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Abstract

We consider in this paper a Gaussian sequence model of observations Yi, i ≥ 1

having mean (or signal) θi and variance σi which is growing polynomially like iγ ,

γ > 0. This model describes a large panel of inverse problems. We estimate the

quadratic functional of the unknown signal
∑

i≥1
θ2

i when the signal belongs to

ellipsoids of both finite smoothness functions (polynomial weights iα, α > 0) and

infinite smoothness (exponential weights eβir

, β > 0, 0 < r ≤ 2). We propose

a Pinsker type projection estimator in each case and study its quadratic risk.

When the signal is sufficiently smoother than the difficulty of the inverse problem

(α > γ + 1/4 or in the case of exponential weights), we obtain the parametric rate

and the efficiency constant associated to it. Moreover, we give upper bounds of the

second order term in the risk and conjecture that they are asymptotically sharp

minimax. When the signal is finitely smooth with α ≤ γ + 1/4, we compute non

parametric upper bounds of the risk of and we presume also that the constant is

asymptotically sharp.

Mathematics Subject Classifications 2000: 62F12, 62G05, 62G10, 62G20

Key Words: Gaussian sequence model, inverse problem, minimax upper bounds,

parametric rate, Pinsker estimator, projection estimator, quadratic functional, second

order risk.
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1 Introduction

We observe {Yi}i=1···n

Yi = θi + ǫ ξi ∀i = 1 · · ·n (1)

where ξi are independent identically distributed (i.i.d.) random variables, having a

Gaussian law with zero mean and variance σ2
i = i2γ for some fixed γ ≥ 0. Let us

mention that in case {σi}i≥1 is a bounded sequence the problem is direct and when

σi → ∞ the problem is an inverse problem. We say that the problem is ill-posed when

σi increases polynomially and severely ill-posed when it increases exponentially.

We want to estimate the quadratic functional Q(θ) =
∑∞

i=1 θ2
i , where θ = {θi}i≥1

belongs to the ℓ2-ellipsoid

Σ =

{
θ :

∞∑

i=1

a2
i θ

2
i ≤ L

}
, (2)

where ai is a non decreasing sequence of positive real numbers and L > 0. We consider

both polynomial sequence ai = iα where we say that the signal is (ordinary) smooth

and exponential sequence ai = exp(βir) where we say that the signal is super-smooth,

α, β > 0 and 0 < r ≤ 2.

It is known that this model can be deduced from a linear operator equation with

noisy observations Y = Ax + ǫ ξ, where A : H → H is a known linear operator on

the Hilbert space H, x belongs to H is the signal of interest and ξ is a standard white

Gaussian noise. By considering an orthonormal basis {ϕi}i≥1 of H, we consider only

the sequence of values Yi := Y (ϕi)/bi, where b2
i are the eigenvalues of AA∗ for i ≥ 1.

For more details and examples of inverse problems that can be written in the form

(1) we refer the reader to Cavalier et al.[4], [5] and references therein. We mention

as particular examples the convolution operator, the Radon transform in the case of

tomography or problems described by partial differential equations.

Estimation of θ in the inverse problem (1) with a quadratic risk was thoroughly

studied in the literature from the minimax point of view. Let us only mention a

few minimax adaptive results: oracle inequalities in Cavalier et al. [5], sharp adaptive

estimation by block thresholding in Cavalier et al. [4] and adaptive estimators defined

by penalized empirical risk in Golubev [9] .

Estimation of quadratic functionals in inverse problems was studied in two par-

ticular problems (specified operators). Butucea [1] considered the convolution density

model and studied the rates of a kernel type estimator. Méziani [14] estimates the pu-

rity of a quantum state, which corresponds mathematically to a quadratic functional of

a bivariate function of mass 1, in a double inverse problem: tomography and convolu-
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tion with Gaussian noise. Our model allows to consider more general inverse problems,

i.e. various operators A.

Quadratic functionals were much more studied in the direct problem (σj bounded

for all j) since first results given by Ibragimov and Has’minskĭı [10] and Ibragimov et

al. [11]. Fan [8] gave minimax rates over hyperrectangles and Sobolev-type ellipsoids.

Donoho and Nussbaum [6] gave Pinsker sharp minimax estimators in this model and in

the equivalent models of fixed equidistant design regression and Gaussian white noise

model. Fore more general bodies which are not quadratically convex, Cai and Low [2]

showed that nonquadratic estimators attain the minimax rate of the quadratic func-

tional. For adaptive estimators over hyperrectangles we cite Efromovich and Low [7].

Sharp or nearly sharp adaptive estimators over lp-bodies were found by Klemelä [12].

Adaptive estimators over more general Besov and lp bodies were given by Cai and

Low [3]. In the density model, let us mention adaptive estimators via model selection

by Laurent [13].

Let us underline the difference between estimating Q(θ) in our model and that

of estimating from direct data
∑

j≥1 j2γθ2
j for γ ∈ N as it was done, e.g., by Fan [8],

Donoho and Nussbaum [6] and Klemelä [12]. In our case, the variance of our estimators

is slower. When estimating the quadratic functional of a derivative, the bias is smaller,

so the rates and constants are different.

Here, we give a Pinsker-type projection estimator which automatically attains the

parametric rate and the efficiency constant for all super-smooth signals and for the

smooth signals when α ≥ γ + 1/4. Moreover, in this case we give nonparametric

minimax upper bounds of the second order term in the quadratic risk. Our estimator

attains the expected minimax nonparametric rate in the case of smooth signals with

α < γ + 1/4. We conjecture that the asymptotic constant in the nonparametric upper

bound of the risk is sharp. The proofs of sharp lower bounds will make the object of

future work.

Let us mention that our method can be easily adapted for severely ill posed inverse

problems, i.e. σi increases as an exponential. The case where σi = ei2 is of particular

interest in practice and hasn’t been studied for estimating the signal {θi}i≥1 either.

Future developments should concern adaptive estimation of the quadratic functional.

In Section 2 we describe the estimator and the precise choice of tuning parameters

and give asymptotic upper bounds rates of convergence and associated constant. We

postpone the proofs to the Section 3 and the Appendix.
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2 Estimation procedure and results

Let us define the estimator

Q̃ =

∞∑

i=1

hi(Y
2
i − ǫ2σ2

i ), (3)

where {hi}i≥1 is a sequence between 0 and 1. We shall actually see that the optimal

sequence is truncated, i.e. hi = 0 for all i > W and that the optimal value of W tends

to infinity when ǫ → 0.

Let us first consider the case of smooth signal: θ ∈ Σ(α,L), where ai = iα.

Theorem 1 Let observations Y1, . . . , Yn, ... satisfy model (1). Then the estimator Q̃

in (3) with parameters {hi}i≥1 and W defined by

hi =

(
1 −

(
i

W

)2α
)

+

and

W =

⌊(
L2(4γ + 4α + 1)(4γ + 2α + 1)

4α

) 1

4α+4γ+1

ǫ
− 4

4α+4γ+1

⌋

is such that

sup
θ∈Σ(α,L)

E

[(
Q̃ − Q(θ)

)2
]

= C(α, γ, L)ǫ
16α

4α+4γ+1 (1 + o(1)),

if α ≤ γ + 1
4 ,

sup
θ∈Σ(α,L)

E

[(
Q̃ − Q(θ)

)2
− 4ǫ2

∞∑

i=1

σ2
i θ

2
i

]
= C(α, γ, L)ǫ

16α
4α+4γ+1 (1 + o(1)),

if α > γ + 1
4 , where

C(α, γ, L) =
L2 4γ+1

4α+4γ+1

(4γ + 1)

(
2α + 4γ + 1

4α

)− 4α
4α+4γ+1

(4α + 4γ + 1)
4γ+1

4α+4γ+1 . (4)

We find a known phenomenon in quadratic functional estimation literature, i.e. the

existence of two cases: a regular one, where the rate is parametric ǫ−2, and an irregular

case when the rate is significantly slower. We conjecture that Theorem 1 exhibits sharp

asymptotic constant in this last case.

In the regular case (when the underlying signal is smoother than the ’difficulty’ of

the operator A), Theorem 1 says actually two things. One of them is that, for each θ

in the set Σ the quadratic risk of our estimator is of parametric rate and attains the

efficiency constant in our model:

E

[(
Q̃ − Q(θ)

)2
]

= 4ǫ2
∞∑

i=1

σ2
i θ

2
i (1 + o(1)),
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as ǫ → 0. Secondly, the quadratic risk is decomposed and the second order risk is

optimized for our choice of parameters and equals the risk in the non parametric case.

Note also, that the rates are not surprising when compared to the results of Bu-

tucea [1] for the convolution density model. No second order terms were evaluated

there, nor constants associated to the nonparametric rate. The efficiency constant is

naturally different for the density model.

Let us now consider the case of super-smooth signal: θ ∈ Σ(β, r, L), where ai =

exp(βir).

Theorem 2 Let observations Y1, . . . , Yn, ... satisfy model (1). Let the estimator Q̃ in

(3) be defined with parameters {hi}i≥1 given by

hi =

(
1 − e2βir

e2βW r

)

+

and W solution of the equation

W 4γ+(1−r)+ exp(4βW r − 2βrW r−1I(r>1)) = c(β, r, γ, L)ǫ−4,

with the constant c := c(β, r, γ, L) = 2βrL2 if 0 < r < 1, c = L2(e4β − 1)/(2e2β) if

r = 1, c = L2/2 if 1 < r < 2 and c = L2/(2e2β) if r = 2. Then

sup
θ∈Σ(β,r,L)

E

[(
Q̃ − Q(θ)

)2
− 4ǫ2

∞∑

i=1

σ2
i θ

2
i

]
=

2ǫ4

4γ + 1

(
log(1/ǫ)

β

)(4γ+1)/r

(1 + o(1)).

We note that in this case, the signal is always smoother than the difficulty of the

inverse problem, so there is always a parametric rate term in the quadratic risk. Our

estimator also optimizes the upper bounds for the second order term in the quadratic

risk. In this last term, the bias term is always smaller than the variance term for

super-smooth signals.

3 Proofs

Proof of Theorem 1. We decompose as usually the quadratic risk E

[(
Q̃ − Q(θ)

)2
]

into bias plus variance. The bias term can be written

(
E[Q̃] − Q(θ)

)2
=

(
∞∑

i=1

hiE[Y 2
i − ǫ2σ2

i ] −
∞∑

i=1

θ2
i

)2

=

(
∞∑

i=1

hiθ
2
i −

∞∑

i=1

θ2
i

)2

=

(
∞∑

i=1

θ2
i (1 − hi)

)2

. (5)
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The variance term is decomposed as follows

E

[(
Q̃ − E[Q̃]

)2
]

= E



(

∞∑

i=1

hi(Y
2
i − ǫ2σ2

i ) −
∞∑

i=1

hiθ
2
i

)2



= E



(

∞∑

i=1

hi(Y
2
i − ǫ2σ2

i − θ2
i )

)2

 .

Since Yi are independent and ξi are independent Gaussian random variables:

E

[(
Q̃ − E[Q̃]

)2
]

=

∞∑

i=1

h2
i E
[
(Y 2

i − ǫ2σ2
i − θ2

i )
2
]

(6)

=

∞∑

i=1

h2
i E
[
(2ǫθiξi − ǫ2σ2

i + ǫ2ξ2
i )

2
]

=
∞∑

i=1

h2
i

{
ǫ4E

[
ξ4
i

]
− 2ǫ4σ2

i E
[
ξ2
i

]
+ 4ǫ2θ2

i E
[
ξ2
i

]
+ ǫ4σ4

i

}
.

Now, use the facts that E[ξ2
i ] = σ2

i and E[ξ4
i ] = 3σ4

i to get

E

[(
Q̃ − E[Q̃]

)2
]

= 4ǫ2
∞∑

i=1

h2
i σ

2
i θ

2
i + 2ǫ4

∞∑

i=1

h2
i σ

4
i

= 4ǫ2
∞∑

i=1

σ2
i θ

2
i − 4ǫ2

∞∑

i=1

(1 − h2
i )σ

2
i θ

2
i + 2ǫ4

∞∑

i=1

h2
i σ

4
i (7)

Thus by (5) and (7) we get

E

[(
Q̃ − Q(θ)

)2
]

= A0(h, θ) + A1(h) + A2(θ) − A3(h, θ), (8)

where

A0(h, θ) = A0 :=

(
∞∑

i=1

θ2
i (1 − hi)

)2

,

A1(h) = A1 := 2ǫ4
∞∑

i=1

h2
i σ

4
i ,

A2(θ) = A2 := 4ǫ2
∞∑

i=1

σ2
i θ

2
i ,

A3(h, θ) = A3 := 4ǫ2
∞∑

i=1

(1 − h2
i )σ

2
i θ

2
i .

If we note T (h, θ) := A0(h, θ) + A1(h) = A0 + A1, then we want to find

inf
h

sup
θ∈Σ

T (h, θ) ≤ sup
θ∈Σ

T (h, θ) ≤ sup
θ∈∂Σ

T (h, θ)
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where the infimum is taken with respect to all sequences h such that 0 ≤ hi ≤ 1 for all

i ≥ 1 and with

∂Σ =

{
θ :

∞∑

i=1

a2
i θ

2
i = L

}
. (9)

Let us define F (h, θ) = T (h, θ)−κ
(∑∞

i=1 a2
i θ

2
i − L

)
with κ > 0. Then for all j ∈ N

∗

the optimal h and θ have to verify

∂

∂θj
F (h, θ) = 0 and

∂

∂hj
F (h, θ) = 0.

We get

hj =

(
1 −

κa2
j

2
∑∞

i=1 θ2
i (1 − hi)

)

+

=
(
1 − κ̃a2

j

)
+

,

(θ∗j )
2 =

2ǫ4σ4
j hj∑∞

i=1 θ2
i (1 − hi)

, (10)

where κ̃ > 0. Let us write hj =
(
1 − j2α

W 2α

)
+

where W → ∞ when ǫ → 0.

Recall that Σ = Σ(α,L) =
{
θ :
∑∞

i=1 i2αθ2
i ≤ L

}
then for θ∗ ∈ ∂Σ(α,L) we can

write both

∞∑

i=1

θ∗2i (1 − hi) =
1

W 2α

W∑

i=1

θ∗2i i2α +
∑

i>W

θ∗2i

≤ 1

W 2α

W∑

i=1

θ∗2i i2α +
1

W 2α

∑

i>W

θ∗2i i2α ≤ L

W 2α

and

∞∑

i=1

θ∗2i (1 − hi) ≥ 1

W 2α

W∑

i=1

θ∗2i i2α

≥ 1

W 2α

∞∑

i=1

θ∗2i i2α − 1

W 2α

∑

i>W

θ∗2i i2α =
L

W 2α
(1 − o(1)).

Therefore A0 = L2W−4α(1 + o(1)), as ǫ → 0. This means also that we can write

(θ∗j )
2 =

2ǫ4σ4
j W

2α

L

(
1 − j2α

W 2α

)

+

.

Let us now compute the optimal W , using again the fact that θ∗ ∈ ∂Σ(α,L) which

is equivalent to

∞∑

i=1

i2α(θ∗i )
2 = L.
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This is further equivalent to

W 4α+4γ+1 1

W

W∑

i=1

(
i

W

)4γ+2α
(

1 −
(

i

W

)2α
)

=
L2

2ǫ4

giving

2αW 4α+4γ+1

(4γ + 4α + 1)(4γ + 2α + 1)
(1 + o(1)) =

L2

2ǫ4
.

Therefore

W =

(
L2

B(α, γ)

) 1

4α+4γ+1

ǫ
− 4

4α+4γ+1 (1 + o(1)), (11)

where B(α, γ) := 4α
(4γ+4α+1)(4γ+2α+1) and we’ll take W to be the integer part of the

dominant term. From now on, we denote B := B(α, γ).

We have to evaluate the term defined in (8). For α ≤ γ + 1
4 , we have

A0 =

(
∞∑

i=1

θ2
i (1 − hi)

)2

= L2W−4α(1 + o(1))

=
(
L2(4γ+1)B4α

) 1

4γ+4α+1

ǫ
16α

4γ+4α+1 (1 + o(1)),

A1 = 2ǫ4
∞∑

i=1

σ4
i h

2
i = 2ǫ4W 4γ+1 1

W

W∑

i=1

(
i

W

)4γ
(

1 −
(

i

W

)2α
)2

=
16α2ǫ4W 4γ+1

(4γ + 1)(4γ + 4α + 1)(4γ + 2α + 1)
(1 + o(1))

=
4α

4γ + 1

(
L2(4γ+1)B4α

) 1

4γ+4α+1

ǫ
16α

4γ+4α+1 (1 + o(1)),

A2 = 4ǫ2
∞∑

i=1

σ2
i θ

∗2
i =

8ǫ6W 6γ+2α+1

L

1

W

W∑

i=1

(
i

W

)6γ
(

1 −
(

i

W

)2α
)

=
16αǫ6W 6γ+2α+1

L(6γ + 1)(6γ + 2α + 1)
(1 + o(1))

= O(1)ǫ
16α+2

4α+4γ+1 (1 + o(1)) = o(1)A1,

as ǫ → 0. As hi ∈ [0, 1] for all i ∈ N, the term A3 = 4ǫ2
∑∞

i=1(1 − h2
i )σ

2
i θ

2
i ≤ A2. Then

the quadratic risk is such that

E

[(
Q̃ − Q(θ)

)2
]

= (A0 + A1) (1 + o(1))

=
(
L2(4γ+1)B4α

) 1

4γ+4α+1 4γ + 4α + 1

4γ + 1
ǫ

16α
4γ+4α+1 (1 + o(1)),

as ǫ → 0 and this explains the constant C(α, γ, L) in (4).
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Let us note that if α > γ + 1
4 , we can estimate the quadratic functional at the

parametric rate as A2 is the dominant term in the risk and is of order ǫ2. More

precisely

E

[(
Q̃ − Q(θ)

)2
]

= 4ǫ2
∞∑

i=1

σ2
i θ

2
i (1 + o(1)) = A2(1 + o(1)),

as ǫ → 0. Indeed, it is easy to see that in this case

A0 + A1 = C(α, γ, L)ǫ
16α

4γ+4α+1 (1 + o(1)) = o(A2)

and, moreover,

A3 = 4ǫ2
W∑

i=1

[
1 −

(
1 − i2α

W 2α

)2
]

i2γθ2
i + 4ǫ2

∑

i>W

i2γθ2
i

≤ 4ǫ2
W∑

i=1

i2α+2γ

W 2α
+ 4ǫ2

∑

i>W

i2(γ−α)i2αθ2
i

≤ 4ǫ2W 2(γ−α)
W∑

i=1

(
i

W

)2γ

i2αθ2
i + 4ǫ2W 2(γ−α)

W∑

i=1

i2αθ2
i

≤ 4ǫ2W 2(γ−α)L = O(1)ǫ
16α+2

4α+4γ+1 = o(A0 + A1),

as ǫ → 0.

Proof of Theorem 2. We follow the lines of proof of Theorem 1. In this case,

there is always a parametric term and we do the computations of the second order term

in the quadratic risk.

We solve the same optimisation problem and find

hi =

(
1 − e2βir

e2βW r

)

+

(θ∗j )
2 =

2ǫ4σ4
j hj∑∞

i=1 θ2
i (1 − hi)

. (12)

Then for θ∗ ∈ ∂Σ(β,L, r) we get

∞∑

i=1

θ∗2i (1 − hi) =
1

e2βW r

W∑

i=1

e2βirθ∗2i +
∑

i>W

θ∗2i

≤ 1

e2βW r

W∑

i=1

e2βirθ∗2i +
1

e2βW r

∑

i>W

e2βirθ∗2i =
L

e2βW r

and

∞∑

i=1

θ∗2i (1 − hi) ≥ 1

e2βW r

W∑

i=1

e2βirθ∗2i

=
1

e2βW r

∞∑

i=1

e2βirθ∗2i − 1

e2βW r

∑

i>W

e2βirθ∗2i =
L

e2βW r (1 − o(1)).

9



Therefore

A0 = L2e−4βW r

(1 + o(1)), as ǫ → 0.

By (12), this gives θ∗2i =
2ǫ4σ4

j

L

(
e2βW r − e2βjr)

+
.

To compute optimal W , we also use the fact θ∗ ∈ ∂Σ(β,L, r).

∞∑

i=1

e2βir (θ∗i )
2 = L ⇔ e2βW r

W−1∑

i=1

i4γe2βir −
W−1∑

i=1

i4γe4βir =
L2

2ǫ4

By using Lemmata 1 and 2, we have W solution of the following equation

W 4γe4βW r−2βrW r−1

= cǫ−4, if 1 < r ≤ 2,

W 4γe4βW = cǫ−4, if r = 1,

W 4γ−r+1e4βW r
= cǫ−4, if 0 < r < 1,

(13)

as ǫ → 0, with the constant c = c(β, γ, L) defined in Theorem 2.

We evaluate A0 + A1: in each of the previous cases, the bias term A0 is infinitely

smaller than the variance term A1 and the main term in A1 can be given for

W =

(
log(1/ǫ)

β

)1/r

.

Indeed, by using Lemmata 1 and 2,

A1 = 2ǫ4
∞∑

i=1

σ4
i h

2
i = 2ǫ4

W∑

i=1

i4γ

(
1 − e2βir

e2βW r

)2

=
2ǫ4W 4γ+1

4γ + 1
(1 + o(1)) =

2ǫ4

4γ + 1

(
log(1/ǫ)

β

)(4γ+1)/r

(1 + o(1)) = o(A2).

As A0 = o(A1) it is easy to see that in this case

A0 + A1 =
2ǫ4

4γ + 1

(
log(1/ǫ)

β

)(4γ+1)/r

(1 + o(1)) = o(A2)

as ǫ → 0.

The last thing to check is that A3 = o(A0 + A1) as ǫ → 0:

A3 = 4ǫ2
∞∑

i=1

(1 − h2
i )σ

2
i θ

∗2
i ≤ 8ǫ2

W∑

i=1

e2βir

e2βW r i2γθ∗2i + 4ǫ2
∑

i>W

i2γθ∗2i

≤ 8ǫ2 W 2γ

e2βW r

W∑

i=1

e2βirθ∗2i + 8ǫ2
∑

i>W

i2γ e2βir

e2βir
θ∗2i

≤ 8ǫ2 W 2γ

e2βW r

W∑

i=1

e2βirθ∗2i + 8ǫ2 W 2γ

e2βW r

∑

i>W

e2βirθ∗2i

= 8ǫ2 W 2γ

e2βW r L = O(1)W 4γ+1ǫ4 1

W 2γ+1ǫ2e2βW r .
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So, we can write that

A3 = O(A1)
1

W 2γ+1ǫ2e2βW r .

By (13), we easily see that

W 2γ+1e2βW r−βrW r−1

ǫ2 =
√

c W, if 1 < r ≤ 2,

W 2γ+1e2βW ǫ2 =
√

c W, if r = 1,

W 2γ+1e2βW ǫ2 =
√

c W (1+r)/2, if 0 < r < 1,

Then, as W → ∞, we get for all r ∈]0, 2], A3 = o(A1) as ǫ → 0.

4 Appendix

Lemma 1 For all a, b, s > 0 and v > 0

∫ v

0
xaebxs

dx =
va−s+1ebvs

bs
(1 + o(1)),

as v → ∞.

Lemma 2 For a ≥ 0, b > 0, and r > 0 as N → ∞

N∑

i=1

iaebir =





NaebNr

(1 + o(1)) if r > 1,
1
brNa+1−rebNr

(1 + o(1)) if 0 < r < 1,
1

(eb−1)
Naeb(N+1)(1 + o(1)) if r=1 and a 6= 0.

Proof of Lemma 2. • When r > 1

N∑

i=1

iaebir − NaebNr

=
N−1∑

i=1

iaebir ≤ (N − 1)a+1eb(N−1)r

≤ NaebNr

O(N)e−brNr−1

= o(1)NaebNr

,

as N → ∞.

• When 0 < r < 1

∫ N+1

1
xaebxr

dx ≥
N∑

i=1

iaebir ≥
∫ N

0
xaebxr

dx.

Use Lemma 1 and the fact that
∫ N+1

1
xaebxr

dx =

∫ N

0
xaebxr

dx(1 + o(1).

• When r = 1 we write both

N∑

i=1

iaebi = NaebN +

N−1∑

i=1

iaebi

11



and

N∑

i=1

iaebi = eb
N−1∑

i=0

(i + 1)aebi = eb + eb
N−1∑

i=1

(i + 1)aebi.

As the sums
∑N−1

i=1 iaebi and
∑N−1

i=1 (i+1)aebi have equivalent general terms and diverge,

than they are equivalent to SN−1, say. We get that, for large N ,

SN =
Naeb(N+1)

eb − 1
(1 + o(1)).
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