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Likelihood-based inference for max-stable processes

S. A. Padoan∗, M. Ribatet† and S. A. Sisson‡

February 18, 2009

Abstract

The last decade has seen max-stable processes emerge as a common tool
for the statistical modelling of spatial extremes. However, their application
is complicated due to the unavailability of the multivariate density function,
and so likelihood-based methods remain far from providing a complete and
flexible framework for inference. In this article we develop inferentially prac-
tical, likelihood-based methods for fitting max-stable processes derived from a
composite-likelihood approach. The procedure is sufficiently reliable and ver-
satile to permit the simultaneous modelling of joint and marginal parameters
in the spatial context at a moderate computational cost. The utility of this
methodology is examined via simulation, and illustrated by the analysis of U.S.
precipitation extremes.

Keywords: Composite likelihood; Extreme value theory; Max-stable processes;
Pseudo-likelihood, Rainfall; Spatial Extremes.

1 Introduction

A common objective of spatial analysis is to quantify and characterise the behavior
of environmental phenomena such as precipitation levels, windspeed or daily temper-
atures. A number of generic approaches to spatial modelling have been developed
(e.g. Barndorff-Nielsen et al. (1998); Cressie (1993); Ripley (2004)), but these are
not necessarily ideal for handling extremal aspects given their focus on mean process
levels. Analyses of spatial extremes are useful devices for understanding and predict-
ing extreme events such as hurricanes, storms and floods. In light of recent concerns
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over climate change, the use of robust mathematical and statistical methods for such
analyses has grown in importance

While the theory and statistical practice of univariate extremes is well developed,
there is much less guidance for the modelling of spatial extremes. This is problem-
atic as many environmental processes have a natural spatial domain. We consider
a temporal series of componentwise maxima of process measurements recorded at
k = 1, . . . , K locations, within a contiguous region. Observations {yn,k} each denote
the maximum of m samples over n = 1, . . . , N temporal blocks. For example, for
daily observations, m = 366 implies the {yn,k} describe process annual maxima.

The spatial analogue of multivariate extreme value models is the class of max-
stable processes (de Haan, 1984; de Haan and Pickands, 1986; Resnick, 1987). Max-
stable processes have a similar asymptotic motivation to the univariate Generalised
Extreme Value (GEV) (von Mises, 1954; Jenkinson, 1955)), providing a general ap-
proach to modelling process extremes incorporating temporal or spatial dependence.
Statistical methods for max-stable processes and data analysis of practical problems
are discussed by Smith (1990), Coles (1993), Coles and Walshaw (1994) and Coles
and Tawn (1996). Standard likelihood methods for such models are complicated by
the intractability of the multivariate density function in all but the most trivial cases.
This presents an obstacle in the use of max-stable processes for spatial extremes.

There is a lack of a proper inferential framework for the analysis of spatial ex-
tremes (although De Haan and Pereira (2006) describe some non-parametric esti-
mators). In this article we develop flexible and inferentially practical methods for
the fitting of max-stable processes to spatial data based on non-standard, compos-
ite likelihood-based methods Lindsay (1988). An appealing feature of this approach
is that the estimation of GEV marginal parameters can be performed jointly with
the dependence parameters in a unified framework. Accordingly, there is no need
for separate estimation procedures. With highly-structured problems such as max-
stable processes, this approach produces flexible and reliable results with a moderate
computational cost.

The article is organised as follows: Section 2 reviews the theory of max-stable
processes and its relationship to spatial extremes. Our composite likelihood approach
is developed in Section 3 and Section 4 evaluates the method’s performance through
a number of simulation studes. We conclude with an illustration of a real extremal
data analysis of U.S. precipitation levels.

2 Max-stable processes and spatial extremes

2.1 Max-stable processes

Max-stable processes provide a natural generalisation of extremal dependence struc-
tures in continuous spaces. From this, closed-form bivariate distributions can be
derived.
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Definition. Let T be an index set and {Ỹi(t)}t∈T , i = 1, . . . , n be n independent
replications of a continuous stochastic process. Assume that there are sequences of
continuous functions an(t) > 0 and bn(t) ∈ R such that

Y (t) = lim
n→∞

maxni=1 Ỹi(t) − bn(t)

an(t)
, t ∈ T.

If this limit exists, the limit process Y (t) is a max-stable process de Haan (1984).

Two properties follow from the above definition De Haan and Resnick (1977). Firstly,
the one-dimensional marginal distributions belong to the class of generalised extreme
value distributions (GEV), Y ∼ GEV(µ, λ, ξ) with distribution function

F (y;µ, λ, ξ) = exp

[
−
{

1 +
ξ(y − µ)

λ

}−1/ξ

+

]
, −∞ < µ, ξ <∞, λ > 0,

where a+ = max(0; a) and µ, λ and ξ are respectively location, scale and shape param-
eters Fisher and Tippett (1928). Secondly, for any K = 2, 3, . . ., the K-dimensional
marginal distribution belongs to the class of multivariate extreme value distributions.

W.l.o.g. if an(t) = n, bn(t) = 0 ∀t, then the corresponding process, {Z(t)}t∈T ,
has unit Fréchet margins, with distribution function F (z) = exp(−1/z), z > 0. This
process is obtainable as standardisation of {Y (t)}t∈T through

{Z(t)}t∈T ≡
[{

1 +
ξ(t)(Y (t) − µ(t))

λ(t)

}1/ξ(t)

+

]

t∈T

,

where µ(t), ξ(t) and λ(t) > 0 are now continuous functions. The process Z is still a
max-stable process. If Z is also stationary, the process may be expressed through it’s
spectral representation de Haan and Pickands (1986).

In detail, let {Xj, Uj}j≥1 be a Poisson process, Π, on R
n × R+, with counting

measure Π(·) := ΣjI(Xj ,Uj)(·) and intensity measure ν(dx) × u−2du, where I(Xj ,Uj)(A)
is the indicator function of the random number of points falling in a bounded set
A ⊂ R

n × R+ and ν is a positive measure. For a nonnegative measurable (for fixed
t ∈ T ) function f(x−t) such that

∫
Rn
f(x−t)ν(dx) = 1, ∀t ∈ T the stochastic process

Z(t) := max
j=1,2,...

{Ujf(Xj − t)}, t ∈ T, (1)

is a stationary max-stable process de Haan (1984). Smith (1990) reinterprets this
process in terms of environmental episodes such as storm phenomena, in which U , X
and f represent respectively storm magnitude, the center and the shape. Schlather
and Tawn (2003) term this the storm profile model.
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For a finite set of indexes t1, . . . , tK ∈ T and positive thresholds z1, . . . , zK for
K ∈ N, the distribution of the random vector Z(t1), . . . , Z(tK) is de Haan (1984)

Pr{Z(tk) ≤ zk, k = 1, . . . , K} = exp

[
−
∫

Rn

max
1≤k≤K

{
f(x− tk)

zk

}
ν(dx)

]
. (2)

It then follows that the marginal distributions are unit Fréchet:

Pr{Z(t) ≤ z} = exp

(
−z−1

∫

Rn

f(x− t)ν(dx)

)
= exp(−1/z).

Alternative spectral representations of max-stable processes exist (Schlather, 2002).

2.2 Extremal coefficients

Given n independent realisations of a random vector Y ∈ R
d, the joint distribution

of componentwise maxima satisfies (De Haan and Resnick, 1977; Resnick, 1987)

Pr

{
max
k

max
j=1,...,n

Y
(j)
k /n ≤ z

}
= Pr

{
max
j=1,...,n

Y
(j)
1 /n ≤ z

}θ
= exp(−θ/z), z > 0,

for k = 1, 2, . . . , K and common threshold z, where the rightmost term is a Fréchet(θ)
distribution. The parameter 1 ≤ θ ≤ K is the extremal coefficient and it measures
the extremal dependence between the margins, an important practical quantity in
applications Smith (1990). The information in the extremal coefficient reflects the
practical number of independent variables. If K is finite then θ = 1 indicates complete
dependence, whereas θ = K demonstrates full independence.

In the max-stable process framework, from (2), for all z > 0 we have

Pr{Z(tk) ≤ z, k = 1, . . . , K} = exp(−θ/z),

and so

θ =

∫

Rn

max
1≤k≤K

{f(x− tk)} ν(dx).

where θ again represents the effective number of independent variables. Schlather
and Tawn (2003) discuss the extremal coefficient within a max-stable context.

2.3 Spatial models

Suppose now that T ⊆ R
2 and that {Xj}j≥1 are random points in R

2. While for
K > 2, the general K-dimensional distribution function under the max-stable process
representation (1) permits no analytically tractable form, a class of bivariate spatial
models is available when the storm profile model, f , is a bivariate Gaussian density
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and µ is a Lebesgue measure (Smith, 1990; De Haan and Pereira, 2006). In this case,
for locations ti and tj the bivariate distribution function of {Z(0), Z(h)} is

Pr{Z(0) ≤ zi, Z(h) ≤ zj}

= exp

[
− 1

zi
Φ

(
a(h)

2
+

1

a(h)
log

zj
zi

)
− 1

zj
Φ

(
a(h)

2
+

1

a(h)
log

zi
zj

)]
,

(3)

where h = (tj−ti)
⊤, 0 is the origin, Φ is the standard Gaussian distribution function,

a(h) = (hTΣΣΣ−1h)1/2 and ΣΣΣ is the covariance matrix of f , with covariance σ12 and
standard deviations σ1, σ2 > 0. A derivation of (3) is in Appendix A.2. A general
max-stable process with a Gaussian storm profile model, f , is termed a Gaussian
extreme value process Smith (1990), whereas the specific model (3) is the Gaussian
extreme value model Coles (1993).

Second-order partial derivatives of (3) yield the 2-dimensional density function

f(zi, zj) = exp

{
− Φ(w(h))

zi
− Φ(v(h))

zj

}{(
Φ(w(h))

z2
i

+
ϕ(w(h))

a(h)z2
i

− ϕ(v(h))

a(h)zizj

)

(
Φ(v(h))

z2
j

+
ϕ(v(h))

a(h)z2
j

− ϕ(w(h))

a(h)zizj

)
+

(
v(h)ϕ(w(h))

a(h)2z2
i zj

+
w(h)ϕ(v(h))

a(h)2ziz2
j

)}
,

(4)

where ϕ is the standard Gaussian density function, w(h) = a(h)/2 + log(zj/zi)/a(h)
and v(h) = a(h) − w(h). The derivation of (4) is in Appendix A.3.

Observe that a(h) measures the strength of extremal dependence: a(h) → 0
represents complete dependence, and (in the limit) a(h) → ∞ indicates complete
independence. In accordance with spatial models, the extreme dependence between
Z(0) and Z(h) decreases monotonically and continuously with h = ‖tj−ti‖ De Haan
and Pereira (2006), and for fixed h the dependence decreases monotonically as a(h)
increases. Accordingly, characterisation of extremal dependence is determined by the
covariance, ΣΣΣ, which is therefore of interest for inference.

Due to high-dimensional distributional complexity the study of extremal depen-
dence is commonly limited to pairwise components through the extremal coefficients

θ(h) =

∫

R2

max{f(x), f(x− h)}dx, 1 ≤ θ(h) ≤ 2.

The dependence on h is explicit. Specifically for the Gaussian extreme value model,
θ(h) = 2Φ(a(h)/2), following an argument along the lines of Appendix A.2. Alterna-
tive models result by considering e.g. exponential or t storm profile models De Haan
and Pereira (2006), or stationary Gaussian process profile models Schlather (2002).

3 Likelihood-based inference

The analysis of spatial extremes is concerned with the joint modelling of a spatial
process at large numbers of data-recording stations in a fixed region. As discussed
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in Section 2, the lack of closed-form distribution for max-stable processes in greater
than K = 2 dimensions precludes straightforward use of standard maximum like-
lihood methods for this class of models. We now develop inferentially practical,
likelihood-based classes of max-stable processes derived from a composite-likelihood
approximation (Lindsay, 1988; Varin, 2008). The procedure is sufficiently reliable and
versatile to permit the simultaneous and consistent modelling of joint and marginal
parameters in the spatial context at a moderate computational cost.

3.1 Composite likelihoods

For a parametric statistical model F with density function family F = {f(y;ψψψ),y
∈ Y ⊆ R

K , ψψψ ∈ Ψ ⊆ R
d}, and a set of marginal or conditional events {Ik : k ∈ K}

(for some K ⊆ N) subset of some sigma algebra on Y , the composite log-likelihood is
defined by

ℓC(ψψψ;y) =
∑

k∈K

log f(y ∈ Ik;ψψψ),

where log f(y ∈ Ik;ψψψ) is the log-likelihood associated with event Ik. First-order
partial derivatives of ℓC(ψψψ;y) with respect to ψψψ yield the composite score function
DψψψℓC(ψψψ;y), from which maximum composite likelihood estimator of ψψψ, if unique, is

obtained by solving DψψψℓC(ψ̂ψψMCLE;y) = 0. Similarly, second-order partial derivatives
of DψψψℓC(ψψψ;y) yield the Hessian matrix HψψψℓC(ψψψ;y) (Appendix A.1).

The key utility of the composite log-likelihood is it’s ability, under the usual regu-
larity conditions, to provide consistent and unbiased parameter estimates when stan-
dard likelihood estimators are not available. Under appropriate conditions (Lindsay,
1988; Cox and Reid, 2004) the maximum composite likelihood estimator is consistent
and asymptotically distributed as

ψ̂ψψMCLE ∼̇ N(ψψψ, Ĩ(ψψψ)−1) with Ĩ(ψψψ) = H(ψψψ) J(ψψψ)−1 H(ψψψ),

where H(ψψψ) = E{−HψψψℓC(ψψψ;Y)} and J(ψψψ) = V{DψψψℓC(ψψψ;Y)} are analogues of the
expected information matrix and the variance of the score vector. Although the max-
imum composite likelihood estimator can be unbiased, it may not be asymptotically
efficient in that Ĩ(ψψψ)−1, the inverse of the Godambe information matrix Godambe
(1960), may not attain the Cramér–Rao bound Cox and Reid (2004).

3.2 The pairwise setting for spatial extremes

Recall, for the spatial setting we have observations {yn,k}, each denoting the maximum
of m samples over n = 1, . . . , N blocks and k = 1, . . .K locations in a continuous
region. E.g. for daily observations, m = 366 implies the yn,k describe annual maxima.
Accordingly, the K univariate marginals are approximately GEV distributed. Despite
the intractability of the multivariate max-stable process, availability of the bivariate
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form (3) implies a pairwise composite log-likelihood may be constructed as

ℓP(ψψψ;y) =
N∑

n=1

K∑

i=1

K−1∑

j=i+1

log f(yn,i, yn,j;ψψψ), (5)

where each f(yn,i, yn,j;ψψψ) is a bivariate marginal density based on data at locations i
and j, taken over all distinct location pairs.

In order to characterized limiting behavior by a max-stable process (1) we require
unit Fréchet marginal distributions. Accordingly, we consider the bijection (Yi, Yj) =
g(Zi, Zj) with inverse function given by

Zi =

(
1 +

ξi(Yi − µi)

λi

)1/ξi

+

Zj =

(
1 +

ξj(Yj − µj)

λj

)1/ξj

+

(6)

where Zi ≡ Z(ti) and Yj ≡ Y (tj), and for each marginal Y , the constants µ, ξ and
λ > 0 ensure that Z is unit Fréchet distributed. The resulting bivariate density is

fYi,Yj(yi, yj) = fZi,Zj
[
g−1(yi, yj)

]
|J(yi, yj)|,

where fZi,Zj(zi, zj) denotes the density of the Gaussian extreme value model (4), and

|J(yi, yj)| =
1

λiλj

(
1 +

ξi(yi − µi)

λi

)1/ξi−1

+

(
1 +

ξj(yj − µj)

λj

)1/ξj−1

+

.

This change of variable permits the use of GEV marginals (over unit Fréchet) with-
out reforming the problem definition. Hence, the pairwise log-likelihood (5) allows
simultaneous assessment of the tail dependence parameters (3) between pairs of sites
and also the location, scale and shape parameters of the marginal distribution at
each location. The parameters can not be estimated as an analytical solution of the
composite score equation. Nonetheless quasi-Newton numerical maximization rou-
tines (e.g. Broyden, 1967) can be applied in order to obtain maximum likelihood
estimates.

Variances of parameter estimates are provided through inverse of the Godambe
information matrix, with estimates of the matrices H(ψψψ) and J(ψψψ) given by

Ĥ(ψ̂ψψMCLE) = −
N∑

n=1

K∑

i=1

K−1∑

j=i+1

Hψψψ log f(yn,i, yn,j; ψ̂ψψMCLE)

and

Ĵ(ψ̂ψψMCLE) =

N∑

n=1

K∑

i=1

K−1∑

j=i+1

Dψψψ log f(yn,i, yn,j; ψ̂ψψMCLE) Dψψψ log f(yn,i, yn,j; ψ̂ψψMCLE)⊤,

7



each evaluated at the composite maximum likelihood value. In practice the matrix Ĥ
is obtained straightforwardly with the numerical maximization routine employed for
likelihood maximization. An explicit expression for Ĵ is derived in Appendix A.4.

In principle, estimating unique marginal parameters for each location ensures
correct model application by respecting marginal constraints, though computational
issues arise for large numbers of parameters. Alternatively, as is common in the
modelling of univariate extremes, we may describe the GEV parameters through
parsimonious regression models, which may be functions of space, environmental and
other covariates and random effects. Specifically, we may express each parameter as

η(x) ≡ h{f(x)} = Xβββ, (7)

where h is a link function, x = (x1, . . . , xd) is a vector of predictors, X is a N×(d+1)
design matrix, and βββ is a (d+ 1) × 1 vector of unknown parameters.

For further flexibility, a non-parametric approach may provide a useful alternative.
Non-parametric modelling of univariate extreme value responses has been recently
proposed by Chavez-Demoulin and Davison (2005), Yee and Stephenson (2007) and
Padoan and Wand (2008). The work of Kammann and Wand (2003), who developed
a non-parametric spatial regression with Gaussian response, may be extended to the
current spatial extremes setting.

3.3 Model selection

There are two model selection approaches under the composite likelihood framework.
For nested models Varin (2008) the p-dimensional parameter, ψψψ is partitioned as
ψψψ = (ψψψ′, ψψψ′′), where ψψψ′ is q-dimensional, and testing ψψψ′ = ψψψ0 versus a two-sided
hypothesis proceeds via the composite likelihood ratio test statistic

W (ψψψ0) = 2{ℓC(ψ̂ψψ) − ℓC(ψψψ0, ψ̂ψψ
′′
(ψψψ0))}.

Under the null Kent (1982)

W ∼̇
q∑

j=1

νiχ
2
i , (8)

where χ2
i are independent χ2

1 random variables, and ν1 ≥ . . . ≥ νq are the eigenvalues

of (Hψψψ
′ψψψ′

)−1 Ĩψψψ′ψψψ′. Here, Hψψψ
′ψψψ′

and and Ĩψψψ′ψψψ′ respectively denote the information
matrix and the Godambe information matrix, each restricted to those elements asso-
ciated with parameter ψψψ′. (Dependence on ψψψ under the null is omitted for brevity.)
Hypothesis testing based on (8) either approximates null distribution using estimates
of the eigenvalues νi Rotnitzky and Jewell (1990), or adjusts the composite likelihood
such that the usual asymptotic χ2

q null is preserved Chandler and Bate (2007).
The composite likelihood information criterion (CLIC) Varin and Vidoni (2005),

useful in the case of non-nested models, performs model selection on the basis of ex-
pected Kullback–Leibler divergence between the true unknown model and the adopted
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model (Davison, 2003, p. 123). In the composite likelihood context, this is the AIC
under model mis-specification (Takeuchi, 1976); (Davison, 2003, p. 150–152). Model
selection is based on the model minimising

−2{ℓC(ψ̂ψψMCLE;Y) − tr[Ĵ(ψ̂ψψMCLE) Ĥ(ψ̂ψψMCLE)−1]},

where the second term is the usual composite log-likelihood penalty term.

4 Simulation Study

We now evaluate the utility of the composite likelihood in the spatial extremes con-
text. We examine various forms of extremal dependence with the Gaussian storm pro-
file (4) characterised through the covariance, ΣΣΣ, including directional and strength of
dependence variations (Table 1 and Figure 1). The covariance has direct meteorologi-
cal interpretation and defines the extremal dependence directly. The K site locations
are uniformly generated over a 40×40 region. Given the moderate computational de-
mand for large site numbers, likelihood maximisation (and other) routines have been
implemented in C and collected in the forthcoming R package SpatialExtremes.

Table 1: Extremal dependence configurations.

Spatial dependence structure σ2
1 σ2

2 σ12

ΣΣΣ1: Same strength in both directions 300 300 0
ΣΣΣ2: Different strength in both directions 200 300 0
ΣΣΣ3: Spatial correlation 200 300 150
ΣΣΣ4: Strong dependence 2000 3000 1500
ΣΣΣ5: Weak dependence 20 30 15

Table 2: Composite MLE’s based on 500 spatial extreme data simulations (K = 50 sites and

N = 100) with the Gaussian extreme value model. True values are in [brackets]. Standard

errors obtained through Godambe estimates and sample standard deviation (in parantheses).

σ̂2
1 / s.e. σ̂2

2 / s.e. σ̂2
12 / s.e.

ΣΣΣ1: 306 [300] / 40.6 (44.7) 306 [300] / 39.8 (41.5) 1 [0] / 27.9 (27.7)
ΣΣΣ2: 204 [200] / 26.7 (28.5) 305 [300] / 39.6 (39.7) 1 [0] / 21.9 (21.2)
ΣΣΣ3: 202 [200] / 25.1 (26.1) 300 [300] / 37.3 (37.9) 150 [150] / 25.5 (26.1)
ΣΣΣ4: 2053 [2000] / 495.2 (300.1) 3065 [3000] / 664.8 (483.1) 1550 [1500] / 412.0 (322.4)
ΣΣΣ5: 20 [20] / 1.5 (1.6) 30 [30] / 2.3 (2.3) 15 [15] / 1.6 (1.6)

Table 2 summarizes estimator performance based on moderately sized datasets:
K = 50 sites and N = 100 observations. Estimate means and standard errors over
500 data replications are reported, indicating good correspondence to the true values.
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Figure 1: A Gaussian extreme value process realisation for ΣΣΣ1, . . . ,ΣΣΣ5. Max-stable process

simulation routines are available in the RandomFields package in R (Schlather, 2002).

There is no evidence of bias, even in cases where poorer performance may be expected
such as very strong or weak dependence. Overall, the Godambe standard errors and
sample standard deviations are consistent, though there is some discrepancy in the
case of strong dependence. Here, the eigenvalues of ΣΣΣ−1

4 are 5 ±
√

10/7500 and
so we are near the parameter space boundary. Consequently, for some of the 500
replications, the asymptotic normality of ψ̂ψψMCLE fails, and so the Godambe standard
errors are not relevant.

Table 3: Normalised mean squared error of extremal coefficient estimates based on 500

data simulations with K = 50 sites and N = 100 observations. Estimators are the com-

posite MLE and those proposed by Smith (1990) and Schlather and Tawn (2003). Standard

deviations are reported in parantheses. The values’ order of magnitude is 10−4.

Composite MLE Smith Schlather & Tawn
ΣΣΣ1: 3.1 ( 5.4) 18.4 (26.7) 17.3 (29.9)
ΣΣΣ2: 2.9 ( 4.8) 19.1 (30.3) 18.9 (28.6)
ΣΣΣ3: 2.5 ( 4.7) 21.9 (35.7) 21.1 (32.4)
ΣΣΣ4: 3.0 (35.6) 10.9 (18.9) 6.7 (13.3)
ΣΣΣ5: 0.3 ( 0.8) 30.3 (44.6) 25.5 (40.7)

Table 3 depicts normalised mean squared errors for three different estimators of the
extremal coefficient functions: the composite MLE derived from the Gaussian extreme
value model, and those proposed by Smith (1990) and Schlather and Tawn (2003).
Normalized mean square errors are used to prevent the largest extremal coefficients
from dominating. From Table 3, in general it is clear that the composite likelihood
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estimator is the most accurate. The standard deviation in the strong dependence
case again suffers from the failure of the asymptotic normality of ψ̂ψψMCLE.

Table 4: Composite MLEs for a varying number of sites (K) and observations (N), based

on 500 simulations of spatial extreme data using the Gaussian extreme value model with

covariance ΣΣΣ3 (Table 1). Standard deviations are reported in parantheses.

K N = 10 N = 50 N = 100 N = 500 True
σ̂2

1 10 245 (120.2) 207 (43.8) 205 (31.7) 199 (13.3) 200
50 244 ( 90.4) 208 (37.5) 200 (28.3) 199 (11.4)
100 239 ( 94.3) 205 (37.8) 202 (30.4) 199 (11.5)

σ̂2
2 10 353 (159.1) 305 (63.9) 301 (44.8) 298 (19.5) 300

50 353 (131.6) 309 (56.6) 303 (44.3) 298 (16.9)
100 361 (143.4) 307 (59.5) 301 (44.8) 299 (16.7)

σ̂12 10 174 (108.9) 153 (41.8) 151 (31.9) 149 (13.4) 150
50 179 ( 91.2) 156 (38.8) 149 (28.6) 149 (11.4)
100 181 (100.9) 154 (39.2) 150 (29.7) 150 (11.2)

Estimator performance for a range of dataset sizes (N = 10, 50, 100, 500) and
site numbers (K = 10, 50, 100) is listed in Table 4, under 500 data replications of
spatial dependence model ΣΣΣ3. As expected, the simulations indicate that there is
some bias and larger variance for small N , and negligible bias and small variance for
large N . Observe that, for fixed sample size, the number of sites does not impact the
estimation results. This behavior is illustrated in Figure 2, highlighting, in particular,
good estimator performance with increasing N .

Finally, we consider model selection under misspecification. Figure 3 illustrates
power curves (likelihood ratio tests) and rejection rates (CLIC) for two hypotheses,
each versus their complement. Namely, H0 : σ2

1 = 200 fixing σ2
2 = 300 and σ12 = 150

(top plots), andH0 : σ2
1 = σ2

2 = 200 fixing σ12 = 0 (bottom plots). All resulting curves
are near-quadratic and, for the pairwise likelihood ratio based tests, rejection rates
are close to the confidence level α = 0.05 when the null hypothesis is true. In this
study, contrary to the results derived by Chandler and Bate (2007), the adjustment of
the W statistic (8) Rotnitzky and Jewell (1990) appears to have slightly more power
– even when testing mutiple parameters. In contrast the CLIC statistic demonstrates
poor performance, with the rejection rate under the true model reaching only 20%.

5 Application to U.S. precipitation data

We illustrate the developed methodology in an analysis of U.S. precipitation data.
These data consist of 46 gauging stations with daily rainfall records over a period of 91
years (Figure 4). We express the model GEV parameters as simple linear functions
[only?] of longitude, lattitude and altitude. Further model variations, including
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Figure 2: Composite MLE distribution estimates for N = 50 (dotted line), N = 100 (broken

line) and N = 1000 (solid line) observations over K = 10 (top row), K = 50 (centre row)

and K = 100 (bottom row) sites. Contours correspond to 0.25, 0.5 and 0.75 percentiles.

additional environmental covariates, and regressions of the covariance ΣΣΣ on these
covariates to examine spatial variations in extremal dependence were not considered.

Exploratory analyses of the functional complexity of the GEV parameters was
performed by fitting independent GEV models to the data from each station and
evaluating appropriate surface responses using standard techniques (e.g. ANOVA,
Fisher tests). After identifying an upper limit to model complexity, we perform
model selection on the pairwise composite likelihood of the Gaussian extreme value
process using the methodologies outlined in Section 3.3.

Table 5 summarizes some of the different models investigated. According to the
CLIC criterion, model M5 (in bold) is the preferred choice, although models M2 and
M6 also appear competitive. Despite the relatively poor performance of the CLIC
criterion for model selection (see Section 4), the same conclusions are obtained from
the deviance based tests, with p-values around 0.9. For model M5, the covariance ΣΣΣ
is estimated as σ2

1 = 0.06323 (0.06463), σ12 = 0.01334 (0.03661) and σ2
2 = 0.02581

(0.02538), where the parantheses indicate standard errors.
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Table 5: Some Gaussian extreme value processes and their corresponding maximised nega-

tive composite log-likelihood, degrees of freedom and the CLIC score.

Model −ℓP(ψ̂ψψMCLE;y) d.f. CLIC
M0 : µ(x) = α0 + α1(lat) + α2(alt) + α3(lon) 412,110.2 12 12,848,229

σ(x) = β0 + β1(lat) + β2(alt) + β2(lon)
ξ(x) = γ0

M1 : µ(x) = α0 + α1(lat) + α2(alt) 412,110.9 11 16,096,068
σ(x) = β0 + β1(lat) + β2(alt) + β3(lon)
ξ(x) = γ0

M2 : µ(x) = α0 + α1(lat) + α2(alt) + α3(lon) 412,113.3 11 1,008,997
σ(x) = β0 + β1(lat) + β2(alt)
ξ(x) = γ0

M3 : µ(x) = α0 + α1(lat) + α3(lon) 412,234.1 11 1,926,389,242
σ(x) = β0 + β1(lat) + β2(alt) + β3(lon)
ξ(x) = γ0

M4 : µ(x) = α0 + α1(lat) + α2(alt) + α3(lon) 412,380.5 11 33,209,042
σ(x) = β0 + β1(lat) + β3(lon)
ξ(x) = γ0

M5 : µ(x) = α0 + α1(lat) + α2(alt) 412,113.3 10 1,008,261

σ(x) = β0 + β1(lat) + β2(alt)
ξ(x) = γ0

M6 : µ(x) = α0 + α1(lat) 412,237.3 9 1,086,347
σ(x) = β0 + β1(lat) + β2(alt)
ξ(x) = γ0

13



Figure 3: Left panels: Power curves for the composite likelihood ratio tests; RJ (Rotnitzki

and Jewell, 1990), and CBchol and CBsvd (Chandler and Bate, 2007) using Cholesky and

singular value decompositions. Right panels: CLIC rejection rates. Test levels are α = 0.05.

Point estimates are based on 1000 data replications.

Figure 5 (right plot) illustrates the spatial variation of pointwise 50-year return
level estimates. Comparison to the regional elevation map (left plot) indicates that
the most extreme precipitation events occur in mountainous regions. Figure 6 (left
plot) also depicts the strength of spatial dependence through the extremal coefficient
function. There is clear evidence of anisotropy, with stronger dependence in the
north-east/south-west direction. Interestingly, this axis corresponds to the shape of
the Appalachian Mountains as well as the coastline. Accordingly, this directional
extremal dependence may be the consequence of storms following either the coastline
or the massif. Finally, conditioning of a fixed site (and for a given threshold) by using
the pairwise conditional distribution, the conditional q-year return level estimates can
easily be provided. Figure 6 (right plot) illustrates the spatial variation of conditional
pointwise 50-year return level estimates, given the fixed site indicated by the star.
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Figure 4: Locations of the 46 gauging stations.

Figure 5: Left: Elevation map (metres) of the region; Right: Pointwise 50-year return
level map (cm) estimated from the fitted Gaussian extreme value process.
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Figure 6: Left: Contour plot of the extremal coefficient; Right: Pointwise 50-year,
conditional return level map (cm) estimated from the fitted Gaussian extreme value
process. The star indicates the fixed site used in the computation of the conditional
return levels.

6 Conclusion

As a natural generalisation of extremal dependence structures, max-stable processes
are a powerful tool for the modelling of multivariate extremes. Unfortunately, the
intractability of the multivariate density function precludes inference except in trivial
cases (e.g. bivariate), or requires additional approximations and immense computa-
tional overheads (Jiang and Turnbull, 2004; Sisson et al., 2007; Peters et al., 2008).

This article has developed composite likelihood-based inferential methods for gen-
eral max-stable processes. Our results demonstrate good applicability in the spatial
context. The benefits of this likelihood-based approach are the flexible joint modelling
of marginal and dependence parameters, coupled with good estimator behaviour with
finite samples, all at moderate computational cost.

Modifications of the model formulation would draw alternative representations of
extremal modelling into the composite-likelihood based framework, given the known
links between these and block maxima (GEV) approaches (e.g. Coles (2001)). These
include threshold excess models for marginals (Davison and Smith, 1990), and the
limiting Poisson characterisation of extremes. The obvious practical benefit from
these extensions would be the incorporation of more data into the modelling process.
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Appendix

We present explicit expressions for the distribution function (3), density function (4)
and the derivatives required for the estimated covariance matrix in Section 3.2

A.1: Vector notation

Let f be a real-valued function in the d× 1 vector x = (x1, . . . , xd). Then the 1 × d
derivative vector, Dxf(x), has i-th element ∂f(x)/∂xi. The corresponding Hessian
matrix is given by Hxf(x) = Dx{Dxf(x)}⊤.

If a = (a1, . . . , ad) and b = (b1, . . . , bd) are two d × 1 vectors, then element-wise
multiplication is denoted by a ⊙ b = (a1b1, . . . , adbd). The expression a/b denotes
element-wise division (a1/b1, . . . , ad/bd). Scalar functions applied to vectors are also

evaluated element-wise. For example, a−1/ξ = (a
−1/ξ
1 , . . . , a

−1/ξ
d ).

A.2: Derivation of the bivariate distribution function

In order to derive the cumulative distribution function (3), considering formula (2)
and the assumptions of Section 2.3, we need to solve:

F (zi, zj) = exp

{
−
∫ ∞

−∞

∫ ∞

−∞

max

(
f(x1, x2)

zi
,
f(x1 − t1, x2 − t2)

zj

)
dx1 dx2

}

= exp

{
−
∫ ∞

−∞

∫ ∞

−∞

f(x1, x2)

zi
I

(
f(x1, x2)

zi
≥ f(x1 − t1, x2 − t2)

zj

)
dx1 dx2

−
∫ ∞

−∞

∫ ∞

−∞

f(x1 − t1, x2 − t2)

zj
I

(
f(x1 − t1, x2 − t2)

zj
≥ f(x1, x2)

zi

)
dx1 dx2

}
,

where f(x1, x2) is the bivariate normal density of (X1, X2) ∼ N((0, 0)⊤,ΣΣΣ), and for
brevity we set h = (tj − ti)

⊤ ≡ (t1, t2)
⊤. Recall from (3) that

a(h) = (hTΣΣΣ−1h)1/2 =
1√

(1 − ρ2)

(
t21
σ2

1

− 2ρt1t2
σ1σ2

+
t22
σ2

2

)1/2

where ρ = σ12/σ1σ2. Consider first the case (t1σ2−ρt2σ1) > 0. Note that f(x1, x2)/zi ≥
f(x1 − t1, x2 − t2)/zj implies that

exp

{
− 1

2(1 − ρ2)

(
x2

1

σ2
1

− 2ρx1x2

σ1σ2
+
x2

2

σ2
2

)}
/zi

≥ exp

{
− 1

2(1 − ρ2)

(
(x1 − t1)

2

σ2
1

− 2ρ(x1 − t1)(x2 − t2)

σ1σ2

+
(x2 − t2)

2

σ2
2

)}
/zi

⇔ x1 ≤
σ2

1σ2

2(t1σ2 − ρt2σ1)

(
t21
σ2

1

− 2ρt1t2
σ1σ2

+
t22
σ2

2

)
+
σ2

1σ2(1 − ρ2)

t1σ2 − ρt2σ1
log

zj
zi

− x2(t2σ
2
1 − ρt1σ1σ2)

t1σ2 − ρt2σ1

⇔ x1 ≤ c.
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From this, it follows that

∫ ∞

−∞

∫ ∞

−∞

f(x1, x2)

zi
I

(
f(x1, x2)

zi
≥ f(x1 − t1, x2 − t2)

zj

)
dx1 dx2

=
1

zi

∫ ∞

−∞

∫ c

−∞

1

2π
√

1 − ρ2
exp

{
− 1

2(1 − ρ2)

(
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1

σ2
1

− 2ρx1x2

σ1σ2
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x2

2

σ2
2

)}
dx1 dx2

=
1

zi
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−∞

ϕ(x2)
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ϕ
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x1 − ρσ1x2/σ2

σ1

√
1 − ρ2

)
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1
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)
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1
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(
a(h)

2
+

log zj/zi
a(h)

)
.

Similarly,
f(x1 − t1, x2 − t2)

zj
≥ f(x1, x2)

zi
⇔ x1 ≥ c.

It then follows that
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−∞

∫ ∞

−∞
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2
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and the form of the distribution (3) is confirmed. Observe, that the same result is
obtained for the case (t1σ2 − ρt2σ1) < 0. See also Smith (1990) and De Haan and
Pereira (2006).

21



A.3: Derivation of the bivariate density function

In order to derive the bivariate density function (4) we require the second-order
derivative of

F (zi, zj) = exp

(
−Φ(w)

zi
− Φ(v)

zj

)

with respect to zi and zj , where for brevity we set a ≡ a(h), w ≡ w(h) and v ≡ v(h)
and write w = a/2 + log(zj/zi)/a and v = a− w. The differentiation gives

f(zi, zj) ≡
∂2

∂zi∂zj
F (zi, zj) =

exp

(
−Φ(w)

zi
− Φ(v)
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){
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)}

First-order differentation gives

∂
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,

using the results

∂Φ(w)

∂zi
= −ϕ(w)

azi
,

∂Φ(v)

∂zi
=
ϕ(v)

azi
and

∂w

∂zi
= − 1

azi
,

∂v

∂zi
=

1

azi
.

Second-order differentation yields
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using
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and
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.

Substituting, we obtain the probability density function

f(zi, zj) = exp
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.

A.4: An expression for the squared score statistic

From Section 3.2 the term J(ψψψ) of the Godambe information matrix can be estimated
from

K∑

i=1

K−1∑

j=i+1

Dψψψ log f(yi,yj;ψψψ)⊤ Dψψψ log f(yi,yj ;ψψψ),
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where ψψψ⊤ = (σσσ, βββµ, βββλ, βββξ), σσσ
⊤ = (σσσ2

11, σσσ12, σσσ
2
22) and where each parameter βββ is

p-dimensional vector of coefficients. The bivariate log-density has the form

log f(yi,yj ;ψψψ) = A + log(B ⊙ C + D) + E,

where
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) 1

ξi
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(
1 + ξj

yj − µj1
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) 1
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−1

+

}

and where 1⊤ = (1, . . . , 1), µi = (Xβββµ
βββµ)i, ξi = (Xβββξ

βββξ)i and log(ψi) = (Xβββψ
βββψ)i.

The GEV parameters are related to the predictors by the form (7). We assume
identity link functions for the location and shape parameters and exponential for the
scale. The term E corresponds to the log of the determinat of the Jacobian matrix
associated with the transformation (6), see Section 3.2.

The first-order derivative term of the square score statistic is defined by

Dψψψ log f(yi,yj;ψψψ) = (Dσσσ log f(ψψψ),Dβββµ log f(ψψψ),Dβββλ log f(ψψψ),Dβββξ log f(ψψψ))

where for brevity we write log f(ψψψ) ≡ log f(yi,yj ;ψψψ). Vector differential calculus
(e.g. Wand (2002)) leads to

Dσ log f(ψψψ) ≡
[
− v ⊙ ϕ(w)

a ⊙ zi
− w ⊙ ϕ(v)

a ⊙ zj
+

{
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+
(v − 2w − v ⊙ w2) ⊙ ϕ(v)

a3 ⊙ z2
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}
/(B ⊙ C + D)

]

s⊤,

where s⊤ ≡ (t21, 2 t1 t2, t
2
2), using the results

Dσσσw =
v

a
s⊤, DσσσΦ(w) =

v ⊙ ϕ(w)

a
s⊤, Dσσσϕ(w) = −w ⊙ vϕ(w)

a
s⊤

and Dσσσv ⊙ ϕ(w) =
w ⊙ (1 − v2)ϕ(w)

a
s⊤.
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The first-order derivativies of v, Φ(v), ϕ(v) and w⊙ϕ(v) are the same as the above,
substituting v for w. Similarly for the second term we have

Dβββµ
log f(ψψψ) ≡

{(
ϕ(w) + a ⊙ Φ(w)

a ⊙ z2
i

− ϕ(v)

a ⊙ zi ⊙ zj

)
⊙ z

1−ξi
i

λi

}

(Xβββµ
)i

+

{(
ϕ(v) + a ⊙ Φ(v)

a ⊙ z2
j

− ϕ(w)

a⊙ zi ⊙ zj

)
⊙

z
1−ξj
j

λj

}
(Xβββµ

)j

+





{
C ⊙

(
w⊙Φ(v)
a2⊙zi⊙z

2

j

+ v⊙Φ(w)
a2⊙zj⊙z

2

i

)
⊙ z

1−ξi
i

λi

}

(B ⊙ C + D)



 (Xβββµ
)i

+





{
C ⊙

(
(a+w)⊙ϕ(w)

a2⊙zi⊙z
2

j

− (2a+w)⊙ϕ(v)

a2⊙z
3

j

− 2Φ(v)

z
3

i

)
⊙ z

1−ξj
j

λj

}

(B ⊙ C + D)



 (Xβββµ
)j

+





{
B ⊙

(
(a+v)⊙ϕ(v)
a2⊙zj⊙z

2

i

− (2a+v)⊙ϕ(w)
a2⊙z

3

i

− 2Φ(w)
z
3

j

)
⊙ z

1−ξi
i

λi

}

(B ⊙ C + D)



 (Xβββµ
)i

+





{
B ⊙

(
v⊙Φ(w)

a2⊙zj⊙z
2

i

+ w⊙Φ(v)

a2⊙zi⊙z
2

j

)
⊙ z

1−ξj
j

λj

}

(B ⊙ C + D)



 (Xβββµ
)j

+





{(
(1−a⊙v−v

2)⊙ϕ(w)
a2⊙zj⊙z

3

i

− (1−a⊙w−w
2)⊙ϕ(v)

a2⊙zi⊙z
3

j

)
⊙ z

1−ξi
i

λi

}

(B ⊙ C + D)



 (Xβββµ
)i

+





{(
(1−a⊙w−w

2)⊙ϕ(v)

a2⊙zi⊙z
3

j

− (1−a⊙v−v
2)⊙ϕ(w)

a2⊙zj⊙z
3

i

)
⊙ z

1−ξj
j

λj

}

(B ⊙ C + D)



 (Xβββµ
)j

+
(ξi − 1)

λizξi
(Xβββµ

)i +
(ξj − 1)

λjzξj
(Xβββµ

)j.

Observe that the above expression is obtained by deriving in order the components:
Dβββµ

A, Dβββµ
log(B ⊙ C + D) and Dβββµ

E. These three components have the form

Dβββµ
f(x) = Dzi

f(x)Dβββµzi + Dzj
f(x)Dβββµzj , where Dβββµ

zi = z
1−ξi
i /λiXβββµ

. For this

reason the derived expressions of Dβββλ
log f(ψψψ) and Dβββξ

log f(ψψψ) are essentially the

same but substituting Dβββµ
zi with Dβββλ

zi and Dβββξ
zi, and Dβββµ

E with Dβββλ
E and Dβββξ

E.
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We have

Dβββλ
zi ≡ −zi(yi − µi1)

λi
(Xβββλ

)i and Dβββξ
zi ≡

{
1

ξi

(
z

1−ξi
i (yi − µi1)

λi
− zi log(zi)

)}
(Xβββξ

)i.

Finally,

Dβββλ
E ≡

(
(ξi − 1)(yi − µi1)

λizi
− 1

)
(Xβββλ

)i +

(
(ξj − 1)(yj − µj1)

λjzj
− 1

)
(Xβββλ

)j and

Dβββξ
E ≡

[
1

ξi

{
(1 − ξi)(yi − µi1)

z
ξi
i λi

− log(zi)

}]

(Xβββξ
)i

+

[
1

ξj

{
(1 − ξj)(yj − µj1)

z
ξj
j λj

− log(zj)

}]
(Xβββξ

)j.

In combination we obtain an expression for Dψψψ log f(yi,yj;ψψψ), and from this the
squared score statistic.

25


