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Université Paris-Sud, 91405 Orsay cedex, France

The enormous increase of popularity and use of the WWW has led in the recent years to impor-
tant changes in the ways people communicate. An interesting example of this fact is provided by
the now very popular social annotation systems, through which users annotate resources (such as
web pages or digital photographs) with text keywords dubbed tags. Understanding the rich emerg-
ing structures resulting from the uncoordinated actions of users calls for an interdisciplinary effort.
In particular concepts borrowed from statistical physics, such as random walks, and the complex
networks framework, can effectively contribute to the mathematical modeling of social annotation
systems. Here we show that the process of social annotation can be seen as a collective but un-
coordinated exploration of an underlying semantic space, pictured as a graph, through a series of
random walks. This modeling framework reproduces several aspects, so far unexplained, of social
annotation, among which the peculiar growth of the size of the vocabulary used by the commu-
nity and its complex network structure that represents an externalization of semantic structures
grounded in cognition and typically hard to access.
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I. INTRODUCTION

The rise of Web 2.0 has dramatically changed the way in which information is stored and accessed, and the
relationship between information and on-line users. This is prompting the need for a new research agenda about
the “Web Science”, as put forward in [1]. In the boost of the so-called techno-social systems [2] the communication
technologies meet in an original and somehow unpredictable way the expressing power of human users, who exploit
their cognitive abilities to annotate, i.e., attaching metadata to any piece of knowledge [3, 4, 5, 6, 7], in a way out of
reach for any machine learning systems. The resources can be web pages, bibliographic references, digital photographs,
etc..., and annotations are performed by a community of Web users with little or no central coordination. In doing
so human users are associating meaning to their annotations. The notion of meaning [8] seems very far from the
physics literature, belonging more to the sphere of linguistics and more specifically to that of semantics. But the
investigation of data structures, emerging out of this collective social dynamics, could possibly reveal something about
the underlying cognitive and social mechanisms which inform the collective annotation process. This is precisely the
aim of this paper.

We focus specifically, but without loss of generality as far the main conclusions are concerned, on social bookmarking
systems, where users manage, share and browse collections of online resources by enriching them with semantically
meaningful information in the form of freely chosen text labels (tags). At the global level the set of tags, though
determined with no explicit coordination, evolves in time and leads towards patterns of terminology usage that are
shared by the entire user community. Hence one observes the emergence of a loose categorization system that can be
effectively used to navigate through a large and heterogeneous body of resources.

Here we show how simple concepts borrowed from statistical physics and the study of complex networks can provide
a modeling framework for the dynamics of collaborative tagging and the outcome of the corresponding collective and
uncoordinated users’ activity , namely an open-ended information network – commonly referred to as “folksonomy”
– which can be used for navigation and recommendation of content, and has been the object of several recent
investigations across different disciplines [9, 10].

Two main aspects of the social annotation process, so far unexplained, deserve a special attention. One striking
feature is the so-called Heaps’ law [11] (also known as Herdan’s law in linguistics), originally studied in Information
Retrieval for its relevance for indexing schemes [12]. Heaps’ law is an empirical law which describes the growth in a
natural text of the number of distinct words as a function of the number of total words scanned. Heaps’ law describes
thus the rate of linguistic innovation in a generic stream of words, where innovation means the adoption for the
first time in the text of a given word. This law is also experimentally observed in streams of tags, and consists of
a power-law with a sub-linear behaviour [10, 13]. In this case the rate of innovation is the rate of introduction of
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brand new tags. We recall that a sub-linear behaviour for the Heaps’ law corresponds to a rate of adoption of new
words or tags decreasing with the total number of words (or tags) scanned. Most of the existing studies about Heaps’
law, either in Information Retrieval or in linguistics, explained it as a consequence of the so-called Zipf’s law [14],
the frequency-rank distribution of the distinct words. Heaps’ law represents one of the first important signature of
the presence of semantics in the outcome of a human-mediated activity and it would be highly desirable to have an
explanation for it only relying on very basic assumptions about the cognitive mechanisms behind writing a text or a
post.

Another important way to analyze the emerging data structures [15] is given by the framework of complex net-
works [16, 17, 18]. These structures are indeed user-driven information networks [19], i.e., networks linking (for
instance) on-line resources, tags and users, built in a bottom-up fashion through the uncoordinated activity of thou-
sands to millions of Web users. Moreover, they represent an externalization of semantic structures (networks of
concepts [20, 21]) grounded in cognition and typically hard to access. Such networks, which entangle cognitive,
behavioral and social aspects of human agents with the structure of the underlying technological system, result in
techno-social systems that display rich emergent features and emergent semantics [22, 23]. They have thus gained a
central role and are regarded as an increasingly important asset [24]. Understanding the development and structure
of these information networks is of paramount importance and represents the main aim of this letter. We shall focus
in particular on the very particular structure of the so-called co-occurrence network, which encodes the semantics of
the tags system. The co-occurrence network is a weighted network where nodes are tags and two tags are linked if
they were used together by at least one user, the weight being larger when this simultaneous use is shared by many
users. Here the questions we ask concern whether one is able to explain the structure of such a network in terms of
some suitable generative model and how the structure of the experimentally observed co-occurrence network is related
to the underlying hypotheses of the modeling scheme.

We focus specifically on understanding the structure of correlations among tags that, despite their crucial role in
encoding semantics, have been only superficially investigated. Correlations between tag occurrences are (at least
partially) an externalization of the relations between the corresponding meanings [21] and have been used to infer
formal representations of knowledge from social annotations [25]. At the same time a certain number of stylized
facts, about e.g. tag frequencies [5, 10] or the growth of the tag vocabulary [13], have been reported but no modeling
framework exists which can naturally account for them while reproducing their network structure. We show in
particular that the idea of social exploration of a semantic space has more than a metaphorical value, and actually
allows us to reproduce simultaneously a set of independent correlations and fine observables of tag co-occurrence
networks as well as robust stylized facts of collaborative tagging systems.

II. USER-DRIVEN INFORMATION NETWORKS

We investigate user-driven information networks using data from two social bookmarking systems: del.icio.us[34]
and BibSonomy[35]. Del.icio.us is a very popular system for bookmarking web pages and pioneered the mechanisms
of collaborative tagging. It hosts a large body of social annotations that have been used for several scientific in-
vestigations. BibSonomy is a smaller system for bookmarking bibliographic references and web pages [26]. Both
del.icio.us and BibSonomy are broad folksonomies [27], in which users provide metadata about pre-existing resources
and multiple annotations are possible for the same resource, making the ensuing tagging patterns truly “social” and
allowing their statistical characterization.

A single user annotation, also known as a post, is a triple of the form (u, r, T ), where u is a user identificator, r is the
unique identificator of a resource (a URL pointing to a web page, for the systems under study), and T = {t1, t2, . . .}
is a set of tags represented as text strings. We define the tag co-occurrence network based on post co-occurrence.
That is, given a set of posts, we create an undirected and weighted network where nodes are tags and two tags t1 and
t2 are connected by an edge if and only if there exists one post in which they were used in conjuction. The weight of
an edge between tags t1 and t2 can be naturally defined as the number of distinct posts where t1 and t2 co-occur.

A. Data from del.icio.us

The del.icio.us dataset we used consists of approximately 5 · 106 posts, comprising about 650 000 users, 1.9 · 106

resources (bookmarks) and 2.5 · 106 distinct tags. It covers almost 3 years of user activity, from early 2004 up to
November 2006. Overall, 667 128 user pages of the del.icio.us community were crawled, for a total of 18 782 132
resources, 2 454 546 distinct tags, and 140 333 714 tag assignments (triples).

The data were subsequently post-processed for the present study. We discarded all posts containing no tags (about
7% of the total). As del.icio.us is case-preserving but not case sensitive, we ignored capitalization in tag comparison,
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and counted all different capitalizations of a given tag as instances of the same lower-case tag. The timestamp of
each post was used to establish post ordering and determine the temporal evolution of the system. Posts with invalid
timestamps, i.e. times set in the future or before del.icio.us started operating, were discarded as well (less than 0.5%
of the total).

Except for the normalization of character case, no lexical normalization was applied to tags during post-processing.
The notion of identity of tags is identified with the notion of identity of their string representation.

B. Data from BibSonomy

BibSonomy [26] is a smaller system than del.icio.us, but it was designed keeping data sharing in mind. Because
of this, there is no need to crawl BibSonomy by downloading HTML pages and parsing them. Direct access to post
data in structured form is available by using the BibSonomy API (http://www.bibsonomy.org/help/doc/api.html).
Moreover, the BibSonomy team periodically releases snapshot datasets of the full system and makes them available to
the research community. For the present work we used the dataset released on January 2008 (https://www.kde.cs.uni-
kassel.de/bibsonomy/dumps/2007-12-31.tgz).

BibSonomy allows two different types of resources: bookmarks (i.e., URLs of web pages, similar to del.icio.us) and
BibTeX entries. To make contact with the analysis done for del.icio.us, we restricted the dataset to the posts involving
bookmark resources only. The resulting dataset we used comprises 1 400 users, 127 115 resources, 37 966 distinct tags,
and 503 928 tag assignments (triples). The data from BibSonomy was post-processed in the same way as the data
from del.icio.us.

While the BibSonomy dataset is much smaller than the del.icio.us dataset, it is a precious one: direct access to
BibSonomy’s database guarantees that the BibSonomy dataset is free from biases due to the data collection procedure.
This is important because it allows us to show that the investigated features of the data are robust across different
systems, and not only established in a case where biases due to data collection could be possible.

C. Data analysis

The study of the global properties of the tagging system, and in particular of the global co-occurrence network, is of
interest but mixes potentially many different phenomena. We therefore consider a narrower semantic context, defined
as the set of posts containing one given tag. We define the vocabulary associated with a given tag t∗ as the set of all
tags occurring in a post together with t∗, and the time is counted as the number of posts in which t∗ has appeared.
The size of the vocabulary follows a sub-linear power-law growth (Fig. 1), similar to the Heaps’ law [11] observed for
the vocabulary associated with a given resource, and for the global vocabulary [13]. Figure 1 also shows the main
properties of the co-occurrence network formed from all the posts containing a certain tag t∗. Broad distributions
and non-trivial correlations are observed for both topological observables and edge weights. While Fig. 1 presents
data for a particular tag, we have verified that all the measured features are robust from one tag to another within
one tagging system, and also across the tagging systems we investigated.

III. MODELING SOCIAL ANNOTATION

The observed features are emergent characteristics of the uncoordinated action of a user community, which call for
a rationalisation and for a modeling framework. We now present a simple mechanism able to reproduce the complex
evolution and structure of the empirical data.

The fundamental idea underlying our approach, illustrated in Fig. 2, is that a post corresponds to a random walk
(RW) of the user in a “semantic space” modeled as a graph. Starting from a given tag, the user adds other tags, going
from one tag to another by semantic association. It is then natural to picture the semantic space as network-like,
with nodes representing tags and links representing the possibility of a semantic link [28]. A precise and complete
description of such a semantic network being out of reach, we make very general hypothesis about its structure and
we have checked the robustness of our results with respect to different plausible choices of the graph structure [28].
Nevertheless, as we shall see later on, our results help fixing a few constraints on the structural properties of such a
semantic space. In this framework, the vocabulary co-occurring with a tag is associated with the ensemble of nodes
reached by successive random walks starting from a given node, and its size with the number of distinct visited nodes,
Ndistinct, which grows as a function of the number of performed random walks nRW .
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A. Fixed length random walks

Let us first consider random walks of fixed length l starting from a given node i0. We denote by pi the probability
for each of these random walks to visit node i. The probability that i has not been visited after nRW random walks
is then simply

Proba(i not visited) = (1 − pi)
nRW , (1)

since the random walks are independent stochastic processes, and the probability that i has been visited at least once
reads

Proba(i visited)=1 - Proba(i not visited) = 1 − (1 − pi)
nRW . (2)

The average number of distinct nodes visited after nRW random walks is then given, without any assumption on the
network’s structure, by

Ndistinct =
∑

i

(1 − (1 − pi)
nRW ) , (3)

where the sum runs over all nodes of the network.
While this exact expression is not yet really informative, it is possible to go further under some simple assumptions

(we also note that analytical results are available in the case of random walks performed either on lattices or on
fractal substrates [29]). Since all the random walks start from the same origin i0, it is useful to divide the network
into successive “rings” [30], each ring of label l being formed by the nodes at distance l from i0. The ring l = 1 is
formed by the neighbours of i0, the ring l = 2 by the neighbours’ neighbours which are not part of ring 1, and so forth.
We denote by Nl the number of nodes in ring l. We now make the assumption that all Nl nodes at distance l have
the same probability to be reached by a random walk starting from i0 (which is the sole element of ring 0). This is
rigorously true for example for a tree with constant coordination number, and more generally will hold approximately
in homogeneous networks, while stronger deviations are expected in heterogeneous networks. Let us assume moreover
that the random walk of length lmax consists, at each step, of moving from one ring l to the next ring l + 1. This is
once again rigorously true for a self-avoiding random-walk on a tree, and can be expected to hold approximately if Nl

grows fast enough with l: the probability to go from ring l to ring l + 1 is then larger than to go back to ring l− 1 or
to stay within ring l. For each random walk of length lmax, we then have pi = 1/Nl for each node i in ring l ≤ lmax,
and after nRW walks, the average number of distinct visited nodes reads

Ndistinct =

lmax
∑

l=0

Nl(1 − (1 − 1/Nl)
nRW ) . (4)

The expression (4) lends itself to numerical investigation using various forms for the growth of Nl as a function
of l. We obtain (not shown) that, as nRW increases, Ndistinct increases, with an approximate power-law form, and

saturates as nRW → ∞ at the total number of reachable nodes
∑lmax

l=0 Nl. Moreover, the increase at low nRW is
sub-linear if Nl grows fast enough with l (at least ∼ l2), and is closer to linear if lmax increases.

B. Random walks of randomlengths

Empirical evidence on the distribution of post lengths (Fig. 2) suggests to consider random walks of random lengths,
distributed according to a broad law. Let us therefore now consider, under the same assumptions, that the successive
random walks have randomly distributed lengths according to a certain P (l). Each ring l, on average, is then reached
by a random walk nRW ×

∑

l′≥l P (l′) ≡ nRW P>(l) times, so that we have approximately

Ndistinct =

∞
∑

l=0

Nl(1 − (1 − 1/Nl)
nRW P>(l)) , (5)

where the sum (provided it converges) now runs over all possible lengths.
If P (l) is narrowly distributed around an average value, the form (5) will not differ very much from the case of fixed

length given by Eq. (4). Conversely, for a broad P (l), longer random walks will occur as nRW increases and the tail
of P (l) is sampled, allowing visits to nodes situated further from i0 and avoiding the saturation effect observed for
random walks of fixed length.

In some particular cases, a further analytical insight into the form of Ndistinct(nRW ) can be obtained:
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• assume that Nl ∼ la, and that P (l) is power-law distributed (P (l) ∼ 1/lb). Then Ndistinct(nRW ) ∼
∑∞

l=0 la
(

1 − exp(−nRW /(cla+b−1))
)

, where c is a constant. The terms in the sum become negligible for l

larger than n
1/(a+b−1)
RW , while they are close to la for smaller values of l. The sum therefore behaves as

Ndistinct ∼ n
(a+1)/(a+b−1)
RW , (6)

i.e. a power-law. For instance, for b = 3 we obtain a sub-linear power-law growth with exponent (a+1)/(a+2),
i.e. 2/3 for a = 1, or 3/4 for a = 2.

• assume that Nl ∼ zl, which corresponds to a tree in which each node has z + 1 neighbours, and P (l) ∼ 1/lb.
Then Ndistinct(nRW ) ∼

∑∞

l=0 zl(1 − exp(−nRW /(czllb−1)). As in the previous case, the terms in the sum
become negligible for l larger than (log(nRW )− (b− 1) log(log(nRW / log(z))))/ log(z), while they are close to zl

for smaller l. Thus the sum behaves as

Ndistinct ∼ nRW /(log(nRW ))b−1 , (7)

i.e. we obtain a linear behaviour with logarithmic corrections, which is known to be very similar to sub-linear
power-law behaviours.

We have thus shown analytically, under reasonable assumptions, that performing fixed length random walks starting
from the same node yields a growth of the number of distinct visited sites (representing the vocabulary size) as a
function of the number of random walks (representing posts) which is sub-linear with a saturation effect, and that
broad distributions of the walks lengths lead to sub-linear growths of the vocabulary, and avoid the saturation effect.

Figure 3(top) shows a confirmation of the appearance of a sub-linear power-law-like growth of Ndistinct, mimicking
the Heaps’ law observed in tagging systems, for random walks performed on a Watts-Strogatz network.

IV. SYNTHETIC CO-OCCURRENCE NETWORKS

Vocabulary growth is only one aspect of the dynamics of tagging systems. Networks of co-occurrence carry much
more detailed signatures that present very specific features (Fig. 1). Interestingly, our approach allows to construct
synthetic co-occurrence networks: we associate to each random walk a clique formed by the nodes visited (see Fig. 2),
and consider the union of the nRW such cliques. Moreover, each link i, j built through this procedure receives a weight
equal to the number of times nodes i and j appear together in a random walk. This construction mimics precisely
the obtention of the empirical co-occurrence network, and Fig.s 3 and 4 show the striking similarity between the
characteristics of such synthetic networks and the data of Fig. 1. Figure 4 in particular explores a highly non-trivial
correlation between weights and topology in both real and artificial co-occurrence networks, namely how the weight
wij of a link is correlated with its extremities’ degrees ki and kj . The shape of the curve can be understood within
our framework. First, the broad distribution in l is responsible for the plateau ∼ 1 at small values of kikj , since it
corresponds to long RW that occur rarely and visit nodes that will be typically visited a very small number of times
(hence small weights). Moreover, wij displays a power-law behaviour ∼ (kikj)

a at large weights. Denoting by fi the
number of times node i is visited, wij ∼ fifj in a mean-field approximation that neglects correlations. On the other
hand, ki is by definition the number of distinct nodes visited together with node i. Restricting the random walks to
the only processes that visit i, it is reasonable to assume that such sampling preserves Heaps’ law, so that ki ∝ fα

i ,
where α is the growth exponent for the global process. This leads to wij ∼ (kikj)

a with a = 1/α. Since α ≃ .7 − .8,
we obtain a close to 1.3 − 1.5, consistently with the numerics.

Strikingly, the synthetic co-occurrence networks reproduce other, more subtle observables, such as the distribution
of cosine similarities between nodes. In a weighted network, the similarity of two nodes i1 and i2 can be defined as

sim(i1, i2) ≡
∑

j

wi1jwi2j
√

∑

ℓ w2
i1ℓ

∑

ℓ w2
i2ℓ

, (8)

which is the scalar product of the vectors of normalized weights of nodes i1 and i2. This quantity, which measures
the similarities between neighbourhoods of nodes, contains non-trivial semantic information that can be used to
detect synonymy relations between tags, or to uncover “concepts” from social annotations [31]. Figure 5 shows the
histograms of pair-wise similarities between nodes in real and synthetic co-occurrence networks. The distributions are
very similar, with a skewed behaviour and a peak for low values of the similarities.

While the data shown in Fig.s 3 and 4 correspond to a particular example of underlying network (a Watts-Strogatz
network, see [32]) taken as a cartoon for the semantic space, we have also investigated the dependence of the synthetic
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network properties on the structure of the semantic space and on the other parameters, such as nRW or the distribution
of the random walk lengths. Interestingly, we find an overall extremely robust behaviour for the diverse synthetic
networks, showing that the proposed mechanism reproduces the empirical data without any need for strong hypothesis
on the semantic space structure. The only general constraints we can fix on our proposed mechanism are the exystence
of an underlying semantic graph with a small diameter and a finite average degree (Random walks on a fully connected
graph would not work, for instance) and a large distribution of post lengths. Obviously the precise structure of the
underlying semantic network will depend on the context, as fixed by the choice of the tag t∗, and a careful fitting
procedure would be needed to choose the best structure of the semantic space for a specific tag t∗. This also raises
the open question of the definition of the minimal set of statistical observables to specify a graph [33].

V. CONCLUSIONS

Investigating the interplay of human and technological factors in user-driven systems is crucial to understand the
evolution and the potential impact these techno-social systems will have on our societies. Here we have shown that
the main properties of information networks stemming from social annotations can be captured by regarding the
process of social annotation as a collective exploration of a semantic space, modeled as a graph, by means of a series
of random walks. The specific choice of the structure of the underlying graph does not affect enormously the results
provided the graph has a small diameter and a small average degree. At the same time the best correspondence
between exerimental and synthetic data is obtained for a distribution of random walk path lenghts with a power-law
tail. The mechanism introduced here captures sophisticated features that quantify the correlations among tags, as
well as the evolution of the emerging data structures, matching experimental data from different systems. These
results represent an important step towards a more comprehensive understanding and control of the technological and
social aspects of user-driven information networks.
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FIG. 1: Data corresponding to the posts containing the tag ”Folksonomy” in del.icio.us. Top: Heaps’ law: growth of the
vocabulary size associated with the tag t∗ =”Folksonomy”, measured as the number of distinct tags co-occurring with t∗, as a
function of the number nposts of posts containing t∗. The dotted line corresponds to a linear growth law while the continuous
line is a power-law growth with exponent 0.7. Inset: Frequency-rank plot of the tags. The dashed line corresponds to a power-
law −1.42 ≃ −1./0.7. Middle and Bottom: Main properties of the co-occurrence network of the tags co-occurring with the tag
”Folksonomy” in del.icio.us, built as described in the main text. Middle figure: Broad distributions of degrees k, strengths s
and weights w are observed. The inset shows the average strength of nodes of degree k, with a superlinear growth at large
k. Bottom figure: Weighted (kw

nn) and unweighted (knn) average degree of nearest neighbors (top), and weighted (Cw) and
unweighted (C) average clustering coefficients of nodes of degree k. knn displays a disassortative trend, and a strong clustering
is observed. At small k, the weights are close to 1 (s(k) ∼ k, see inset of middle figure, and kw

nn ∼ knn, Cw
∼ C. At large k

instead, kw
nn > knn and Cw > C, showing that large weights are preferentially connecting nodes with large degree: large degree

nodes are joined by links of large weight, i.e. they co-occur frequently together. Both raw and logarithmically binned data are
shown.
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the network associated with a tag (here pictured as node 1). The artificial co-occurrence network is built by creating a clique
between all nodes visited by a random walk. Right: empirical distribution of posts’ lengths P (l). A power-law decay ∼ l−3

(dashed line) is observed.
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FIG. 3: Synthetic data produced through the proposed mechanism. Top: Growth of the number of distinct visited sites as
a function of the number of random walks performed on a Watts-Strogatz network of size 5 · 104 nodes and average degree 8,
rewiring probability p = 0.1. Each random walk has a random length l taken from a distribution P (l) ∼ l−3. The dotted line
corresponds to a linear growth law while the continuous line is a power-law growth with exponent 0.7. Inset: Frequency-rank
plot. The continuous and dashed line have slope −1.3 and −1.5, respectively. Middle and bottom: Properties of the synthetic
co-occurrence network obtained for nRW = 5 · 104, to be compared with the empirical data of Fig. 1.
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