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ABSTRACT:

Since its original publication in 1916 under the title ”The algebraic theory of modular systems”,
the book by F.S. Macaulay has attracted a lot of scientists with a view towards pure matematics
(D. Eisenbud,...) or applications to control theory (U. Oberst,...). However, a carefull examination
of the quotations clearly shows that people had only a look at the first three chapters respectively
dealing with the resultant, the resolvent and the general properties of ideals but mostly did not
look at the last chapter dealing with the so-called ”inverse system” or, to be fair, only to the
particular example of finite dimensional vector spaces on the residue field of a local ring.

The basic intuitive idea is the well known parallel existing between ideals in polynomial rings
and systems of PD equations in one unknown with constant coefficients. Accordingly, it becomes
evident that Gröbner bases should be everywhere ... under the condition to understand what is
inside (we invite the reader to have a look at the book in order to discover the difficulty of such
a task !). As a first step done in the last paperback edition, a kind of glossary has been exhibited
between Macaulay language/definitions and modern corresponding concepts. However, nothing
has been done for the last (and most difficult !) chapter and the purpose of this paper will be first
to correct this gap. Roughly speaking ( and though striking it could be !) this chapter is based on
the (correct) descripton of ”systems” in the sense given by the american school of PD equations in
the seventies (H. Goldschmidt, D.C. Spencer, D.G. Quillen,...) and we shall prove that the heart
of the chapter is ”the use of the Spencer operator on sections” (not on solutions, despite formal
power series are used !). Of course, this result, (not known to our knowledge) will give by itself
quite a new insight on the chapter.

The next idea will be to use modern ”algeraic analysis” also pioneered in the seventies (M.
Kashiwara, B. Malgrange, V.P. Palamodov,...) in order to extend these ideas to general differen-
tial modules and systems of PD equations. Again, we shall prove that the use of Groebner bases is
central ... but well hidden as we shall prove that one cannot avoid Spencer cohomology, involution
and delta-regular coordinates in order to understand in an intrinsic way the local computations
done by Macaulay through the so-called ”localization” technique.

Hints will finally be given to generalize these results to the variable coefficients case and the
corresponding control identifiability problem. Many explicit examples will be provided for illus-
trating the main results that provide new hints for applying computer algebra to algebraic analysis.

KEY WORDS: Partial differential equations, Macaulay inverse system, algebraic nalysis, com-
mutative algebra, homological algebra, localization, duality, computer algebra, Gröbner bases.

1) INTRODUCTION:

With only a slight abuse of language, one can say that the birth of the formal theory of systems
of ordinary differential (OD) equations or partial differential (PD) equations is coming from the
work of M. Janet in 1920 [9] along algebraic ideas brought by D. Hilbert at the same time in his
study of sygyzies for finitely generated modules over polynomial rings. The work of Janet has then
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been used (without any quotation !) by J.F. Ritt when he created differential algebra around 1930
[21], namely when he became able to add the word ”differential” in front of most of the classical
concepts concerned with algebraic equations, successively passing from OD algebraic equations to
PD algebraic equations. In 1965 [5] B. Buchberger invented Gröbner bases, named in honor of his
Phd advisor W. Gröbner, whose earlier work done in 1940 on polynomial ideals and PD equations
with constant coefficients provided a source of inspiration [8]. However, the approaches of Janet
and Buchberger/Gröbner both suffer from the same lack of intrinsicness as they highly depend on
the ordering of the n independent variables and derivatives of the m unknowns.

Meanwhile, commutative algebra, namely the study of modules over rings, was facing a very
subtle problem, the resolution of which led to the modern but difficult homological algebra with
sequences and diagrams. Roughly, one can say that the problem was essentially to study properties
of finitely generated modules not depending on the ”presentation” of these modules by means of
generators and relations. This very hard step” is based on homological/cohomological methods like
the so-called ”extension” modules which cannot therefore be avoided.

In order to sketch this problem, let us present two simple examples. In the first case with
standard notations, everybody will understand at once that integrating the second order OD
equation ÿ = 0 with m = n = 1 is equivalent to integrating the system of two first order
OD equations ẏ1 − y2 = 0, ẏ2 = 0. However, even with m = n = 2 and the same two un-
knowns u, v in both cases, it is not evident at all that integrating the second order PD equation
d12u − d22v − u = 0 is equivalent to integrating the system of two fourth order PD equations
d1122u − d1222v − d22v − u = 0, d1112u − d1122v − d11u = 0 (exercise !).

As before, using now rings of ”differential operators” instead of polynomial rings led to dif-
ferential modules and to the challenge of adding the word ”differential” in front of concepts of
commutative algebra. Accordingly, not only one needs properties not depending on the presenta-
tion as we just explained but also properties not depending on the coordinate system as it becomes
clear from any application to mathematical or engineering physics where tensors and exterior forms
are always to be met like in the space-time formulation of electromagnetism. Unhappily, no one of
the previous techniques for OD or PD equations could work !.

By chance, the intrinsic study of systems of OD or PD equations has been pioneered in a totally
independent way by D. C. Spencer and collaborators after 1960 [23], using jet theory and diagram
chasing in order to relate differential properties of the equations to algebraic properties of their
symbol, a technique superseding the ”leading term” approah of Janet or Gröbner but quite poorly
known by the mathematical community, even today.

Accordingly, it was another challenge to unify the ”purely differential” approach of Spencer
with the ”purely algebraic” approach of commutative algebra, having in mind the necessity to use
the previous homological algebraic results in this new framework. This sophisticated mixture of
differential geometry and homological algebra, now called ”algebraic analysis”, has been achieved
after 1970 by V. P. Palamodov for the constant coefficient case [16], then by M. Kashiwara [11]
and B. Malgrange [14] for the variable coefficient case.

It is only in 1990, thanks to the work of U. Oberst, that such a theory has been applied with
success to control theory [15]. Then the things went on rather fast towards computer algebra
and many packages now exist for computing the extension modules and related concepts (See
for example: http://wwwb.math.rwth-aachen.de/OreModules). However, of course, many difficult
problems are left and we provide details about a few of them, having in mind the recent workshops
on Gröbner bases and applications successively held at RISC in 2006 and 2008.

When a given system of linear PD equations of order q is given, it defines by residue a dif-
ferential module M over the underlying ring D of differential operators. Then it becomes today
possible to decide by means of computer algebra the class to which M belongs among n classes
ranging from free, torsion-free, reflexive, ... , to projective and free. However, the set of elements
of M , namely of finite linear combinations of the unknowns and their derivatives modulo the given
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PD equations and their derivatives, such that each of them does satisfy at least one PD equation
for itself, provides the torsion submodule t(M) and M is torsion-free if its torsion submodule is
zero. An open but useful problem, independent of the previous classification, is now to classify
elements in t(M) by means of the nested chain of n differential submodules:

0 = tn(M) ⊆ tn−1(M) ⊆ ... ⊆ t1(M) ⊆ t0(M) = t(M) ⊆ M

A first question is thus to determine the classes and the ”gaps” in the above chain, as indeed, in
many known explicit situations, a few intermediate modules do coincide. A second question is to
avoid the double extension modules in the exact sequences:

0 −→ tr(M) −→ tr−1(M) −→ extrD(extrD(M, D), D)

generalizing the well known case r = 0, namely the exact sequence:

0 −→ t(M) −→ M
ǫ

−→ homD(homD(M, D), D)

where the morphism ǫ is efined by ǫ(m)(f) = f(m), ∀m ∈ M, ∀f ∈ homD(M, D). A new technique
proposed for such a purpose is to bring back the system of order q to a system of order one without
any equation of order zero, called ”Spencer form”, which generalizes for PD equations the Kalman
form existing for linear OD systems in control theory. The interest is to provide new domains of
applications and we sketch the underlying idea on a simple academic example.

Again, with evident notations and m = 1, n = q = 2, the system d22y = 0, d12y = 0 clearly
determines a torsion module t(M) = M . The torsion elements z′ = d1y and z” = d2y do not satisfy
the same decoupling PD equations as z′ only satisfies d2z

′ = 0 while z” satisfies d2z” = 0, d1z” = 0
and we have the nested chain with strict inclusions:

0 = t2(M) ⊂ t1(M) ⊂ t0(M) = t(M) = M

the classification being obtained through the dimension d or rather codimension cd = n− d of the
differential modules generated by the respective torsion elements as we have indeed cd(Dz”) = 2
and cd(Dz′) = 1. More generally, if m ∈ M and cd(Dm) = r, then m ∈ tr−1(M) but m /∈ tr(M),
according to the Hilbert-Serre theorem stating that cd(M) = cd(V ) for ay differential module
defined by a system of PD equation with characteristic variety V . Of course, the same decoupling
type problem can be asked for any engineering system in gasdynamics or magnetohydrodynamics
(MHD) but we do not know a single work existing towards such a classification in view of the
difficulty of the mathematical framework involved. As an ultimate goal, a particularly important
problem should be to study the dependence of the previous classification on parameters when the
system depends on certain constant parameters, a result generalizing the controllability problem
for OD systems in control theory where n = 1 only !.

Accordingly, the hope should be to have a computer algebra package providing the classes and
eventually generating elements. A particularly interesting case should be to characterize r-pure
modules, namely modules M such that there exists an integer 0 ≤ r ≤ n with tr(M) = 0 and
tr−1(M) = M . Equivalently, M is r-pure whenever cd(Dm) = r, ∀m ∈ M . Surprisingly, for
constant coefficient systems in one unknown, such a concept has been discovered in 1916 by F. S.
Macauly in the last chapter ”The inverse system and modular equations” of his famous book ”The
algebraic theory of modular systems” but this result is still not understood today [13].

In fact, while looking at this last hapter since many years, we were convinced that the double
picture of p. 67 was nothing else than, sise by side, the matrix of the ”system” in the american
sense, combined with an ordering of the various possible (formal) ”truncated sections”, again in
the american sense, the underlying idea being to cancel successively the terms of order zero, then
zero and one, ... and so on. However, it is only a few months ago that we suddenly understood the
true reason for supposing, as a crucial assumption indeed though it is only presented as a purely
technical argument (p. 89), that the module under study was ”unmixed”. We explain thereafter
this point by translating the ”old” language into the ”new” one.
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First of all, what Macaulay was calling ”module” is now called ”ideal” ([13], glossary of the
last edition). Accordingly, the properties (prime, primary, unmixed,...) attributed to an ideal a in
the ring A = k[χ] = k[χ1, ..., χn] of polynomials in the n indeterminates χ1, ..., χn with coefficients
in the field k are now, along with the modern setting of commutative algebra, attributed to the
residual module A/a. Then we got in mind that, in the study of an r-pure differential modules, a
delicate though expected theorem is stating that the corresponding characteristic variety is ”un-
mixed” too, with the same meaning as above, that is the underlying algebraic set is the union
of irreducible components of the same codimension r. This analogy was thus giving rise to the
challenge of relating the work of Macaulay on unmixed polynomial ideals to the study of purity
for differential modules. In particular, the extension to this new framework of a ”localization cri-
terion”, provided by Macaulay in the classical setting, constitutes one of the main results of this
paper and provides new hints for applying computer algebra to algebraic analysis. Most of the
concepts and results presented in this paper are new and illustrated by explicit examples.

2) MOTIVATIONS

We start presenting a few motivations from commutative algebra, then apply localization theory
to systems of OD equations and finally generalize the results so far obtained to systems of PD
equations.

Let k be field of characteristic zero and χ = (χ1, ..., χn) be indeterminates over k. We introduce
the ring A = k[χ1, ..., χn] of polynomials with coefficients in k and various classes of ideals. The
set of maximum ideals is denoted by max(A) with elements m,..., the set of (proper) prime ideals
is denoted as usual by spec(A) with elements p,... and the set of primary ideals with elements q

such that ab ∈ q, b /∈ q ⇒ a ∈ p = rad(q) that is ar ∈ q for a certain integer r ∈ N. The importance
of primary ideals lies in the fact, largely emphasized by Macaulay, that any ideal a can be written
as a finite irredundant intersection a = q1∩ ...∩qs of primary ideals, called primary decomposition.
Setting pi = rad(qi), we obtain at once the prime decomposition rad(a) = p1 ∩ ... ∩ ps though
sometimes this new decomposition may not be irredundant with strict inclusion pi ⊂ pj for certain
couples of indices (i, j). In this case one uses to say that the component defined by pj is embedded
into the component defined by pi in the algebraic set defined by a. Also, for any prime ideal p,
we denote by cd(A/p) = n − d(A/p) the codimension of A/p with d(A/p) = trd(Q(A/p)/k) the
transcendence degree of the algebraic extension of the field of fractions of the integral domain A/p

over the field k. For an arbitrary ideal a, the codimension is usually denoting the minimum among
the codimensions of the components defined by the minimum prime ideals in the corresponding
prime decomposition, which are therefore not embedded.

DEFINITION 2.1: An ideal a ⊂ A is unmixed if cd(A/p1) = ... = cd(A/ps) in a primary decom-
position and we have therefore pi * pj, ∀(i, j). Otherwise a is said to be mixed.

We now present a few examples that will be used in the sequel with a totally different approach.

EXAMPLE 2.2: q = ((χ3)
2, χ1χ3 − χ2) ⇒ rad(q) = p = (χ3, χ2) ⇒ cd(A/q) = 2. Similarly a =

(χ1, χ2χ3) = (χ1, χ2) ∩ (χ1, χ3) is unmixed with cd(A/a) = 2 but a = ((χ1)
2, χ1χ2, χ1χ3, χ2χ3) =

(χ1, χ2) ∩ (χ1, χ3) ∩ (χ1, χ2, χ3)
2 is mixed with two minimum prime ideals and one embedded

component. More generally, any ideal having a basis containing as many polynomials as the codi-
mension of the corresponding residual module has been called ”ideal of the principal class” by
Macaulay who proved that any such ideal is unmixed ([13], 48, p 40,49). For a modern approach
through regular sequences, see ([12] , VI, 3, p 183).

EXAMPLE 2.3: a = ((χ2)
2, χ1χ2) = (χ2) ∩ (χ1, χ2)

2 = q1 ∩ q2 is mixed with q1 = p1 ⊂ p2 =
rad(q2) = (χ1, χ2) ∈ max(Q[χ1, χ2]).

EXERCISE 2.4: ([13], §42, p 44) Prove that a = ((χ1)
3, (χ2)

3, ((χ1)
2 + (χ2)

2)χ4 + χ1χ2χ3) is
mixed with s = 4 and only one minimum prime (Hint: use the fact that (χ1χ2)

2(χ1, χ2, χ3, χ4) ⊂ a

but χ1χ2 /∈ a).

The main idea is then to ”transfer” the properties of an ideal a ⊂ A to the residue module M = A/a
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over A.

DEFINITION 2.5: A module M is said to be prime (primary) if ax = 0, 0 6= x ∈ M ⇒ aM = 0
(arM = 0 for a certain integer r) though people sometimes add the prefix ”co”.

Now, having in mind the so-called chinese remainder theorem ([12], p 41), any primary decom-
position gives rise to a monomorphism 0 → Q1 ⊕ ... ⊕ Qs with primary modules Qi = A/qi and
epimorphisms M → Qi → 0, ∀i = 1, ..., s. Conversely, looking for such a situation allows to exhibit
a primary decomposition for reducible modules (see [18], p 110 for more details).

It is now tempting, and this too was a key idea of Macaulay, to introduce n commuting deriva-
tives d1, ..., dn for which k should be a field of constants and to introduce the ring D = k[d] =
k[d1, ..., dn] of differential operators with coefficients in k. As D and A are isomorphic by di ↔ χi,
any (nonlinear) ideal of A gives rise to a system of OD/PD (linear) equations in one unknown
only and conversely. It thus remains to use techniques for PD equations in order to study ideals or
modules. However, the situation for a differential field K with subfield of constants k and/or sys-
tems of PD equations for many unknowns escapes from the previous approach and we conjectured
that they could be treated ”by their own”, the specific situation considered by Macaulay being just
a particular case of the general theory that we shall present in this paper.

First of all, we sketch the technique of ”localization” in the case of OD equations, comparing
to the situation met in classical control theory where n = 1 and the dimension can therefore only
be 0 or 1. For this, setting as usual d = d1 = d/dt = dot, we may introduce (formal) unknowns
y1, ..., ym and set Dy = Dy1+ ...+Dym ≃ Dm. If we have a given system Φ = 0 of OD equations of
order q, a basic question in control theory is to decide whether the control system is ”controllable”
or not. It is not our purpose to discuss here about such a question (see [18,19] for more details)
but we just want to state the final formal test in terms of a property of the differential module
M = Dy/DΦ. Care must be taken that in the sequel, for simplicity and unless needed, we shall
not always put a ”bar” on the residual image of y in the canonical projection Dy → M . We explain
our goal on an example.

EXAMPLE 2.6: With m = 3 and a constant parameter a, we consider the first order system
Φ1 ≡ ẏ1 − ay2 − ẏ3 = 0, Φ2 ≡ y1 − ẏ2 + ẏ3 = 0. Any engineer should want to apply Laplace
transform ŷ(s) =

∫
∞

0
esty(t)dt to this system. However, using the integration by part formula∫

∞

0
estẏ(t)dt = [esty(t)]∞0 − sŷ(s) we should eventually need to know y(0) though the Kalman test

of controllability is purely formal as it only deals with ranks of matrices [10]. Since a long time
we had in mind that setting y(0) = 0 was not the right way and that Laplace transform could be
superseded by another purely formal technique. For this, let us replace ”formally” d by the purely
algebraic symbol χ whenever it appears and obtain the system of linear equations :

χy1 − ay2 − χy3 = 0, 1y1 − χy2 + χy3 = 0 ⇒ y1 =
χ(χ + a)

χ2 − a
y3, y2 =

χ(χ + 1)

χ2 − a
y3

but we could have adopted a different choice for the only arbitrary unknown. At this step there
are only two possibilities :
•a 6= 0, 1 ⇒no ”simplification” may occur and, getting rid of the common denominator, we get an
algebraic parametrization leading to a differential parametrization as follows:

y1 = χ(χ + a)z, y2 = χ(χ + 1)z, y3 = (χ2 − a)z ⇒ y1 = z̈ + aż, y2 = z̈ + ż, y3 = z̈ − az

•a = 0 or a = 1 ⇒ a ”simplification” may occur. For example, with a = 0, setting z = y1 − y3 we
get χz = 0 that is to say ż = 0.

Recapitulating, we discover that a control system is controllable iff one cannot get any au-
tonomous element satisfying an OD equation by itself. For understanding such a result in an
algebraic manner, let M be a module over an integral domain A containing 1. A subset S ⊂ A is
called a multiplicative subset if 1 ∈ S and ∀s, t ∈ S ⇒ st ∈ S. Moreover, we shall need/use the Ore
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condition on S and A, namely aS ∩ sA 6= ∅, ∀a ∈ A, s ∈ S.

DEFINITION 2.7: S−1A = {s−1a|s ∈ S, a ∈ A/ ∼} with s−1a ∼ t−1b ⇔ ∃u, v ∈ A, us = vt ∈
S, ua = vb.

Next, for any module M over A, we define S−1M = S−1A⊗AM and tS(M) = {x ∈ M | ∃s ∈
S, sx = 0} in the exact sequence 0 → tS(M) → M → S−1M where the last morphism is x → 1−1x.

EXAMPLE 2.8: S = A − {0} ⇒ S−1A = Q(A) = K field of fractions of A and we introduce
the torsion submodule tS(M) = t0(M) = t(M) = {x ∈ M | ∃0 6= a ∈ A, ax = 0} of M . Also, if
p ∈ spec(A) and S = A − p, one uses to set S−1M = mp.

PROPOSITION 2.9: When M is finitely generated and t(M) = 0, from the inclusion M ⊂
K⊗AM , we deduce that there exists a finitely generated free module F with M ⊂ F .

REMARK 2.10: Though the above proposition provides a parametrization for any n in the case
of a torsion-free module, in the particular case n = 1 there is an isomorphism M ≃ t(M)⊕M/t(M)
not so well known in OD control theory. Indeed the projection onto the second factor is the canon-
ical projection onto the torsion-free module M/t(M) which is a free and thus projective module
when n = 1, a result allowing to split the short exact sequence 0 → t(M) → M → M/t(M) → 0.
This is not evident at all on Example 1.6 and even on the very simple example ẏ1 − ẏ2 = 0.

The comparison with Example 1.6 needs no comment at least when n = 1 and controllability
must have to do with t(M) = 0 when n ≥ 2 though it is only quite later on in the paper that
we shall be able to generalize the result expressed by the above remark. Also the extension of
the above results to the non-commutative case D = K[d] where K is a differential field with n
commuting derivations ∂1, ..., ∂n can be achieved but is much more delicate ([18,19]).

EXERCISE 2.11: When a = a(t) in Example 1.6, we let the reader prove that the controllability
condition is now the Ricatti inequality ȧ+a2−a 6= 0 in a coherent way with the constant coefficient
case already considered.

Taking into account the works of Janet and Spencer, the study of systems of PD equations
cannot be achieved without understanding involution and we now explain this concept. For
this, let µ = (µ1, ..., µn) be a multi-index with length | µ |= µ1 + ... + µn. We set µ + 1i =
(µ1, ..., µi−1, µi + 1, µi+1, ..., µn) and we say that µ is of class i if µ1 = ... = µi−1 = 0, µi 6= 0.
Accordingly, any operator P = aµdµ ∈ D acts on the unknowns yk for k = 1, ..., m as we may set
dµyk = yk

µ with yk
0 = yk and introduce the jet coordinates yq = {yk

µ | k = 1, ..., m; 0 ≤| µ |≤ q}.

It follows that, if a system of PD equations can be written in the form Φτ ≡ aτµ
k yk

µ = 0 with
a ∈ K, we may introduce the filtred differential module M = Dy/DΦ but we notice that the work
of Macaulay only covers the case m = 1. Then we define the (formal) prolongation of Φτ with re-
spect to di to be diΦ

τ ≡ aτµ
k yk

µ+1i
+∂ia

τµ
k yk

µ and induce maps di : M → M : ȳk
µ → ȳk

µ+1i
by residue.

Changing linearly the derivations if necessary, we may successively solve the maximum number
of equations with respect to the jets of class n, class (n − 1),..., class 1. At each order, a certain
number of jets called principal (pri) can therefore be expressed by means of the other jets called
parametric (par). Moreover, for each equation of order q and class i, d1, ..., di are called multi-
plicative while di+1, ..., dn are called nonmultiplicative and d1, ..., dn are nonmultiplicative for all
the remaining equations of order ≤ q − 1.

DEFINITION 2.12: The system is said to be involutive if each prolongation with respect to
a nonmultiplicative derivation is a linear combination of prolongations with respect to the multi-
plicative ones. Using Spencer cohomology, one can prove that such a definition is in fact intrinsic
[7,17,18,23].

EXAMPLE 2.13: ([13], §38, p 40 where one can find the first intuition of formal integrability !)
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The ideal q = ((χ1)
2, χ1χ3 −χ2) provides the system y11 = 0, y13 − y2 = 0 which is not involutive.

Effecting the permutation (1, 2, 3) → (3, 2, 1), we get the new system y33 = 0, y13 − y2 = 0. As
d1y33 − d3(y13 − y2) = y23 and d1y23 − d2(y13 − y2) = y22, the new system y33 = 0, y23 = 0, y22 =
0, y13−y2 = 0 is involutive with 1 equation of class 3, 2 equations of class 2 and 1 equation of class 1.

APPLICATION 2.14: t(M) = M iff the number of equations of class n is m. Otherwise there
is a strict inclusion t(M) ⊂ M .

PROPOSITION 2.15: ([17,23]) The following recipe will allow to bring an involutive system
of order q to an equivalent (isomorphic modules) involutive system of order 1 with no zero order
equations called Spencer form:
1) Use all parametric jets up to order q as new unknowns.
2) Make one prolongation.
3) Substitute the new unknowns.

PROPOSITION 2.16: For such a system, defining the character αi
1 = m−number of equations

of class i, we have α1
1 ≥ α2

1 ≥ ... ≥ αn
1 ≥ 0 and only the first nonzero character is intrinsic, coming

from the Hilbert polynomial of the module/system.

REMARK 2.17: cdD(M) ≥ r ⇔ αn−r+1
1 = ... = αn

1 = 0. In that case, we shall say that we have
full class n,..., full class (n-r+1). Thus r = 2 in the above example.

3) PURITY

As a first basic fact, quite important for the study of the noncommutative case, one must carefully
distinguish between an ideal/system and its symbol part, namely the top order part of order q
when the system is involutive. The following example will explain the difficulty involved, hidden
in the use of Grobner bases which are not intrinsically defined.

EXAMPLE 3.1: The primary ideal corresponding to the involutive system of the preceding ex-
ample of Macaulay has radical p = (χ3, χ2). However, the symbol part is the homogeneous ideal
a = ((χ3)

2, χ2χ3, (χ2)
2, χ1χ3) = ((χ2)

2, χ3) ∩ (χ1, χ2, χ3)
2 with the same radical but it is a pure

coincidence. Nevertheless, a and q have the same (co)dimension according to the famous Hilbert-
Serre theorem that we shall recall in Proposition 3.6. The importance of involution has not been
pointed out clearly in the study of Gröbner bases. However, it is clear that the two polynomials
(χ3)

2 and χ1χ3 −χ2 generate q in the previous example but the corresponding homogeneous ideal
at order 2 is now ((χ3)

2, χ1χ3) with radical (χ3) providing a wrong dimension.

DEFINITION 3.2: The characteristic variety V of an involutive system of order q is the alge-
braic set defined by the radical (care !) of the polynomial ideal in K[χ] generated by the m × m
minors of the characteristic matrix (aτµ

k χµ) where | µ |= q. Of course, when m = 1 we recover the
radical of the ideal we started with.

If m ∈ M , then the differential submodule Dm ⊂ M is defined by a system of OD/PD equa-
tions for one unknown only and we may look for its codimension cdD(Dm). In the commutative
case, looking at the annihilators, we get ann(M) ⊂ ann(Dm). In particular, if M is primary its
annihilator is a primary ideal q with radical p and we have q ⊆ ann(Dm) ⊆ p, ∀m ∈ M as a
possible characterisation. Accordingly, if M is prime, then ann(Dm) = p, ∀m ∈ M .

EXAMPLE 3.3: In Example 2.13, with the primary ideal q, then y2 and y3 are killed by p though
y is killed by q. The situation changes completely with the corresponding homogeneous ideal a as
y1 is killed by (χ3, (χ2)

2) and y12 is killed by (χ3, χ2) though y3 is killed by (χ1, χ2, χ3).

Even in the noncommutative case of systems with coefficients in a differential field K, one can
prove with the homological techniques of algebraic analysis ([2,18]) :

PROPOSITION 3.4: tr(M) = {m ∈ M | cd(Dm) > r} is the greatest differential submodule of
M having codimension > r.
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PROPOSITION 3.5: tr(M) does not depend on the presentation of the module as it can be
defined inductively by the exact sequences :

0 −→ tr(M) −→ tr−1(M) −→ extrD(extrD(M, D), D)

if we start from t−1(M) = M and t0(M) = t(M) when r = 0.

Thanks to (http://wwwb.math.rwth-aachen.de/OreModules), this proposition is essential for
the use of computer algebra and allows to refer to the Spencer form. In fact, the situation is exactly
similar to that of control theory with the Kalman form.

PROPOSITION 3.6: cdD(M) = cd(V ) = r ⇔ αn−r
1 6= 0, αn−r+1

1 = ... = αn
1 = 0 ⇔ tr−1(M) =

... = t0(M) = t(M) = M .

We may therefore define as in the Introduction:

DEFINITION 3.7: M is r-pure ⇔ tr−1(M) = M, tr(M) = 0 ⇔ cd(Dm) = r, ∀m ∈ M . In
particular, M is 0-pure iff t(M) = 0.

The following key results using a kind of ”partial localization” generalize the similar ones first
obtained by Macaulay ([13], §82) and provide a technical test linking purity and involution. From
now on we shall only consider the constant coefficient situation, considering χ1, ..., χn−r just like
parameters ([13], §77, p 86), but most of the results can be extended to the variable coefficient
situation, though with a lot of work more.

MAIN THEOREM 3.8: If cdD(M) = r one has the exact sequence:

0 −→ tr(M) −→ M −→ k(χ1, ..., χn−r) ⊗ M

Proof: According to the definition of involution, the system made by the PD equations of class
1+...+class (n−r) is also involutive for d1, ..., dn−r and thus also for d1, ..., dn by adopting the order-
ing (dn−r+1, ..., dn, d1, ..., dn−r). It allows to define a differential module Mr and an epimorphism
Mr → M → 0 as M is defined by more equations. Now, as cdD(M) = r, we have tr−1(M) = M and
each torsion element of t(M) = M surely satisfies at least r PD equations involving successively
dn, ..., dn−r+1. As for the other equations, they should only include d1, ..., dn−r and this is just the
way to construct t(Mr) by considering the exact sequence:

0 −→ t(Mr) −→ Mr −→ k(χ1, ..., χn−r) ⊗ Mr

As it is well known that localization preserves exactness [3,22], this exact sequence projects onto
the desired one.

Q.E.D.

REMARK 3.9: The above technique allows to generalize for arbitrary m the condition obtained
by Macaulay for m = 1 ([13], §41, p 43 and §43, p 45) that we translate into modern language as
another proof (See [3], IV, §1, exercise 9). In fact, if a ⊂ A = k[χ1, ..., χn] is such that cd(A/a) = r,
then a is unmixed (A/a is r-pure) if and only if S(χ1, ..., χn−r)P ∈ a ⇒ P ∈ a. For if a = q1∩...∩qs

with, say cd(A/q1) > r, then ∃S ∈ q1 and P /∈ q1, P ∈ q2 ∩ ...∩ qs so that SP ∈ a does not require
P ∈ a. Conversely, if no such q1 exists and SP ∈ a, then P ∈ a : (S) = a. Indeed and more
generally, if b ∈ A is an ideal and a ⊂ a : b 6= a, then b ⊂ pi = rad(qi) for some i. To prove this, if
a : b = c and b is not contained in any pi, then one can find b ∈ b, b /∈ pi, ∀i and c ∈ c, c /∈ a with
bc ∈ a ⊂ qi and thus c ∈ qi, ∀i that is c ∈ a and a contradiction.

COROLLARY 3.10: ([13], §41, p 43) M is r-pure ⇔ 0 → M → k(χ1, ..., χr) ⊗ M is exact.

COROLLARY 3.11: M is r-pure ⇔ ∃0 → M → L with projective dimension pdD(L) = r if
r ≥ 1.
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Proof: (Compare to [2], p 494 and [18], p 553) As M is r-pure, then tr(M) = 0 that is Mr is torsion
free ad we may use k(χ1, ..., χn−r)⊗Mr in order to parametrize Mr exactly as we did for embedding
a torsion-free module into a free module. According to Proposition 2.16, the parametrization now
depends on αn−r

1 arbitrary unknowns z, that is we may embed Mr into αn−r
1 copies of k[d1, ..., dn−r]

when coming back to the differential framework. After substitution into the original equations,
the equations of class 1 up to class (n − r) disappears for the z as they are automatically satified
by the parametrization. The number of nonmuliplicative derivatives is ≤ r − 1 (care) for each of
the remaining equations of class (n − r + 1) up to class n. But such a number is just the way to
know about the projective/free dimension by constructing a resolution of M or a Janet sequence
for the system ([17], p 146).

REMARK 3.12: In actual practice it is important to notice that the partial localization ”kills”
the PD equations of class 1 up to class (n − r − 1) (care again !) because of the compat-
ibility conditions provided by the involutive assumption. Moreover we now understand why
Macaulay ([13], §79, p 89) was always dealing with unmixed ideals a or pure modules A/a. It
is known ([2] and [18], Proposition 3.173, p 549) that an A-module M is r-pure if and only if
cd(A/p) = cd(M) = r for any p ∈ spec(A) appearing in the prime decomposition of rad(annA(M))
and no embedded primary components occur in a primary decomposition of annA(M) or equiv-
alently ass(M) = {p ∈ spec(A) | ∃x ∈ M, ann(x) = p}. Example 2.3 shows that the second
condition is needed. Accordingly, any prime or primary module is pure.

EXAMPLE 3.13: k = Q, m = 1, n = 3, q = 2, r = 1. The module M defined by the involutive
second order system Φ3 ≡ y33 = 0, Φ2 ≡ y23 = 0, Φ1 ≡ y13 = 0 is not pure. Among the compati-
bility conditions we have d2Φ

1 − d1Φ
2 = 0 As only the class 3 is full, the localization is done by

tensoring with k(χ1, χ2) and we get Φ1 = χ1

χ2

Φ2. Also, as y1 and y2 are killed by d3 they are in

t0(M) = M but not in t1(M). Hence there is a ”gap” because t1(M) = t2(M) and y3 generates
t2(M) as it is killed by (d1, d2, d3) and t3(M) = 0 by definition. In order to get a first order pre-
sentation (though not a Spencer form) we may introduce z1 = y, z2 = y1, z

3 = y2, z
4 = y3 and M1

is defined by 3 equations of class 2 and 2 equations of class 1 (exercise). With respect to (d1, d2),
M1 is not torsion-free but not a torsion module as t(M1) is generated by z4 as already noticed.
Finally we have ass(M) = {(χ3), (χ1, χ2, χ3)}as another way to check that M is not pure.

EXAMPLE 3.14: k = Q, m = 3, n = 4, q = 1, r = 1. The module M defined by the first order in-
volutive system y1

4 = 0, y2
4 = 0, y3

4 = 0, y3
3+y2

2+y1
1 = 0 is 1-pure. We notice that M1 is defined by the

only divergence-free condition and is thus torsion-free. Indeed, tensoring by k(χ1, χ2, χ3) in order
to localize, we get the parametrization y3 = −χ2

χ3

y2 − χ1

χ3

y1 = −χ2z
2 − χ1z

1, y2 = χ3z
2, y1 = χ3z

1

and we have an embedding M ⊂ L with L generated by (z1, z2) satisfying only z1
4 = 0, z2

4 = 0. Ac-
cordingly, L admits a resolution 0 → D2 → D2 → L → 0 with morphism (P1, P2) → (P1d4, P2d4)
and pd(L) = 1.

4) INVERSE SYSTEMS

Let K be a differential field with subfield of constants k = cst(K). The ring D = K[d] is filtred
by the order q of operators and we have K = D0 ⊂ D1 ⊂ ... ⊂ D∞ = D. Accordingly, the module
M is filtred by the order q of the linear combinations yq = Dqy allowing to describe elements of
M and we have the inductive limit M0 ⊆ M1 ⊆ ... ⊆ Mq ⊆ ... ⊆ M∞ = M with diMq ⊆ Mq+1.

DEFINITION 4.1: We define the system R = homK(M, K) = M∗ and set Rq = homK(Mq, K) =
M∗

q as the system of order q in order to have now the projective limit R = R∞ → ... → Rq →
... → R1 → R0. Accordingly, if a system of PD equations of order q is given as before, then
fq ∈ Rq : yk

µ → fk
µ ∈ K with aτµ

k fk
µ = 0 defines a section at order q and we set f∞ = f ∈ R for a

formal solution.

REMARK 4.2: In the case of an involutive system of order q in solved form, the matrix (aτµ
k ) and

the corresponding prolongations for increasing ordersin allow to express the principal jets from the
parametric jets (called ”complete set of remainders” by Macaulay) and exacty describe the upper
part of the picture drawn by Macaulay in ([13], §59, p 67 and §68, p 79). Similarly, for any q ≥ 0
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the following commutative and exact diagram:

0 0
↓ ↓

0 → Rq → Rq−1 → gq → 0
↓ ↓

0 → R = R → 0
↓ ↓

0 → gq → Rq

π
q

q−1

→ Rq−1 → 0
↓ ↓
0 0

allows to define the symbol of Rq and the upper row is again exactly describing the lower part of
the same picture through the use of truncated formal power series. The symbols are a modern way
to describe the ”compartments” of Macaulay. The use of a basis (1, 0, ....), (0, 1, ....) and so on for
the parametric jets, after ordering them, brings a diagonal matrix as explained by Macaulay ([13],
§59, p 67).

DEFINITION 4.3: A ”modular equation” E ≡ aµ
kfk

µ = 0 of order q is just a ”practical” way to
write down a section fq ∈ Rq if 0 ≤| µ |≤ q by using ”effective sections” and ”formal coefficients”
instead of ”effective coefficients” and ”formal unknowns” in the case of PD equations.

The following proposition generalizes the results of Macaulay to arbitrary systems with variable
coefficients ([2], [18]).

PROPOSITION 4.4: When M is a D-module, then R is a D-module too.
Proof: It is clear that D, as an algebra, is generated by K = D0 and T = D1/D0 with D1 = K⊕T .
Let us define:

(af)(m) = af(m) = f(am) ∀a ∈ K, ∀m ∈ M

(ξf)(m) = ξf(m) − f(ξm) ∀ξ = aidi ∈ T, ∀m ∈ M

It is easy to check that dia = adi + ∂ia and that ξη − ηξ = [ξ, η] is the standard bracket of vector
fields. We finally get (dif)k

µ = (dif)(yk
µ) = ∂if

k
µ − fk

µ+1i
that is exactly the Spencer operator. In

particular didj = djdi, ∀i, j = 1, ..., n (exercise) and diRq+1 ⊆ Rq leading to diR ⊂ R though
decreasing the order, contrary to what happens for M .
Alternatively and in a coherent way with differential geometry, if we have a linear system Φτ = 0
defining Rq and its first prolongation Φτ = 0, diΦ

τ = 0 defining Rq+1, as already exhibited in
Section 2, a section fq+1 ∈ Rq+1 over fq ∈ Rq satisfies both aτµ

k fk
µ = 0 and aτµ

k fk
µ+1i

+∂ia
τµ
k fk

µ = 0
as equalities in K with 0 ≤| µ |≤ q. Applying ∂i to the first and substracting the second, we get
aτµ

k (∂if
k
µ − fk

µ+1i
) = 0. Accordingly, we obtain:

fq+1 ∈ Rq+1
di−→ difq+1 ∈ Rq ⇐⇒ E ≡ aν

kfk
ν = 0

di−→ diE ≡ aµ
k (∂if

k
µ − fk

µ+1i
) = 0, ∀f ∈ R

but diE is of order q with 0 ≤| µ |≤ q whenever E is of order q + 1 with 0 ≤| ν |≤ q + 1. When
K = k we recognize exactly (up to sign) the operator of Macaulay ([13], §60, p 69).

Q.E.D.

EXAMPLE 4.5: k = Q, m = 1, n = 1, q = 2. For the system y11 − y = 0, if we set:
f ′ = (1, 0, 1, 0, ...) → E′ ≡ a0 + a11 + ... = 0 and f ′′ = (0, 1, 0, 1, ...) → E′ ≡ a1 + a111 + ... = 0
and use {f ′, f ′′} as a basis of R over k, we have d1f

′′ = f ′ or equivalently d1E
′′ = E′.

REMARK 4.6: If cd(M) = r and K = k, then αn−r+1
1 = 0, ..., αn

1 = 0 and a partial local-
ization brings the system to a finite type (zero symbol at high order) system in dn−r+1, ..., dn)
over the field k(χ1, ..., χn−r). Accordingly, there is a finite number of linearly independent cor-
responding sections of the localized system and thus an equal finite number of (dual) modular
equations as in the previous example ([13], §79, p 88). In the situation K = k, we have also
annD(M) = annD(R). Indeed, as a representative of any element of M can be written as a
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finite linear combination of parametric jets with coefficients in k, we have M ⊆ M∗∗ and thus
ann(M) ⊆ ann(M∗) ⊆ ann(M∗∗) ⊆ ann(M) ⇒ ann(M) = ann(M∗). This result generalizes the
one of Macaulay ([13], §61, p 70) obtained when m = 1. Indeed, aτµfµ = 0 ⇒ aτµfµ+ν = 0 by
prolongation and thus E ≡ aνfν = 0 ⇒ aτµdµE ≡ aτµaνfµ+ν = 0.

As we already know, any primary decomposition, say with two components for simplicity, gives
rise to a monomorphism 0 → M → Q′ ⊕ Q′′ where Q′, Q′′ are primary modules, both with two
epimorphisms M → Q′ → 0, M → Q′′ → 0, respectively induced by the localization morphisms
M → Mp′ , M → Mp” when M is pure (unmixed annihilator) with ass(M) = {p′, p”}. Setting
R′ = homK(Q′, K), R′′ = homK(Q′′, K) and using the fact that D∗ is injective, we get an epi-
morphism R′ ⊕ R′′ → R → 0 both with two monomorphisms 0 → R′ → R, 0 → R′′ → R proving
that R′, R′′, R′ + R′′, R′ ∩ R′′ are subsystems of R. The following proposition, not evident at first
sight, explains the aim of Macaulay ([13], end of §79, p 89) and allows to use various subsystems
for studying R instead of decomposing M .

PROPOSITION 4.7: R = R′ + R′′.
Proof: We have the well known short exact sequence 0 → R′ ∩ R′′ → R′ ⊕ R′′ → R′ + R′′ → 0
where the last morphism is (f ′, f ′′) → (f ′ − f ′′). Composing the epimorphism with the monomor-
phism 0 → R′ + R′′ → R and using the fact that the composite morphism R′ ⊕ R′′ → R is an
epimorphism, it follows that the previous monomorphism is also an epimorphism and thus an iso-
morphism, though in general R′∩R′′ 6= 0, unless we have p′ +p′′ = A, a situation always met with
max(A) ⊂ spec(A) in the case of modules over a ring A which is also a finitely generated algebra
over a field k.

Q.E.D.

We finally recall in a self-contained way a few results on the so-called socle and top of a module
M over a commutative noetherian integral domain A with unit 1 ([1],[6]). First of all, we quote
the following theorem on associated primes where both isolated and embedded components are
needed ([3], IV, §1, exercise 11).

THEOREM 4.8: If M is a finitely generated A-module, the sequence 0 → M → ⊕p∈ass(M)Mp

is exact.
Proof: If the sequence is not exact, let N be the kernel of the morphism on the right. If ass(M) =
{p1, ..., ps}, let us consider the defining exact sequences 0 → Ni → M → Mpi

, ∀i = 1, ..., s. By
definition, we have N = ∩Ni and it is well known that N 6= 0 ⇔ ass(N) 6= ∅. In that case, let
p ∈ ass(N) ⊂ ass(M), that is to say p = pi for a certain 1 ≤ i ≤ s. Again by definition, one can
find x ∈ N ⊂ Ni such that p = pi = ann(x). But x ∈ Ni ⇔ ∃si ∈ Si = A − pi, six = 0 because
of localization and thus a contradiction. One could also say that ann(x) ⊂ pi for some i whenever
0 6= x ∈ N ⊂ M as it is well known that ∪pi is the set of zero divisors for M . But x ∈ Ni and we
conclude as above.

Q.E.D.

REMARK 4.9: Using this theorem while taking into account Remark 2.10 and Proposition 4.7,
we are able to relate controllability to the irreducibility of a module ([12], p 179 and [18], p 110) or
equivalently to the study of maximal subsystems corresponding to the torsion-free specialization
in control theory. Such a result will be the heart of this section when dealing with the top of a
system and seems totally new.

EXAMPLE 4.10: Let A = Q[x, y, z], M = A/a with a = (x2, xy, xz, yz) = p1 ∩ p2 ∩ m2 where
p1 = (x, y), p2 = (x, z) are the two minimal primes (isolated components of the characteristic
variey) and m = (x, y, z) ∈ max(A) (embedded component). Then ass(M) = {p1, p2, m} where p1

kills z̄, p2 kills ȳ and m kills x̄. It follows that x̄ belongs to the kernel of M → Mp1
⊕ Mp2

and
cannot be killed by any s ∈ A − m.

Keeping in mind the bricks needed in order to construct a house, a basic idea in module theory is
to look for the greatest semi-simple submodule of a given module. For this, if m ∈ max(A)∩ass(M),
then one can find a finite number of elements x, y, ... ∈ M killed by m. Accordingly, the map
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x : A → M : a → ax has kernel m and A/m ≃ Ax ⊆ M is a simple module, like Ay which
may eventually be different and so on. The direct sum Ax ⊕ Ay ⊕ ... is called the socle of M at
m and denoted by socm(M). The various simple components are called isotypical as they are all
isomorphic to A/m.

DEFINITION 4.11: The socle of M is soc(M) = ⊕socm(M) for m ∈ max(A) ∩ ass(M). It is
the largest semi-simple submodule of M .

We notice that the double condition on the direct sum is essential as we need not only a sub-
module (m ∈ ass(M)) but also a simple module (m ∈ max(A) ⊆ spec(A)). Also, if S′, S” are two
simple submodules of M , then M/S′ ⊕S” is the fiber sum of M/S′ and M/S” over M ([12], p 88)
but the resulting construction is not natural and will provide a motivation for duality in order to
use Proposition 4.7. Finally, M is semi-simple if M = soc(M) and soc(M) = 0 if M has no simple
submodule, like the Z-module Z. In the previous Example S = Ax̄ ≃ A/m is the only simple
submodule of M .

EXAMPLE 4.12: If A = Q[x, y] and M = A/a with a = (x3, y2, xy), then both ȳ and x̄2 are
killed by m = (x, y). It follows that soc(M) = socm(M) = Aȳ⊕Ax̄2 has two isotypical components
isomorphic to A/m.

LEMMA 4.13: Any morphism f : M → N induces a morphism f : soc(M) → soc(N). In
particular, if M ′ is a submodule of M , then soc(M ′) = M ′ ∩ soc(M).
Proof: The lemma follows at once from the Schur lemma saying that, when f 6= 0, then M simple
⇒ f injective, N simple ⇒ f surjective.

Q.E.D.

DEFINITION 4.14: The radical of a module M is the submodule rad(M) which is the inter-
section of all the maximum proper submodules of M . If rad(M) = 0, for example if M is simple,
we say that M has no radical. If M has no proper maximum submodule, then rad(M) = M .

LEMMA 4.15: rad(M) is the intersection of all the kernels of the nonzero morphisms M → S
where S is a simple module.
Proof: From the Schur lemma, the above morphism is an epimorphism and we may introduce
the defining short exact sequences 0 → N → M → S → 0. Let us consider the exact sequence
0 → ∩N → M → ⊕S. The image of the morphism on the right is a submodule of a semi-simple
module and thus a semi-simple module too, which is even a direct summand. Accordingly, restrict-
ing the choice of the simple modules in order to have an irredundant intersection, the morphism
on the right thus becomes an epimorphism providing the short exact sequence of the lemma.

Q.E.D.

DEFINITION 4.16: The top of the module M is the semi-simple module defined by the short
exact sequence 0 → rad(M) → M → top(M) → 0. It can also be defined as the largest quotient
of M that is a direct sum of simple modules.

We have the following three useful lemmas:

LEMMA 4.17: Any morphism f : M → N induces a morphism f = rad(M) → rad(N).
Proof: Let S be a simple module. For any morphism g : N → S, the composition g ◦ f : M → S
vanishes on rad(M) and thus g vanishes on f(rad(M)), that is f(rad(M)) ⊆ rad(N).

Q.E.D.

LEMMA 4.18: If M 6= 0 is finitely generated, then rad(M) 6= M .
Proof: From noetherian arguments, M always contains a maximum proper submodule.

Q.E.D.

LEMMA 4.19: (Nakayama) Let M be a finitely generated module and N a submodule of rad(M).
If L ⊆ M is such that L + N = M , then L = M .

12



Proof: Let us suppose that L 6= M . Then, from noetherian arguments again, L is contained in a
maximum proper submodule L′. It follows that N + L ⊆ rad(M) + L′ ⊆ L′ and a contradiction.

Q.E.D.

We are now ready to provide the achievement of this paper while explaining ([14], §77,79,82).

5) MACAULAY ’ S SECRET

The crucial idea of Macaulay has been to replace soc(M) by top(R) by means of duality theory,
in order to use Nakayama’s lemma for finding generating sections (formal solutions) of R. We
proceed in a few successive steps for working with differential modules in an effective way and
treating the following specific examples.

5.1) The first basic procedure is to check that M is r-pure. For this we must determine r by
exhibiting an involutive system. As already noticed, a linear change of derivations may be needed
in order to check involution.The partial localization will then be used in order to check the purity
and to deal only with maximal ideals because a prime ideal is maximum if and only if its residue
integral domain is zero dimensional.

EXAMPLE 5.1.1: If a = (χ1, χ2χ3) = (χ1, χ2)∩ (χ1, χ3) the corresponding system y1 = 0, y11 =
0, y12 = 0, y13 = 0, y23 = 0 is not involutive and the change χ1 → χ3, χ2 → χ2, χ3 → χ2 − χ1 pro-
vides the involutive system in solved form y33 = 0, y23 = 0, y22 − y12 = 0, y13 = 0, y3 = 0. We have
M ⊂ Q(χ1) ⊗ M and the localized module has the two associated maximum ideals m1 = (d3, d2)
and m2 = (d3, d2 − χ1) with m1 + m2 = Q(χ1)[d2, d3] as d2 − (d2 − χ1) = χ1.

EXAMPLE 5.1.2: a = ((χ1)
3, (χ2)

2, χ1χ2) is primary because rad(a) = (χ1, χ2) = m. With
D = Q[d1, d − 2], the homogeneous second order system R3 = {y222 = 0, y122 = 0, y112 = 0, y111 =
0, y22 = 0, y12 = 0} is trivially involutive because its symbol is zero. The corresponding module is
primary and 2-pure. No localization is needed and dimQ(R) = dimQ(R3) = 4.

EXAMPLE 5.1.3: a = ((χ3)
2, χ2χ3−(χ1)

2, (χ2)
2) is primary because rad(a) = (χ1, χ2, χ3) = m.

With now D = Q[d1, d2, d3], the homogeneous system R2 = {y33 = 0, y23 − y11 = 0, y22 = 0} is not
involutive (see [18, p 321 for another similar example) but its prolongation R4 is trivially involutive
with zero symbol and dimQ(g3) = 1. No localization is needed and dimQ(R) = dimQ(R2) = 8.

5.2) The idea is now to adapt to modules an argument already used in Remark 3.9 for ideals. If
a = ∩qi is a primary decomposition with pi = rad(qi), then a : b 6= a ⇒ bi ⊂ pi for a certain i. In
particular, a : m 6= a for m ∈ max(A) ⇒ m = pi for a certain i.

Let us set Am = F as a free module and consider the short exact sequence 0 → I → F → M → 0
where I is the so-called module of equations and let a ∈ A be an ideal. We want to prove the fol-
lowing lemma:

LEMMA 5.2.1: I ⊆ I : a = J 6= I ⇒ a ⊆ pi for a certain i.
Proof: Let us consider a primary decomposition I = ∩Ii in F and pass to the quotient by introduc-
ing short exact sequences 0 → Ii → F → Qi → 0 in order to have epimorphisms M → Qi → 0 and
a monomorphism 0 → M → ⊕Qi. If I 6= J , let x ∈ J, x /∈ I with ax ∈ I ⇒ ax̄ = 0, x̄ 6= 0, ∀a ∈ a.
It follows that a is a zerodivisor and thus a ∈ ∪pi. Also, x /∈ Ii for a certain i otherwise x ∈ ∩Ii = I.
But Ii is (co)primary with ax ∈ I ⊂ Ii, x /∈ Ii (or ax̄ = 0, x̄ 6= 0 in Qi) ⇒ a ∈ pi ⇒ a ⊂ pi. In
particular, if I : m 6= I for m ∈ max(A), then m = pi for a certain i as before and m ∈ ass(M).

Q.E.D.

It is at this precise point that we have to use specific properties of the ring D that will now
be used in place of A. Indeed, it is well known [4,15,22] that the ring D∗ = homk(D, k) of formal
power series is an injective module as there is a canonical isomorphism R = M∗ = homk(M, k) ≃
homD(M, D∗). From now on and unless specified, we assume that the partial localization has been
realized. Using therefore k(χ)⊗M over k(χ) in place of M over k, it is thus equivalent to assume
that M is n-pure, that is dimk(M) < ∞ and in this case we have of course M∗∗ ≃ M and any
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associated prime ideal is maximum, that is ass(M) ⊂ max(D). However, the reader must always
keep in mind that the original module was pure and thus contained in its localization, that is to
say no ”simplification” is possible in the language of control theory, where we recall once more that
the transfer matrix approach is superseded by the localization procedure !.

As we have soc(M) = ⊕socm(M) where the summation is now done on ass(M) only, in order
to dualize the short exact sequence 0 → soc(M) → M → M/soc(M) → 0, we need first dualize
the various short exact sequences 0 → socm(M) → M → N → 0. However, if S is a simple
module, we have m = ann(S) ⊆ ann(S∗) ⊆ ann(S∗∗) = ann(S). Accordingly, the dual of a simple
module isomorphic to D/m is an isotypical simple module, because else it would have a proper
factor module, the dual of which would be a proper submodule of D/m. We get therefore, again
because of the injectivity of D∗, the short exact sequences 0 → N∗ → M∗ → topm(M∗) → 0 and
the desired dual sequence is finally obtained by introducing the intersection rad(M∗) = ∩N∗ for
the various m ∈ ass(M). A key result is provided by the following theorem which is not evident
at all, even on very elementary examples, and provides a link between the socle of a module and
the top of the corresponding system.

THEOREM 5.2.2: N∗ ≃ mM∗ and the previous short exact sequence relative to m is isomorphic
to the short exact sequence 0 → mM∗ → M∗ → D/m ⊗ M∗ → 0.
Proof: As the second result is just obtained by tensoring with M∗ the short exact sequence
0 → m → D → D/m → 0, it just remains to prove the first one.
For this, let us set m = (a1, ..., at) =

∑
Da and use the notations of the preceding lemma. If

we introduce I : a = J(a) ⊂ F and introduce the corresponding short exact sequence 0 →
J(a) → F → N(a) → 0 for each generator a ∈ m, we have aJ(a) ⊆ I by definition and the

multiplication by a thus induces a monomorphism 0 → N(a)
a
→ M . By duality, we have the

epimorphism M∗ a
→ N(a)∗ → 0 and obtain therefore N(a)∗ = aM∗. Finally, if I : m = J ⊂ F ,

we have of course J = ∩J(a) where the intersection is taken on the various generators of m

and an exact sequence 0 → J → F → ⊕N(a) inducing a monomorphism 0 → N → ⊕N(a)
because of the defining short exact sequence 0 → J → F → N → 0. Moreover, the inclusion
J ⊆ J(a), ∀a ∈ m induces an epimorphism N → N(a) → 0. Accordingly, we are exactly in the
position to use Proposition 4.7 in order to get by duality the inclusion 0 → N(a)∗ → N∗ and
therefore N∗ =

∑
N(a)∗ =

∑
aM∗ = mM∗ ⊆ M∗. Finally, any nonzero element in the module

on the right in the sequence of the theorem is killed by m and admits a representative in R which
is not in mR. By definition of hom, it is the restriction of a section of R to a simple submodule of
M .

Q.E.D.

COROLLARY 5.2.3: We have the short exact sequence 0 → ∩mR → R → top(R) → 0 coming
from the chinese remainder theorem by tensoring D/ ∩ mi ≃ ⊕D/mi with R.

COROLLARY 5.2.4: 0 → R → ⊕Rm projects onto top(R) = ⊕topm(R) = ⊕top(R)m.
Proof: First of all, using the exactness of the localizing functor, we have top(R) = ⊕D/m ⊗ R
with D/m ⊗ R ≃ R/mR ⇒ Rm/mRm ≃ (R/mR)m ≃ R/mR ≃ topm(R). Indeed, m ∈ max(D) ⇒
(m, s) = D, ∀s ∈ D − {m} and ∃t ∈ D − {m}, a ∈ m with st + a = 1. Accordingly, ∀f ∈ R, then
1
s
f = st+a

s
= tf + a

s
f and we can therefore take out the denominators when localizing. Finally, as

m′ + m” = D, ∀m′, m” ∈ ass(M), we have similarly (R/m′R)m” = 0.
Q.E.D.

This corolary allows one to use Nakayama’ lemma in order to look for the generators of R
because M and thus R are finitely generated over k and thus over D by assumption. The following
theorem, which is a straight consequence of ([12], IV, §2, p 109), constitutes the secret of Macaulay
([13], §82, end p 91) and explains the reason for introducing the (inverse) system.

THEOREM 5.2.5: The minimum number of generators of R is equal to the maximum number
of isotypical components in the various components of the socle of M or of the top of R = M∗.
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5.3) As the examples in this subsection will clearly show out, the number of generators is related to
the localized module/system and not to the original module/system as we shall exhibit situations
needing two generators even though max(D) ∩ ass(M) = ∅. Therefore, in this last subsection, we
shall explain the way followed by Macaulay ([13], §79, p 89) in order to get back informations on
the original system from results on the localized one. For simplicity the index k of the unknowns
will not be written down.
As we already did, setting χ = (χ1, ..., χn−r) and introducing µ = (µ′, µ”) with 1 ≤ µ′

i ≤
n − r, n − r + 1 ≤ µ”j ≤ n, we obtain the localized system by substituting yµ = y(µ′,µ”) = χµ′yµ”

in the original PD equations. However, even if we start from an involutive system, the correspond-
ing localized system may be still involutive with full classes but with quite different features, for
example no longer homogeneous if the original system is homogeneous. In order to manage with a
solved form, we have the following result found by Macaulay ([13], §78, p 88 (A) and §79, p 89 (B)).

PROPOSITION 5.3.1: The localized system is k(χ) ⊗ R.
Proof: As M is finitely presented, there is the abstract isomorphism ([22], Th 3.84, p 107):

homk(χ)(k(χ) ⊗ M, k(χ)) ≃ k(χ) ⊗ homk(M, k) = k(χ) ⊗ R

where we recall that M can be identified with its image in k(χ) ⊗ M as it is pure. However,
in actual practice, it is not evident at all to discover that a single determinant in k(χ) allows to
provide modular equations with coefficients polynomials in k[χ]. In fact, all principal jets (pri)
of order ≥ q and class ≥ n − r + 1 can be expressed from parametric jets (par) of the original
system and can therefore be expressed by means of finite linear combinations of the jets of the
localized system with order ≥ q − 1 with coefficients in k[χ] (care). However, these latter jets can
themselves be linearly dependent through a finite number of equations of order ≤ q − 1 . Solving
these equations with respect to principal jets of order ≤ q − 1 may therefore bring a determinant
c(χ) ∈ k[χ]. Accordingly, any modular equation of the localized system can be written in the form
E ≡ c(χ)apara +

∑
b(χ)apri = 0 with b, c ∈ k[χ]. More generally, we get a finite number of modular

equations of the form E ≡ cµ”(χ)aµ” ≡ cλ′

µ”χλ′aµ” = 0 called r-dimensional modular equations by
Macaulay, with an inequality | λ′ | − | µ” |≤ δ for a certain relative integer δ and equality for ho-
mogeneous systems. As no ”simplification” may exist, that is tr−1(M) = 0 for the original module,
one just needs to set aµ” = χµ′a(µ′,µ”) in order to get the so-called n-dimensional modular equa-

tions Eα′ ≡
∑

λ′+µ′=α′cλ′

µ”a
(µ′,µ”) = 0. The following theorem on the way to generate the modular

equations is the key result obtained by Macaulay ([13], §82, end p 91) but not understood up to now.

EXAMPLE 5.3.2: Purity is essential in the process of localization/delocalization. In order to
prove it, let us consider the very simple Example 2.3 of codimension 1 but not pure. Localizing,
we get from the second PD equation χ1y2 = 0 leading to y2 = 0 that is a new PD equation. As an
exercise, we let the reader compare with the pure situation of Example 2.2.

THEOREM 5.3.3: There is a finite number of r-dimensional modular equations, a smaller num-
ber of r-dimensional modular equations of which all the others are derivates and an equal or still
smaller number of n-dimensional modular equations of which all the others of a certain order are
derivates.
Proof: In Eα′ we have | µ |=| µ′ | + | µ” |=| α′ | − | λ′ | + | µ” |≥| α′ | −δ. As for the derivates,
we have dγ”E ≡ cλ′

µ”χλ′+µ′a(µ′,µ”−γ”) = 0 with aµ−1i = 0 if µi = 0 or a(µ1,...,µi−1,...,µn) if µi ≥ 1
([14], §60, p 69).
We have therefore (dγ”E)β′ ≡ dγ”(Eβ′) ≡ dγ”Eβ′ ≡

∑
λ′+µ′=β′cλ′

µ”a
(µ′,µ”−γ”) = 0 with | γ” |≤ τ

since there are only a finite number of linearly independent derivates of the r-dimensional equations
as the localized system is a finite dimensional differential vector space over k(χ).
More precisely, starting now from Eα′ ≡ cλ′

µ”a
(α′

−λ′,µ”) = 0 with λ′ ≤ α′, the γ”-derivates are of

the form Eβ′ ≡ cλ′

µ”a
(β′

−λ′,µ”−γ”) = 0 with λ′ ≤ β′, γ” ≤ µ” and where | β′ |, | γ′ |≤ τ are fixed
positive integers (including zero).
Let us finally consider all the modular equations of order q that can be obtained as derivates,
that is all the Eβ′ with q ≥| β′ | − | λ′ | + | µ” | − | γ” |≥| β′ | −τ − δ that is to say
β′

i ≤| β′ |≤ q + δ + τ, ∀i = 1, ..., n− r. Accordingly, every Eβ′ of order q is a derivate of Eα′ for a
fixed α′ if α′

i ≥ q + δ + τ, ∀i = 1, ..., n − r.
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Q.E.D.

EXAMPLE 5.3.4: Coming back to Example 5.1.2, we have par = {y, y1, y2, y11} ⇒ M ≃
ky + ky1 + ky2 + ky11 and thus f = (1, 0, 0, 0) → E1 ≡ a0 = 0, f = (0, 1, 0, 0) → E2 ≡ a1 =
0, f = (0, 0, 1, 0) → E3 ≡ a2 = 0, f = (0, 0, 0, 1) → E4 ≡ a11 = 0. We have soc(M) = Dy2 ⊕ Dy11

with two isotypical components both killed by m = (d1, d2) and top(R) = {E3, E4} provides two
generators for R as we have indeed d2E3 = E1, d1E4 = E2, that is to say mR is generated by
{E1, E2} in agrement with Nakayama’s lemma.

EXAMPLE 5.3.5: Coming back to Example 5.1.3, we have par = {y, y1, y2, y3, y11, y12, y13, y111}.
We have soc(M) = Dy111 killed by m = (d1, d2) and top(R) = {E} with E ≡ a111 + a123 = 0
provides a unique generator of R as we have d1E ≡ a11 + a23 = 0, d2E ≡ a12 = 0, d3E ≡ a13 =
0, ..., d111E ≡ a0 = 0 as a way to generate mR. It is remarkable that 8 = 23 = 2n is a general
combinatorial result proved by Macaulay ([13], §68, p 79). A similar simpler situation is met with
n = 2 and y22 = 0, y12 − y11 = 0 (exercise).

EXAMPLE 5.3.6: Coming back to Example 3.14 which needs a partial localization with k(χ) =
k(χ1, χ2, χ3), the localized system is y1

4 = 0, y2
4 = 0, y3

4 = 0, χ3y
3 + χ2y

2 + χ1y
1 = 0. Clearly

k(χ) ⊗ M ≃ k(χ)y1 + k(χ)y2 ≃ k(χ)[d4]y
1 ⊕ k(χ)[d4]y

2 is a semi-simple module with two iso-
typical components both killed by m = (d4). Accordingly, (1, 0) → χ3E1 ≡ χ3a

0
1 − χ1a

0
3 =

0, (0, 1) → χ3E2 ≡ χ3a
0
2 − χ2a

0
3 = 0 provides the two generators of the localized system, even

though max(D) ∩ ass(M) = ∅ in this case. We notice that the determinant c(χ) = χ3 is unavoid-
able. Delocalizing, we get χ1χ3 → a1

1 − a3
3 = 0, χ2χ3 → a2

2 − a3
3 = 0 and so on, in agrement with

the general theory for the original system.

EXAMPLE 5.3.7: n = 3, m = 1, q = 2, k = Q, the module is 2-pure and defined by the homoge-
neous involutive system y33 = 0, y23−y13 = 0, y22−y12 = 0. With k(χ) = k(χ1), the corresponding
localized system y33 = 0, y23 − χ1y3 = 0, y22 − χ1y2 = 0 is again involutive with par = {y, y2, y3}.
We obain therefore (1, 0, 0) → E1 ≡ a0 = 0, (0, 1, 0) → E2 ≡ a2 + χ1a

22 + (χ1)
2a222 + ... =

0, (0, 0, 1) → E3 ≡ a3 + χ1a
23 + (χ1)

2a223 + ... = 0. We notice that m1 = (d3, d2 − χ1) kills
y3 while m2 = (d3, d2) kills y2 − χ1y, each maximum ideal in k(χ1)[d2, d3] leading to a unique
isotypical component. Denoting simply by M the localized module and by R the corresponding
system, we have the short exact sequence 0 → socm2

(M) → M → N2 → 0 (care to the notation)
and the dualizing short exact sequence 0 → N∗

2 → R → topm2
(R) → 0. Here, N2 is obtained

by adding y2 − χ1y = 0 to the equations of the localized system and we obtain the subsystem
N∗

2 = f0(E1 + χ1E2) + f3E3 ⊂ R = f0E1 + f2E2 + f3E3. We check the relations:

d2E1 = 0, d3E1 = 0, d2E2 = E1 + χ1E2, d3E2 = 0, d2E3 = χ1E3, d3E3 = E1 + χ1E2

transforming R into a 3-dimensional differential vector space over k(χ) and obtain m2R = (f2 +
f3)(E1 +χ1E2)+χ1f3E3 = f ′

0(E1 +χ1E2)+f ′
3E3, that is we check directly N∗

2 = m2R and could
check similarly N∗

1 = m1R, a result highly not evident at first sight. According to the general
theory, there should be one generator only and we may choose E = E2 + E3 in order to generate
R as we have indeed the three linearly independent relations:

E = E2 + E3, d2E − χ1E = E1, d3E = E1 + χ1E2

allowing to determine E1, E2, E3 from the derivates of E. The system being homogeneous, we have
q + δ + τ = 2− 1+1 = 2. As we have E ≡ 1(a1 + a3)+ ...+(χ1)

2(a112 + a122 + a222 + a113 + a123 +
a223) + ... = 0, it is easy to check that the single modular equation E11 ≡ a112 + a122 + a222 +
a113 + a123 + a223 = 0 generates a11 = 0, a13 + a23 = 0, a12 + a22 = 0, a1 = 0, a2 = 0, a3 = 0, a0 = 0
successively. Hence all the modular equations up to order 2 are generated by a single modular
equation at order 3, a result highly not evident at first sight.

EXAMPLE 5.3.8: Looking back to Example 2.3, the primary decomposition brings the two
subsystems R′ = {y2 = 0 → a0 = 0, a1 = 0, a11 = 0, ...} and R” = {y22 = 0, y12 = 0, y11 = 0 →
a0 = 0, a1 = 0, a2 = 0} with R = R′ + R”. One clearly needs two generators in order to generate
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any Rq, say {a2 = 0, a111 = 0} for q = 3.

EXERCISE 5.3.9: Treat similarly the inhomogeneous involutive system y33 = 0, y23 = 0, y22 =
0, y13 − y2 = 0 and prove that there is again a unique generating modular equation.

6) CONCLUSION:
We summarize the way leading to revisit the ”inverse system” of Macaulay by using modern
techniques of algebraic analysis, namely differential geometric arguments for studying the system
instead of the module.
The main purpose is to find generators for the differential system dual to the differential module.
For this, the only way known in the literature is to control the generators of the system from the
generators of its top by using Nakayama’s lemma. Again by duality, this amounts to count the
isotypical components of the socle of the module. Meanwhile, the key idea is to decompose the
system into subsystems instead of using a primary decomposition of the module in order to deal
with pure modules, a concept generalizing the unmixedness assumption of Macaulay. However,
the original system is not in general finitely generated and it is therefore essential to use a partial
localization in order to deal with a finite dimensional localized system.
The present approach avoids the abstract systematic use of the injective hull by Oberst and opens
a new way towards effective computer algebra packages for studying identifiability in engineering
sciences.
It is thus remarkable that Macaulay had the intuition of these techniques as early as in 1916 and
we express our deep gratitude to his work.
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[13] F. S. MACAULAY, The Algebraic Theory of Modular Systems, Cambridge Tracts 19, Cam-
bridge University Press, London, 1916; Reprinted by Stechert-Hafner Service Agency, New York,
1964.
[14] B. MALGRANGE, Cohomologie de Spencer (d’après Quillen), Sém. Math. Orsay, 1966.
[15] U. OBERST, Multidimensional Constant Linear Systems, Acta Appl. Math., 20, 1990, 1-175.
[16] V.P. PALAMODOV, Linear Differential Operators with Constant Coefficients, Grundlehren
der Mathematischen Wissenschaften 168, Springer, 1970.
[17] J.-F. POMMARET, Partial Differential Equations and Group Theory,New Perspectives for
Applications, Mathematics and its Applications 293, Kluwer, 1994.
[18] J.-F. POMMARET, Partial Differential Control Theory, Kluwer, 2001.

17



(http://cermics.enpc.fr/∼pommaret/home.html)
[19] J.-F. POMMARET, Algebraic Analysis of Control Systems Defined by Partial Differential
Equations, in Advanced Topics in Control Systems Theory, Lecture Notes in Control and Infor-
mation Sciences 311, Chapter 5, Springer, 2005, 155-223.
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