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The semi-classical spectrum and the Birkhoff normal form

Introduction

The purposes of this note are • To propose a direct and "elementary" proof of the main result of [START_REF] Victor Guillemin | Bottom of the well" semi-classical wave trace invariants[END_REF], namely that the semi-classical spectrum near a global minimum of the classical Hamiltonian determines the whole semi-classical Birkhoff normal form (denoted the BNF) in the non-resonant case. I believe however that the method used in [START_REF] Victor Guillemin | Bottom of the well" semi-classical wave trace invariants[END_REF] (trace formulas) are more general and can be applied to any non degenerate non resonant critical point provided that the corresponding critical value is "simple".

• To present in the completely resonant case a similar problem which is NOT what is done in [START_REF] Victor Guillemin | Bottom of the well" semi-classical wave trace invariants[END_REF]: there, only the non-resonant part of the BNF is proved to be determined from the semi-classical spectrum!

1 A direct proof of the main result of [START_REF] Victor Guillemin | Bottom of the well" semi-classical wave trace invariants[END_REF] 1

.1 The Theorem

Let us give a semi-classical Hamiltonian Ĥ on R d (or even on a smooth connected manifold of dimension d) which is the Weyl quantization of the symbol H ≡

H 0 + H 1 + 2 H 2 + • • • .
Let us assume that H 0 has a global non degenerate non resonant minimum E 0 at the point z 0 : it means that after some affine symplectic change of variables * Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin d'Hères Cedex (France); yves.colin-de-verdiere@ujf-grenoble.fr 1

H 0 = E 0 + 1 2 d j=1 ω j (x 2 j + ξ 2 j ) + • • •
where the ω j 's are > 0 and independent over the rationals. We can assume that 0

< ω 1 < ω 2 < • • • < ω d . We will denote E 1 = H 1 (z 0 ).
We assume also that lim inf

(x,ξ)→∞ H(x, ξ) > E 0 .
Let us denote by λ 1 ( )

< λ 2 ( ) ≤ • • • ≤ λ N ( ) ≤ • • • the discrete spectrum of Ĥ.
This set can be finite for a fixed value of , but, if N is given, λ N ( ) exists for small enough.

Definition 1.1 The semi-classical spectrum of Ĥ is the set of all λ N ( ) (N = 1, • • • ) modulo O( ∞ ). NO uniformity with respect to N in the O( ∞ ) is required. Definition 1.2 The semi-classical Birkhoff normal form is the following formal series expansion in Ω = (Ω 1 , • • • , Ω d ) and : B ≡ E 0 + E 1 + d j=1 ω j Ω j + l+|α|≥2 c l,α l Ω α with Ω j = 1 2 -2 ∂ 2 j + x 2 j .
The series B is uniquely defined as being the Weyl quantization of some symbol B equivalent to the Taylor expansion at z 0 of H by some automorphism of the semi-classical Weyl algebra (see [START_REF] Verdière | An extension of the Duistermaat-Singer Theorem to the semi-classical Weyl algebra[END_REF]).

The main result is the Theorem 1.1 ( [START_REF] Victor Guillemin | Bottom of the well" semi-classical wave trace invariants[END_REF]) Assume as before that the ω j 's are linearly independent over the rationals. Then the semi-classical spectrum and the semi-classical Birkhoff normal form determine each other.

The main difficulty is that the spectrum of B is naturally labelled by d-uples k ∈ Z d + while the semi-classical spectrum is labelled by N ∈ N. We will denote by ψ the bijection ψ :

N → k of N onto Z d + := {k = (k 1 , • • • , k d )|∀j, k j ∈ Z, k j ≥ 0}
given by ordering the numbers ω|k in increasing order: they are pair-wise distincts because of the non-resonant assumption.

2 From the semi-classical Birkhoff normal form to the semi-classical spectrum

We have the following result Theorem 2.1 The semi-classical spectrum is given by the following power series in :

λ N ( ) ≡ E 0 + E 1 + 1 2 ω|ψ(N) + 1 2 + ∞ j=2 j P j (ψ(N)) (1) 
where the P j 's are polynomials of degree j given by

P j (Z) = l+|α|=j c l,α Z + 1 2 α .
This result is an immediate consequence of results proved by B. Simon [START_REF] Simon | Semi-classical analysis of low lying eigenvalues I: Non degenerate minima[END_REF] and B. Helffer-J. Sjöstrand [START_REF] Helffer | Puis multiples en semi-classique I[END_REF] concerning the first terms, and by J. Sjöstrand in [START_REF] Sjöstrand | Semi-excited states in nondegenerate potential wells[END_REF] (Theorem 0.1) where he proved a much stronger result.

3 From the semi-classical spectrum to the ω j 's 3.1 Determining the ω j 's Because E 0 = lim →0 λ 1 ( ), we can substract E 0 and assume E 0 = 0.

By looking at the limits, as → 0, µ N := lim λ N ( )/ (N fixed), we know the set of all

E 1 + d j=1 ω j (k j + 1 2 ), (k 1 , • • • , k d ) ∈ Z d + .
Let us give 2 proofs that the µ N 's determine the ω j 's. We have

Z(z) = e -z(E 1 + 1 2 P d j=1 ω j ) Π d j=1 (1 -e -zω j ) -1 ,
The poles of

Z are P := ∪ j=1,••• ,d { 2πiZ ω j }. The set of ω j is hence determined up to a permutation. We fix now ω = (ω 1 , • • • , ω d ) with ω 1 < ω 2 < • • • .
From the knowledge of the ω j 's, we get the bijection ψ.

2.

A more elementary proof: substract µ 1 = E 1 + 1 2 ω j from the whole sequence and denote ν N = µ N -µ 1 . Then ω 1 = ν 2 . Then remove the multiples of ω 1 . The first remaining term is ω 2 . Remove all integer linear combinations of ω 1 and ω 2 , the first remaining term is ω 3 , • • •

1 .

 1 Using the partition function: from the µ N 's, we know the meromorphic function Z(z) := e -zµ N . Z(z) := e -z(E 1 + 1 2 P d j=1 ω j ) k∈Z d + e -z ω|k ,

Determining the c l,α 's

Let us first fix N: from Equation (1) and the knowledge of λ N mod O( ∞ ) we know the P j (ψ(N))'s for all j's.

Doing that for all N's and using ψ determine the restriction of the P j 's to Z d + and hence the P j 's.

4 A natural question in the resonant case

The context

For simplicity, we will consider the completely resonant case

and work with the Weyl symbols. Let us denote by Σ = 1 2 (x 2 j + ξ 2 j ). The (Weyl symbol of the) QBNF is then of the form

where P 2l,j is an homogeneous polynomial of degree 2l in (x, ξ), Poisson commuting with Σ: {Σ, P 2l,j } = 0 1 .

For example, the first non trivial terms are:

• for n = 2: P 4,0 + P 2,1 + 2 P 0,2

• for n = 3: P 6,0 + P 4,1 + 2 P 2,2 + 3 P 0,3 .

The semi-classical spectrum splits into clusters C N of N + 1 eigenvalues in an interval of size O( 2 ) around each (N + 1 2 d + P 0,1 ) with N = 0, 1, • • • . The whole series B is however NOT unique, contrary to the non-resonant case, but defined up to automorphism of the semi-classical Weyl algebra commuting with Σ.

Let G be the group of such automorphisms (see [START_REF] Verdière | An extension of the Duistermaat-Singer Theorem to the semi-classical Weyl algebra[END_REF]). The natural question is roughly:

Is the QBNF determined modulo G from the semi-classical spectrum, i.e. from all the clusters?

The group G

The linear part of G is the group M of all A's in the symplectic group which commute with Ĥ2 , i.e. the unitary group U(d).

We have an exact sequence of groups:

1 The Moyal bracket of any A with H 2 reduces to the Poisson bracket 4

Let us describe K (the "pseudo-differential" part): Let S = S 3 + • • • in the Weyl algebra (the formal power series in ( , x, ξ) with the Moyal product and the usual grading degree( j x α ξ β ) = 2j + |α| + |β|) g S (H) = e iS/ ⋆ H ⋆ e -iS/ preserves Σ iff {S n , Σ} = 0. This implies that n is even and S n is a polynomial in z j z k (z j = x j + iξ j ). Then K is the group of all g S 's with {S, Σ} = 0.