine each other.

The main difficulty is that the spectrum of B̂ is naturally labelled by d−uples
k ∈ Z

d
+ while the semi-classical spectrum is labelled by N ∈ N. We will denote

by ψ the bijection ψ : N → k of N onto Z
d
+ := {k = (k1, · · · , kd)|∀j, kj ∈ Z, kj ≥

0} given by ordering the numbers 〈ω|k〉 in increasing order: they are pair-wise
distincts because of the non-resonant assumption.

2 From the semi-classical Birkhoff normal form

to the semi-classical spectrum

We have the following result
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Theorem 2.1 The semi-classical spectrum is given by the following power series
in ~:

λN(~) ≡ E0 + ~

(

E1 +
1

2
〈ω|ψ(N) +

1

2
〉

)

+

∞
∑

j=2

~
jPj(ψ(N)) (1)

where the Pj’s are polynomials of degree j given by

Pj(Z) =
∑

l+|α|=j

cl,α

(

Z +
1

2

)α

.

This result is an immediate consequence of results proved by B. Simon [5] and
B. Helffer-J. Sjöstrand [4] concerning the first terms, and by J. Sjöstrand in [6]
(Theorem 0.1) where he proved a much stronger result.

3 From the semi-classical spectrum to the ωj’s

3.1 Determining the ωj’s

Because E0 = lim~→0 λ1(~), we can substract E0 and assume E0 = 0.
By looking at the limits, as ~ → 0, µN := limλN(~)/~ (N fixed), we know

the set of all E1 +
∑d

j=1 ωj(kj + 1
2
), (k1, · · · , kd) ∈ Z

d
+.

Let us give 2 proofs that the µN ’s determine the ωj’s.

1. Using the partition function: from the µN ’s, we know the meromorphic
function

Z(z) :=
∑

e−zµN .

Z(z) := e−z(E1+ 1

2

Pd
j=1 ωj)

∑

k∈Zd
+

e−z〈ω|k〉 ,

We have
Z(z) = e−z(E1+

1

2

Pd
j=1 ωj)Πd

j=1(1 − e−zωj)−1 ,

The poles of Z are P := ∪j=1,··· ,d{
2πiZ
ωj

}. The set of ωj is hence determined

up to a permutation. We fix now ω = (ω1, · · · , ωd) with ω1 < ω2 < · · · .

From the knowledge of the ωj’s, we get the bijection ψ.

2. A more elementary proof: substract µ1 = E1 + 1
2

∑

ωj from the whole
sequence and denote νN = µN − µ1. Then ω1 = ν2. Then remove the
multiples of ω1. The first remaining term is ω2. Remove all integer linear
combinations of ω1 and ω2, the first remaining term is ω3, · · ·

3



3.2 Determining the cl,α’s

Let us first fix N : from Equation (1) and the knowledge of λN mod O(~∞) we
know the Pj(ψ(N))’s for all j’s.

Doing that for all N ’s and using ψ determine the restriction of the Pj’s to Z
d
+

and hence the Pj’s.

4 A natural question in the resonant case

4.1 The context

For simplicity, we will consider the completely resonant case ω1 = · · · = ωd = 1
and work with the Weyl symbols. Let us denote by Σ = 1

2

∑

(x2
j + ξ2

j ).
The (Weyl symbol of the) QBNF is then of the form

B ≡ Σ + ~P0,1 +
∞

∑

n=2

∑

j+l=n

~
jP2l,j

where P2l,j is an homogeneous polynomial of degree 2l in (x, ξ), Poisson commut-
ing with Σ: {Σ, P2l,j} = 01.

For example, the first non trivial terms are:

• for n = 2: P4,0 + ~P2,1 + ~
2P0,2

• for n = 3: P6,0 + ~P4,1 + ~
2P2,2 + ~

3P0,3.

The semi-classical spectrum splits into clusters CN of N +1 eigenvalues in an
interval of size O(~2) around each ~(N + 1

2
d+ P0,1) with N = 0, 1, · · · .

The whole series B is however NOT unique, contrary to the non-resonant case,
but defined up to automorphism of the semi-classical Weyl algebra commuting
with Σ.

Let G be the group of such automorphisms (see [2]). The natural question is
roughly:

Is the QBNF determined modulo G from the semi-classical spec-
trum, i.e. from all the clusters?

4.2 The group G

The linear part of G is the group M of all A’s in the symplectic group which
commute with Ĥ2, i.e. the unitary group U(d).

We have an exact sequence of groups:

0 → K → G→M → 0 .

1 The Moyal bracket of any A with H2 reduces to the Poisson bracket
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Let us describe K (the “pseudo-differential” part):
Let S = S3 + · · · in the Weyl algebra (the formal power series in (~, x, ξ) with

the Moyal product and the usual grading degree(~jxαξβ) = 2j + |α| + |β|)

gS(H) = eiS/~ ⋆ H ⋆ e−iS/~

preserves Σ iff {Sn,Σ} = 0. This implies that n is even and Sn is a polynomial
in zjzk (zj = xj + iξj). Then K is the group of all gS’s with {S,Σ} = 0.
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