Nonlinear censored regression using synthetic data - Archive ouverte HAL
Article Dans Une Revue Scandinavian Journal of Statistics Année : 2008

Nonlinear censored regression using synthetic data

Résumé

The problem of estimating a nonlinear regression model, when the dependent variable is randomly censored, is considered. The parameter of the model is estimated by least squares using synthetic data. Consistency and asymptotic normality of the least squares estimators are derived. The proofs are based on a novel approach that uses i.i.d. representations of synthetic data through Kaplan-Meier integrals. The asymptotic results are supported by a small simulation study.

Dates et versions

hal-00361261 , version 1 (13-02-2009)

Identifiants

Citer

Michel Delecroix, Olivier Lopez, Valentin Patilea. Nonlinear censored regression using synthetic data. Scandinavian Journal of Statistics, 2008, 35 (2), pp.248-265. ⟨10.1111/j.1467-9469.2007.00591.x⟩. ⟨hal-00361261⟩
209 Consultations
0 Téléchargements

Altmetric

Partager

More