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We derive the fluctuational magnetization and the paraconductivity of Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) superconductors in their normal state. The FFLO superconducting fluctu-
ations induce oscillations of the magnetization between diamagnetism and unusual paramagnetism
which originates from the competition between paramagnetic and orbital effects. We also predict a
strong anisotropy of the paraconductivity when the FFLO transition is approached in contrast with
the case of a uniform BCS state. Finally building a Ginzburg-Levanyuk argument, we demonstrate
that these fluctuation effects can be safely treated within the Gaussian approximation since the crit-
ical fluctuations are proeminent only within an experimentally inaccessible temperature interval.

I. INTRODUCTION.

Forty years ago, Fulde and Ferrell1, and Larkin and
Ovchinnikov2 predicted that the paramagnetism of the
electron gas might induce a novel superconducting state
wherein the order parameter is modulated in real-space.
In their original proposal, these authors considered a sin-
glet s-wave superconductor perturbed by the Zeeman ef-
fect (paramagnetic effect), and neglected completely the
orbital coupling and the disorder. For most type-II su-
perconductors, the superconductivity is destroyed by the
orbital pair-breaking effect which leads to a more famil-
iar inhomogeneous superconducting state: the Abrikosov
vortex lattice. In order to observe the Fulde-Ferrell-
Larkin-Ovchinnikov (FFLO) state, the paramagnetic ef-
fect must break Cooper pairs more efficiently than the
orbital one. Such a situation may be realized in tridi-
mensional (3D) superconductors with large internal ex-
change fields, like the rare-earth magnetic superconduc-
tor ErRh4B4, see3 for a review. Another possibility cor-
responds to a quasi two-dimensional (2D) layered super-
conductor wherein the weakness of the interplane hop-
ping suppresses the orbital effect for in-plane magnetic
field. Being the ratio of the critical fields, Horb

c (T = 0)
in the pure orbital limit, and Hp(T = 0) in the pure para-

magnetic limit, the Maki parameter αm =
√

2Horb
c (T =

0)/Hp(T = 0) quantifies the relative strength of those
pair breaking mechanisms. Besides demanding a large
Maki parameter (αm > 1.8), the occurance of the FFLO
state also requires very clean samples since it is far less
robust against disorder than the usual vortex lattice, see4

and5 for recent reviews.

Recently, there have been mounting evidence that
the heavy fermion superconductor CeCoIn5 under mag-
netic field might fullfil those stringents conditions6,7,8,
although the magnetism of this system is still under de-
bate. A superconducting phase have been reported at
large magnetic field and low temperature which is dis-
tinct from the uniform superconducting phase realized
at lower fields. The characteristics of this phase de-
pends upon the orientation of the field relatively to the
basal plane of the tetragonal CeCoIn5 lattice5. In the

field-induced organic superconductor9 λ-(BETS)2FeCl4,
and in the layered organic superconductor10 κ-(BEDT-
TTF)2Cu(NCS)2 the FFLO state have been reported
when a strong magnetic field (20 T for latter one) is ap-
plied along the superconducting planes.

However in practice, the identification of the FFLO
state is hindered by the interplay between orbital and
paramagnetic effects. The first available experimental
clue is the shape of the transition line Hc(T ) separating
the normal state from the inhomogeneous superconduct-
ing state. A lot of theoretical works have been devoted
to the description of this Hc(T ) line. For moderate Maki
parameters, αm < 9, the structure of the FFLO modula-
tion involves a zero Landau level (index n = 0) function
(Gaussian with no additional modulation)11. For higher
Maki parameter, αm > 9, the Cooper pair wave function
of a 3D superconductor consists in a cascade of more ex-
otic solutions, the so-called multi-quanta states, which
are described by a higher (index n > 0) Landau level12.
Such values of Maki parameters are rather high for 3D
compounds (for instance CeCoIn5 has αm = 4.6− 5) but
they can be achieved in layered quasi-2D superconductors
(or superconducting thin films) under in-plane magnetic
fields13. All these studies were performed so far in the
framework of isotropic models, namely for the idealis-
tic case of a spherical Fermi surface in the normal state.
Moreover it has been shown that an elliptic Fermi surface
leads to the same phenomenology at cost of introducing
an angle-dependent Maki parameter14.

In real compounds, the crystal lattice (or the pairing
symmetry) induces a non trivial anisotropy which mat-
ters a lot for the modulated state15,16 since it essentially
lifts the degeneracy between various orientations of the
FFLO modulation. Recently, the interplay of paramag-
netic and orbital effects was reconsidered in the presence
of such a non trivial anisotropy, namely for a Fermi sur-
face which slightly differs from the spherical or elliptical
shape17. Using a perturbative approach, it was found
that even a small anisotropy stabilizes the exotic multi-
quanta states which can therefore exist at lower Maki
parameter (any αm > 1.8) than predicted by the ideal-
ized isotropic models. According to this prediction such
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states are likely to occur in any real anisotropic Pauli
limited superconductor. More specifically in the tetrag-
onal symmetry, 3 scenarios are possible for the FFLO
state: a) Maximal FFLO modulation along the field with
zero Landau level state, b) Highest Landau level modula-
tion in the plane perpendicular to the field and no FFLO
modulation, and c) Both Landau level and FFLO modu-
lations. This three scenarios correspond to the tetragonal
symmetry and was derived within a single Landau level
approximation, which is valid at large field. It may thus
be relevant to explain the observation of two high-field
and low temperature phases of CeCoIn5, which exhibit
contrasted behaviors under distinct magnetic field ori-
entations (inside or perpendicular to the CeIn3 planes).
Nevertheless the shape of the Hc(T ) transition line is
far from sufficient to establish a clear correspondence be-
tween one phase and a particular class of solutions among
the three a)-c) possibilities. It is thus necessary to gain
complementary informations to determine which scenario
among a)-c) is actually realized. As natural precussors of
the transition, the fluctuations in the normal state pro-
vide informations about the superconducting state itself.
We shall show here that fluctuations enable to detect the
presence of a FFLO state in both 2D and 3D supercon-
ductors, and allow to discriminate between the various
a)-c) scenarios in the tetragonal 3D case. We concentrate
on the region near the tricritical point (T ∗, H∗) which is
the meeting point of the three transition lines separat-
ing respectively the normal state, the uniform and the
modulated superconducting states4,18.

In this paper, we evaluate the fluctuation induced
magnetization near the FFLO transition in both 2D
and 3D anisotropic superconductors using the modified
Ginzburg-Landau (MGL) functional19,20,21. Previously
we calculated the fluctuational specific heat and conduc-
tance near the pure FFLO transition in the absence of
orbital effect22. Our motivation was to establish a re-
lation between the topology of the lowest energy fluctu-
ation modes and the divergencies of the physical prop-
erties at the FFLO transition. In the isotropic model,
those divergencies are very different than the standard
BCS ones since the topologies of the degenerate FFLO
and BCS modes differ fundamentally. Unfortunalely, in
the anisotropic models, this degeneracy is lifted and the
topologies of FFLO and BCS modes become quite simi-
lar, thereby leading to less contrasted behaviors.

In the two-dimensional case, we also show that the ra-
tio between the paraconductivities along (σxx) and per-
pendicular (σyy) to an in-plane applied magnetic field
H = Hex is drastically enhanced near the FFLO tran-
sition, in comparison to the one near the uniform BCS
transition. Moreover we demonstate that the high-field
fluctuational magnetization of thin films may oscillate be-
tween positive (paramagnetism) and negative (diamag-
netism) values. These oscillations originate from the
competition between orbital and paramagnetic effects
which tend to promote respectively Landau level mod-
ulation and FFLO modulation. Being precursors of the

Meisner or Abrikosov lattice state, the superconducting
fluctuations are usually diamagnetic. Therefore the para-
magnetism predicted here is a hallmark of the unconven-
tional FFLO state. At lower field, the magnetization is
suppressed near the FFLO transition in comparison to
the BCS case. These features should also pertain in the
case of layered 2D compounds like λ-(BETS)2FeCl4 or
κ-(BEDT-TTF)2Cu(NCS)2.

In 3D superconductors under high magnetic field, these
oscillations are blurred out when scenario a) is real-
ized whereas they pertain when scenario b) takes place,
thereby providing an experimental test to distinghish
among the various possible structures of the order pa-
rameter described in Ref.17. Experimentally, the super-
conducting fluctuations in CeCoIn5 have been investi-
gated far above Tc and under low fields23,24. Here we
suggest similar measurements near Tc under strong mag-
netic field and near the FFLO critical temperature.

The paper is organized as follows. In Sec II, we present
the MGL formalism which includes higher order deriva-
tive of the order parameter than the standard Ginzburg-
Landau functional. Such an extension is necessary to
handle the nonuniform FFLO state. In Sec III, we anal-
yse the case of thin superconducting films under in-plane
magnetic field and predict a strong dependence of the
conductance upon the mutual orientation of the current
flow and magnetic field. We also derive the fluctuation
magnetization induced by a tilted magnetic field point-
ing out of the film plane. In Sec IV, we discuss the
3D anisotropic compounds with emphasis on the fluc-
tuation magnetization. In appendix, we provide a de-
tailled derivation of the Ginzburg-Levanyuk criterion for
the FFLO transition in order to justify the Gaussian ap-
proximation used in the whole paper.

II. FORMALISM

Here we introduce the modified Ginzburg-Landau
(MGL) free-energy functional and detail how the fluctu-
ation induced properties can be obtained from the spec-
trum of the fluctuations. This approach is valid near the
tricritical point. The location of the tricritical point in
the temperature (T )-magnetic field (H) phase diagram
depends on microscopic details of the model like the con-
centration and the type of impurities, the crystal and the
order parameter symmetries. Nevertheless the formula
of this section are valid generically around the tricritical
point, independently of its precise location. Note that
for a clean s-wave superconductor the tricritical point is
located at T ∗ = 0.56Tc0, µBH∗ = 1.07kBTc0, Tc0 being
the critical temperature in the absence of Zeeman effect
and µB the Bohr magneton4,18.
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A. Modified Ginzburg-Landau functional

At the vicinity of the tricritical point (T ∗, H∗), the
FFLO transition can be described by a Ginzburg-
Landau like approach since the order parameter Ψ(r)
and its spacial gradients are small19. The correspond-
ing free-energy functional, called hereafter the modi-
fied Ginzburg-Landau (MGL) functional, differs from
the usual Ginzburg-Landau functional by the presence
of higher order derivatives of the order parameter Ψ(r).
This is related to the fact that the FFLO phase cor-
responds to a non-uniform groundstate. This MGL
functional may be directly derived from the microscopic
BCS theory for clean isotropic s-wave superconductors
with Zeeman interaction19, and allows extention to con-
ventional and unconventional singlet superconductors
in the presence of paramagnetic, orbital and impurity
effects20,21. The quadratic terms (|Ψ(r)|2, |∇Ψ(r)|2,
etc...) of the MGL describe the free dynamics of the or-

der parameter while higher-order terms (|Ψ(r)|4, |Ψ(r)|6
etc...) account for the interactions. In this paper, we
analyse the fluctuations within the Gaussian approxima-
tion whereby only the quadratic terms are retained25.
In the appendix, we shall justify this approximation by
demonstrating that the interaction terms are small in the
experimentally relevant range of parameter Tc0/EF ≪ 1,
EF being the Fermi energy.

Within the Gaussian approximation, the MGL func-
tional writes

HG [Ψ] =

∫
dr

(
α |Ψ|2 − gi |DiΨ|2 + γij |DiDjΨ|2

)
,

(1)
where the summation over the index i = x, y, z is im-

plied, and α = a
(
T − T̃c

)
, T̃c (H) being the critical tem-

perature for the uniform superconducting second order
phase transition. The components Ai of the vector po-
tential enter the MGL through the covariant derivatives
Di = ∂i + 2ieAi/ℏ, while the coefficients α, gi and γij

are functions of the temperature and field. The detailled
microscopic expressions of these coefficients as functions
of T and H can be found in19,20,21 for various crystal
lattices and in presence of paramagnetic, orbital and im-
purity effects. As a salient and common feature of these
functionals19,20,21, coefficients gi change sign at the tri-
critical point, thereby inducing an inhomogeneous super-
conducting phase when gi > 0, namely at low tempera-
ture and high field (H/T > H∗/T ∗). Then the FFLO

critical temperature Tc (H) is larger than T̃c (H) imply-
ing a transition between the normal state and a nonuni-
form superconducting state. Note that the idealized
isotropic form of this functional corresponds to gi = g
and γij = γ.

B. Fluctuation free energy in the absence of orbital

effect

In the absence of magnetic field, the order parameter
can be expanded in plane waves as Ψ(r) =

∑
k

Ψkeik.r.
In this Fourier representation, the free-energy Eq. (1)

can be rewritten as HG [Ψ] =
∑

k
εk |Ψk|2 where

εk = α − gik
2
i + γijk

2
i k2

j (2)

describes the spectrum of the decoupled fluctuation
modes Ψk. The partition function Z = Tr(e−HG/kBT ) is
obtained by tracing over all the possible values of these
modes Ψk which reduces to an infinite product of Gaus-
sian integrals:

Z =
∏
k

πkBT

εk

. (3)

The corresponding thermodynamical free energy (per
unit volume) F = −kBT lnZ is given by27

F = kBT

∫
dkd

(2π)d
ln

εk

πkBT
. (4)

In the isotropic case (gi = g and γij = γ), the spectrum
εk = α − gk2 + γk

4 can be exactly rewritten as

εk = τ + γ
(
k

2 − q2
0

)2
(5)

where q2
0 = g/2γ and τ = α − g2/4γ. The FFLO transi-

tion arises at the critical temperature Tc (H) defined by
τ = 0, namely at:

Tc (H) = T̃c (H) +
g2

4γa
, (6)

which is higher than the critical temperature for the tran-
sition towards a uniform superconductor T̃c (H). In the
normal state T > Tc (H), Eq. (5) makes apparent that
the lowest energy fluctuation modes are degenerate and
located around the sphere k

2 = q2
0 in reciprocal space.

C. Fluctuation free energy with orbital effect

Here we consider Eq. (1) in the isotropic case (gi = g
and γij = γ) in presence of the orbital effect associ-
ated with a magnetic field H = Hez. Within the gauge
Ax = 0 and Ay = xH , the order parameter is conve-
niently represented in terms of Landau wavefunctions.
This follows from the fact that the mean-field equation
δH/δΨ∗ = 0 reads

(α + gD2 + γD
4)Ψ(x, y, z) = EΨ(x, y, z). (7)

Owing to the translational invariance along y and z, the
momenta ky and kz are good quantum numbers. In the
absence of the fourth-order derivative (γ = 0), the so-
lutions of Eq. (7) are well known32, being the standard
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Landau wavefunctions Ψ(r) = Φn,ky,kz = f(x)eikyy+ikzz.
The equation for f(x)

g
d2f

dx2
− g

(
ky +

2e

~
Hx

)2

f + (α − gk2
z)f = Ef(x) (8)

is similar to the harmonic oscillator equation with ”in-
verse mass” −g and the frequency ωc = −4eHg/~

2.
Therefore the Landau levels for (γ = 0) are given by32

En(kz) = α − gk2
z + ℏωc(n +

1

2
) (9)

where n = 0, 1, 2, .. while kz is a continuous wavevector.
We now solve Eq. (7) in the presence of the fourth-

order derivative (γ 6= 0) which is a hallmark of the
MGL functional and FFLO state. We first show that
the Landau wavefunctions Φn,ky,kz (r) (eigenstates of

α + gD2) are still eigenstates of the differential opera-
tor α + gD2 + γD

4. Indeed introducing the quantized
wavevector Qn ( n = 0, 1, 2, ...) defined by

Q2
n ≡ ℏωc

−g
(n +

1

2
) =

4eH

ℏ

(
n +

1

2

)
, (10)

one obtains immediately that

gD2Φn,ky,kz = −g
(
k2

z + Q2
n

)
Φn,ky,kz , (11)

γD
4Φn,ky,kz = γ(k2

z + Q2
n)2Φn,ky,kz , (12)

and therefore31

(α + gD2 + γD
4)Φn,ky,kz = En(kz)Φn,ky,kz , (13)

with the fluctuation spectrum

En(kz) = τ + γ(Q2
n + k2

z − q2
0)

2. (14)

Note that En(kz) is still degenerate, being independent
of ky. Finally the free energy functional reduces to the
sum

HG [Ψ] =
∑

n,ky,kz

En(kz)
∣∣Φn,ky,kz

∣∣2 (15)

over decoupled modes Φn,ky,kz . The partition function

Z = Tr(e−HG/kBT ) is obtained by tracing over all the
possible values of these modes Φn,ky,kz and finally re-
duces to an infinite product of Gaussian integrals:

Z =
∏

n,ky,kz

πkBT

En(kz)
. (16)

The corresponding thermodynamical free energy (per
unit volume) F = −kBT lnZ is given by

F =
H

Φ0
kBT

∞∑

n=0

∫
dkz

2π
ln

En(kz)

πkBT
, (17)

where the prefactor H/Φ0 accounts for the degeneracy
of each Landau level at given n and kz

32. Here Φ0 =

h/2e is the superconducting flux quantum. In the two-
dimensional case the quantum number kz is irrelevant
and the average free energy per unit surface is given by

F =
H

Φ0
kBT

∞∑

n=0

ln
En(kz = 0)

πkBT
. (18)

The magnetization along the z-axis is simply given by
M = −∂F/∂H .

D. Transport

Besides thermodynamics, the fluctuations also affect
the transport properties. A standard procedure con-
sists in using the time-dependent Ginzburg-Landau equa-
tion to obtain the current-current correlator at different
times26,27. Then a general formula for the paraconduc-
tivity tensor

σij =
πe2akBT

4ℏ

∫
dkd

(2π)d

vkivkj

ε3
k

(19)

can be obtained within the Kubo formalism28. It should
be noticed that the momentum dependence of the veloc-
ity component vki = ∂εk/∂ki along the i−axis is very
different from its usual form owing to the presence of the
γijk

2
i k2

j terms in the dispersion relation Eq.(2). In par-
ticular, vki are no longer linear combinaisons of the mo-
mentum components ki. The formula Eq.(19) provides
the so-called classical Aslamasov-Larkin contribution to
the paraconductivity. It is well known that the quantum
Maki-Thomson contribution can be important especially
in the two-dimensional case28. In this paper, we study
the FFLO transition at the vicinity of the tricritical point
(T ∗, H∗) where the strong pair-breaking mechanism sup-
presses the Maki-Thomson contribution.

III. SUPERCONDUCTING THIN FILMS

Here we consider thin superconducting films where the
FFLO state is realized due to the paramagnetic effect of
an in-plane magnetic field H = H‖ex. We assume that
the lattice has the square symmetry and thus equiva-
lent properties in the x and y directions in the absence
of field. In Sec III.A, we first neglect the orbital effect
associated with H = H‖ex and calculate the paraconduc-
tivity σxx = σyy. Then we treat perturbatively the or-
bital effect associated with H = H‖ex, and find that the
paraconductivity σxx measured along the applied mag-
netic field differs from the one (σyy) measured perpen-
dicular to the field (Sec. III.B). Finally, we also discuss
the effect of a perpendicular magnetic field H = Hez

which induces magnetization oscillations between dia-
magnetism and paramagnetism (Sec. III.C). This behav-
ior is in sharp contrast with the usual fluctuation induced
diamagnetism predicted and observed close to the BCS
transition27,28.



5

FIG. 1: Minima of the fluctuation spectrum εk for the two-
dimensional model with square symmetry. The filled (open)
ellipses indicate the locations of the lowest energy fluctuations
for η > 1 (η < 1). Note that in the isotropic model (η = 1),
there is an infinity of degenerate minima located on the circle
(solid line).

A. Pure paramagnetic limit

In the pure paramagnetic limit, the in-plane magnetic
field H = H‖ex only acts on the spins. Hence one can set
Ai = 0 in the MGL functional Eq.(1) and use the spec-
trum Eq.(2) to describe the superconducting fluctuations
in the normal state. By increasing H‖ and lowering the
temperature, one may tune the thin film near the tricrit-
ical point where g = 0. The parameter g may change
sign, thereby indicating an instability towards the inho-
mogeneous FFLO state when g is positive.

Furthermore the square symmetry implies gx = gy = g,
γxx = γyy = γ and γxy = γyx = ηγ in Eq.(2). Isotropy is
only restored when η = 1 which corresponds to a circular
Fermi surface22. Then the low energy modes are located
around the whole circle defined by k

2 = q2
0 = g/2γ in

reciprocal space, according to Eq.(5). In the general case
(η 6= 1), the quartic terms γijk

2
i k2

j introduce a non triv-
ial anisotropy, and the lowest energy are realized around
isolated points of the reciprocal state (Fig.1).

The paraconductivity σxx = σyy near the FFLO tran-
sition (g > 0) is obtained from Eq.(19) where the integral
extends over the whole reciprocal space. Nevertheless
due to the denominator ε3

k
in Eq.(19), the main contri-

bution comes from the lowest energy fluctuation modes.
We shall first identify these isolated minima kmin of the

energy by solving ∂εk/∂kx(kmin) = ∂εk/∂ky(kmin) = 0.
The location of these minima differs in the cases η >
1 and η < 1 respectively (Fig.1). In the case η > 1,
the spectrum εk has four minima located along the x
and y axis, namely at points A± (±q0, 0) and B± (0,±q0)
of the reciprocal space (Fig.1). Near the minima A±

located along the x axis, we find that the spectrum can

be approximated by

ε
(A±)
k

≈ τ + 2g (kx ∓ q0)
2
+ g (η − 1)k2

y (20)

with τ = α− g2/4γ = a (T − Tc). The expression for the
FFLO critical temperature Tc coincides with Eq.(6) as
long as η > 1.

Similarly, the spectrum around the minima
B± (0,±q0) located along the y axis is given by

ε
(B±)
k

≈ τ + g (η − 1) k2
x + 2g (ky ∓ q0)

2
. (21)

The next step consists in evaluating the generalized
velocities around each minima. For instance around A+,
we obtain

vkx =
∂ε

(A+)
k

∂kx
= 4g (kx − q0) , (22)

vky =
∂ε

(A+)
k

∂ky
= 2g (η − 1)ky. (23)

Finally, we evaluate the integral Eq.(19) around the min-
imum A+.

Reproducing this steps for the other minima A−, B+

and B− and summing the contributions from the four
minima, one obtains the paraconductivity

σxx = σyy =
e2akB

4
√

2ℏ

1 + η√
η − 1

(
Tc

T − Tc

)
. (24)

which diverges at the FFLO transition.
The second case η < 1 can be treated along the

same line of reasoning, albeit the four degenerate minima
k
′
min = (k′

min x, k′
min y) are now located on the diagonals

with (k′
min x)2 = (k′

min y)2 = q2
0/2 (Fig.1). The spectrum

can be expanded as

εk ≈ τ − ∑
i,j=x,y

λij (ki − k′
min i)

(
kj − k′

min j

)
, (25)

around any of those four minima denoted A′
+, A′

−, B′
+

and B′
− (Fig.1), with τ = α−g2/2γ (1 + η) = a (T − Tc).

For instance, we find

λxx = λyy =
2g

1 + η
and λxy = λyx =

2gη

1 + η
(26)

around A′
+(q0/

√
2, q0/

√
2). Diagonalization of the ten-

sor λij leads to the eigenvalues λX = 2g and λY =
2g (1 − η) / (1 + η) along the principal axis X and Y .

Finally summation over the four minima (Fig.1) yields:

σxx = σyy =
e2akB

2ℏ

g2η2

(1 + η)3

√
1 + η

1 − η

(
Tc

T − Tc

)
. (27)

Note that in this regime η < 1, the expression for the
FFLO critical temperature Tc differs slightly from Eq.(6).

The above expressions Eqs.(24,27) both diverge for
η → 1, which indicates stronger Gaussian fluctuations
in the isotropic model22.
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B. Orbital effect associated with an in-plane

magnetic field

We now take into account the orbital effect associated
with the in-plane magnetic field (H = H‖ex), and show
that it breaks the square symmetry, inducing distinct
paraconductivities along x and y directions.

In the case of thin films with a strong confinement
in the z direction, this orbital effect is small. Then it is
still possible to describe the fluctuations by the spectrum
Eq.(2) with H‖-dependent coefficients29, namely by

εk = α − g

(
k2 +

(
H‖d

)2

12Φ2
0

)
+ γ

(
k4 +

(
H‖d

)4

80Φ4
0

)
+

+ 2γ (η − 1) k2
xk2

y +

(
H‖d

)2

6Φ2
0

(
γηk2

x + 3γk2
y

)
, (28)

where k2 = k2
x + k2

y, d is the width of the film along the
z-axis, and Φ0 = h/2e is the superconducting quantum
of flux. Owing to the smallness of the dimensionless pa-
rameter (H‖ξd/q0Φ0)

2, it is still possible to use Eq.(19)
in order to evaluate the paraconductivity tensor follow-
ing the same procedure than in the previous section III A.
Here ξ is the superconducting coherence length.

Due to the field (H‖) dependence of the coefficients in
Eq.(28), the minima of εk are displaced (in comparison
to the case H‖ξd/q0Φ0 = 0 shown in Fig. 1) according
to (η > 1):

A± → A±


±

√
g

2γ
− η

(
H‖d

)2

12Φ2
0

, 0


 , (29)

B± → B±


0,±

√
g

2γ
−
(
H‖d

)2

4Φ2
0


 . (30)

Moreover the square symmetry is broken since the critical
temperature associated with modulation A± differs from
the one for B±. It happens that the FFLO modulation
occurs along the field (points A±) for η < 3. In contrast
for η > 3 the modulation occurs along the y-axis (points
B±) which is perpendicular to the applied field29.

We concentrate on the case for 1 < η < 3 wherein
the order parameter is modulated along the field H =
H‖ex. The paraconductivity comes from the contribu-
tions around the points A+ and A−. Then the paracon-
ductivity σxx measured along the field differs from the
one σyy measured in the perpendicular direction. As a
main result of this section, the ratio σxx/σyy contains
a contribution which diverges at the FFLO transition
(g > 0)

(
σxx

σyy

)
= 1 +

γ

6g

(
H‖d

Φ0

)2 [
η − 3

η − 1
+

g2

2γτ

(η − 3)2

η + 1

]
.

(31)
This term produces a strong enhancement of σxx/σyy

when the transition is approached, namely when τ =

a (T − Tc) → 0+. This is in sharp contrast with the
transition towards a uniform BCS state. There the ratio
of the paraconductivities

(
σxx

σyy

)

BCS

= 1 − γ (η − 3)

6g

(
H‖d

Φ0

)2

(32)

does not contain any divergent term at the BCS transi-
tion (g < 0). Such an enhancement of σxx/σyy may serve
as an experimental signature of the FFLO state. This
property is reminiscent of the recent finding that critical
current oscillates as a function of magnetic orientation in
anisotropic 2D films29.

C. Orbital effect in a perpendicular magnetic field

Finally, we discuss the effect of a perpendicular compo-
nent H⊥ez when the field H = H‖ex+H⊥ez is tilted out
of the film plane. The perpendicular component H⊥ez

quantizes the in-plane motion of the fluctuating Cooper
pairs, and induces a finite magnetization. This effect is
larger than the orbital motion associated with the in-
plane part of the field. We therefore neglect the later
(which is correct for H‖ξd ≪ Φ0) and use the MGL func-
tional Eq.(1) within the gauge Ax = 0 and Ay = xH⊥,
like in section II.C.

In the anisotropic case, the eigenmodes of this func-
tional are not known exactly for finite H⊥ precluding
an analytical evaluation of the magnetization. Never-
theless the isotropic model already exhibits oscillations
of the fluctuation magnetization. Recently the fluctua-
tional magnetization (persistent current) of small rings
made of a FFLO superconductor was obtained within
the framework of the isotropic model introduced in Sec.
II.C. In the following, we derive a simple formula for the
magnetization in the simpler planar geometry of super-
conducting films30.

The fluctuation spectrum is given by Eq.(14) and the
free energy per unit surface by Eq. (18) with H = H⊥.
The particular form Eq.(14) of the spectrum enables both
degeneracies between the Landau levels (En = En+1)
and commensurability effects between the wavevectors
Qn and q0.

Single mode (high fields) approximation: For large per-

pendicular field, namely H⊥/Φ0 ≫
√

τ/γ, the Landau
levels are well separated from each others and the main
contribution to the free energy Eq.(18) comes either from
the single level with minimal energy En, or from two lev-
els when a degeneracy (En = En+1) occurs.

Let us first consider the non-degenerate case. Then the
free energy is simply given by the single level contribution

Fn =
H⊥

Φ0
kBT ln

En(kz = 0)

πkBT
(33)

and the corresponding orbital magnetization (per unit
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surface)

Mn = − (8n + 4)kBT

Φ2
0

(
γ(Q2

n − q2
0)

τ + γ(Q2
n − q2

0)2

)
H⊥ (34)

is highly nonlinear since the prefactor of H⊥ depends
strongly on the field and on temperature. Importantly
the magnetization may change sign due to the presence
of the factor Q2

n − q2
0 in the numerator. In order to make

more transparent the formula Eq.(34), one may intro-
duce the field-dependent temperature Tcn(H) where the
denominator vanishes:

a(T − Tcn) = τ + γ(Q2
n − q2

0)2 (35)

This relation defines the second-order transition line
T

(n)
c (H) between the normal and the modulated super-

conducting state described by the n-th Landau level. We
also define the points like A,C,E (Fig.2) along this tran-
sition line where the numerator vanishes since Q2

n = q2
0 .

Those points are also located on the second-order transi-
tion line TcP (H) between the normal and the FFLO su-
perconducting state calculated in the pure paramagnetic
limit. In the normal state, the orbital magnetization can
be therefore reexpressed as

Mn = − (8n + 4)kBT

Φ2
0

γ

a

(
Q2

n − q2
0

T − Tcn

)
H⊥ (36)

This 2D magnetization is diamagnetic when Q2
n > q2

0

and paramagnetic when Q2
n < q2

0 (Fig.2). In contrast,
the fluctuation magnetization is always diamagnetic in
the BCS case. However Mn follows a similar power law

(T − T
(n)
c )−1 and is on the same order of magnitude

than the BCS magnetization28. Consequently we expect
that the oscillations between diamagnetism and param-
agnetism should be measurable in thin films of FFLO su-
perconductors. This single mode approximation breaks
down when the n-th and (n+1)-th Landau levels are de-
generate, namely when En = En+1. Then the two levels
must be included together in the free energy, whereas the
other Landau levels are still far in energy and can be ne-
glected safely. The resulting magnetization Mn + Mn+1

is slightly diamagnetic at degeneracy.
Continuum (low fields) approximation: The single

mode approximation breaks down in the weak field limit
(H⊥/Φ0 ≪

√
τ/γ) where the Landau level separation

becomes so small that all the levels have to be taken into
account. This situation corresponds to a magnetic field
which is slightly tilted out of the film plane. In the case
of a uniform BCS superconductor, the standard result for
the magnetization is33:

M =
π

3

kBT

Φ2
0

g

a(T − T̃c)
H⊥ (37)

which is diamagnetic (g < 0) and diverges at the BCS

critical temperature T̃c (H) for the second order phase
transition. This diamagnetic response is suppressed when

the tricritical point is approached, i.e. when g → 0−

(Fig.2)22. On the FFLO side (region g > 0 in Fig.2) and
for a given magnetic field, the system becomes a FFLO
superconductor before the divergency develops because
Tc > T̃c.

Conclusion: At high fields H⊥, the magnetization near
the FFLO transition line oscillates between sizeable dia-
magnetism and paramagnetism as the transitions be-
tween successive Landau levels are realized. In the low
field limit, these transitions become very close and the
oscillations average themselves leading to a cancellation
of the linear response and a suppression of the diver-
gency. This situation is in strong contrast with the stan-
dard BCS case where the magnetization is always dia-
magnetic. We suggest to perform magnetization mea-
surements in thin films near an expected FFLO transi-
tion. The suppression of the fluctuational magnetization
at low perpendicular field and the restoration of sizeable
oscillations between para- and diamagnetism at higher
perpendicular field should be a strong indication for the
FFLO state in quasi-two dimensional compounds.

IV. ANISOTROPIC 3D SUPERCONDUCTORS

It is commonly believed that the FFLO state in
CeCoIn5 corresponds to a modulation along the applied
magnetic field. Nevertheless it was argued recently that
this situation is unlikely to happen for arbitrary field ori-
entations when the tetragonal anisotropy of CeCoIn5 is
properly taken into account. Apparently if the order pa-
rameter modulation is along the field for H ⊥ c (resp.
H ‖ c), then the modulation is likely to be perpendicu-
lar to the field for H ‖ c (resp. H ⊥ c)17. Here we in-
vestigate the FFLO fluctuations in anisotropic 3D com-
pounds, building upon the various mean-field scenarios
reported in Ref17. We evaluate the fluctuational mag-
netization M along the magnetic field H = Hez. In
particular, we demonstrate below that the magnetiza-
tion oscillates between sizeable diamagnetism and para-
magnetism when the modulation is perpendicular to the
field (Landau level like). Those oscillations are the 3D
counterparts of the ones predicted in the previous section
for superconducting films. In contrast the magnetization
is shown to be strongly suppressed when the modulation
occurs along the field (FFLO like modulation). In the 3D
case, magnetization measurements therefore provide an
experimental tool to discriminate between the two possi-
ble order parameter structures uncovered in Ref17.
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A. Mean field

We start by a short reviewing of the mean-field prop-
erties of the functional

H = α |Ψ|2 −
∑

i=x,y,z

g |DiΨ|2 + γ

∣∣∣∣∣∣

∑

i=x,y,z

D2
i

∣∣∣∣∣∣

2

+ εz

∣∣D2
zΨ
∣∣2 + εx(|DxDyΨ|2 + |DyDxΨ|2)

+ ε(|DxDzΨ|2 + |DzDxΨ|2)
+ ε(|DyDzΨ|2 + |DzDyΨ|2) (38)

consistent with the tetragonal symmetry of CeCoIn5.
The terms εz, εx and ε describe nontrivial (namely dif-
ferent from a simple elliptical) anisotropy17. Note that
the cubic symmetry corresponds to εx = ε and εz = 0.
It was shown that two kinds of modulated superconduct-
ing states (scenarios a) and b) mentioned above in the
general introduction) are the most likely to occur when
anisotropies are properly taken into account.

The class a) of solutions corresponds to order parame-
ters modulated along the field with characteristic FFLO
wave-vector q0 and in the n = 0 Landau level. Following
the mean field analysis of Ref17, we write the fluctuation
spectrum as

En=0(kz) = τ + γa

(
2eH

ℏ
+ k2

z − q2
0

)2

(39)

which indicates an instability towards finite modulation
along the z axis (magnetic field). This is similar than
Eq.(14) except that the Landau index is fixed n = 0 and
γa is a renormalized parameter (specific to this class a)
of solutions) which depends on εz, εx and ε.

In the class b) of solutions, the modulation occurs in
the plane perpendicular to the field and is described by
a higher (n > 0) Landau level. Following the mean field
analysis of Ref17, we write the fluctuation spectrum as

En(kz) = τ + γb(Q
2
n − q2

0)
2 + gbk

2
z . (40)

This spectrum differs from Eq.(39) since the kinetic en-
ergy term gbk

2
z favors kz = 0. Furthermore a finite Lan-

dau index is possible, since the energy is also minimized
by choosing n such as Q2

n − q2
0 ∼ 0. In brief, the lowest

energy fluctuations in the normal state ressemble the su-
perconducting groundstate which is modulated perpen-
dicularly to the field. Note that here γb and gb are also
renormalized parameters which are specific to the class b)
of solutions and depend on εz, εx and ε in a complicated
manner17.

B. Fluctuation magnetization

Here we evaluate the magnetization induced by the
FFLO fluctuations taking into account the intrinsic

anisotropy present in 3D compounds. The FFLO transi-
tion might happen under low or strong field, depending
on the underlaying microscopic mechanism. For instance,
in the rare earth magnetic superconductor ErRh4B4 a
small field is sufficient to polarize the internal moments,
and the FFLO transition is thus expected at low applied
magnetic field3. Here we treat the case of the FFLO
transition occuring under strong magnetic field which is
relevant for the case of the heavy fermion superconduc-
tor CeCoIn5. Using a single Landau level approximation,
we demonstrate that the magnetization exhibits qualita-
tively distinct behaviors depending on the class of solu-
tions.

FFLO-like modulation along the field, characterized by
a finite wave-vector q0 and Landau index n = 0 (scenario
a) discussed in the introduction). The 3D density of free
energy is given by the integral

F = kBT
H

Φ0

∫
dkz

2π
ln

En=0(kz)

πkBT
(41)

where the energy En=0(kz) is given by Eq.(39). Hence
the most divergent part of the orbital magnetization (per
unit volume) M = −∂F/∂H is given by

M = −2kBT

Φ2
0

×

×
(∫ ∞

−∞

dkz

γa

(
2eH/ℏ + k2

z − q2
0

)

τ + γa (2eH/ℏ + k2
z − q2

0)
2

)
H, (42)

where Φ0 = h/(2e). Since the numerator of the inte-
grand cancels and changes sign as a function of kz, one
expects a strong suppression of the fluctuation magneti-
zation compared to the uniform BCS case wherein such
a cancellation does not occur. Indeed the magnetiza-
tion M diverges logarithmically at the FFLO transition
which is less divergent than the τ−1/2 law predicted in the
standard BCS case. Therefore the presence of a genuine
FFLO state should be detected as a suppression of the
fluctuation diamagnetism observed near the BCS tran-
sition. In comparison with the 2D case, the oscillations
between paramagnetism and diamagnetism predicted in
the previous section are blurred out by the dispersion
over the momentum kz along the field.

Landau level modulation perpendicular to the field (sce-
nario b) discussed in the introduction). The dispersion
of the fluctuations Eq.(40) now favors the absence of
modulation along the z axis in contrast to the spectrum
Eq.(39). Upon increasing the parameter q2

0 , the lowest
energy Landau level is successively n = 0, then n = 1
etc... Near the BCS transition (g > 0), the fluctua-
tions induce diamagnetism and a lowering of the critical
field Hc2(T ) below the purely paramagnetic critical field
HP (T ) at the same temperature (Fig.2). When the n-th
Landau level is realized and when all the other Landau
levels are distant in energy, one can single out the con-
tribution of this main level to the density of free energy

F = kBT
H

Φ0

∫ ∞

−∞

dkz

2π
ln

τ + γb(Q
2
n − q2

0)
2 + gbk

2
z

πkBT
. (43)
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Writing the orbital magnetization as

Mn = − (4n + 2)kBT

Φ2
0

×

×
(∫ ∞

−∞

dkz
γb(Q

2
n − q2

0)

τ + γb(Q2
n − q2

0)2 + gbk2
z

)
H⊥, (44)

shows that the 2D oscillations are no longer suppressed
by the integration over kz since the numerator is inde-
pendent of kz . Calculating the integral shows that the
magnetization diverges as

Mn = − (4n + 2)kBT

Φ2
0

γb

(agb)
1/2

Q2
n − q2

0

(T − Tcn)
1/2

H⊥ (45)

with the same power law than in the BCS transition of
3D superconductors28. Unlike the BCS case, this fluctua-
tion magnetization changes sign being diamagnetic when
Q2

n > q2
0 (arcs BC, DE in Fig.2) and paramagnetic when

Q2
n < q2

0 (arcs AB, CD).
In brief, the magnetization is sizeable and oscillates be-

tween para- and diamagnetism when the superconduct-
ing order parameter is modulated perpendicularly to the
field, whereas it is strongly suppressed when the order
parameter is modulated along the field. Therefore mag-
netization measurements may serve as a test to discrim-
inate between FFLO and Landau level like modulations
in 3D anisotropic superconductors.

V. CONCLUSION.

We investigated the conductivity and the orbital mag-
netization associated with superconducting fluctuations
above the FFLO critical temperature or field. Both in
2D and 3D models, we shown that these properties dif-
fer considerably than their counterparts at the vicinity
of a standard BCS transition towards an homogeneous
superconducting state, thereby providing an experimen-
tal tool to detect the inhomogeneous state. First, the
paraconductivity of thin superconducting films exhibits
a strong anisotropy when measured parallel or perpen-
dicular to the FFLO modulation. Second, the orbital
magnetization oscillates between diamagnetic and para-
magnetic behaviors at high fields, and is strongly sup-
pressed at low fields, whereas the uniform BCS state
always induces diamagnetic fluctuations above Tc. We
suggest performing magnetization and conductance mea-
surements along the FFLO transition line in compounds
where the FFLO state has been recently reported. In
2D organic superconductors9,10, the magnetization os-
cillations should be even more pronounced than in the
3D magnetic superconductors (ErRh4B4 , see3) or in the
case of the anisotropic 3D heavy fermion superconduc-
tor CeCoIn5

6,7,8. It was recently shown that CeCoIn5

has quasi-2D Fermi-surface sheets coexisting with a 3D

H

TT


HP
g = 0

g > 0 g < 0ABCDE

1

FIG. 2: Schematic field-temperature (H,T ) phase diagram
showing the cascade of Landau levels. The thick dashed curve
represents the critical field in the absence of orbital effect.
In presence of orbital effect, the critical field is reduced and
described by the thin dashed curves which corresponds re-
spectively to the n = 0, n = 1 and n = 2 Landau levels. The
solid line represents schematically the expected transition line
between the normal and the superconducting states. The fluc-
tuations are diamagnetic between zero field (H = 0, Tc) and
B, paramagnetic near the arc AB, then again diamagnetic
near the arc BC, etc...The Landau levels are degenerate at
points B,D, etc... This schematic picture is relevant for both
2D FFLO superconductors and for 3D ones where the Lan-
dau level modulation is realized (scenario b) evoked in the
introduction).

anisotropic Fermi surface34. Nevertheless due to strong
hybridization, superconductivity in CeCoIn5 is likely to
be described by a single order parameter. The com-
plex structure of the Fermi surface should only modify
the expressions of the coefficients in the MGL functional
as functions of the microscopic parameters of CeCoIn5.
Moreover, the fact that the Landé factor is anisotropic
leads to different Maki parameters depending on the field
orientation and may also shift the position of the tri-
critical point5. Nevertheless the magnetization oscilla-
tions/suppression predicted here are generic of the pres-
ence of FFLO phase, and should pertain independently
of the microscopic characteristics of CeCoIn5.

Finally, in the 3D case, we find that the absence of such
oscillations reveals a FFLO state modulated along the
field whereas presence of oscillations should be associated
with a multiquanta Landau modulation perpendicular to
the field.
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VI. APPENDIX

In this appendix, we address the validity of the Gaus-
sian approximation used in this paper. When the tem-
perature is sufficiently close to the critical one, interac-
tions between the fluctuation modes become so strong
that the Gaussian approximation breaks down. In order
to quantify the range of temperature where this break-
down occurs, we derive the Ginzburg-Levanyuk criterion
for the FFLO transition25,35,36.

A. Ginzburg-Levanyuk criterion for the FFLO

transition

The full isotropic MGL functional H [Ψ] = HG [Ψ] +
Hint[Ψ] contains a quadratic part

HG [Ψ] = Nd(0)

∫
dr

[
α̃ |Ψ|2 − g̃ξ2 |∂Ψ|2 + ξ4

∣∣∂2Ψ
∣∣2
]

(46)

= Nd(0)
∑

k

(
τ̃ + (k2 − q2

0)2ξ4
)

(47)

which describes the free dynamics of the order param-
eter Ψ, and non quadratic terms Hint[Ψ] which de-
scribe interactions19,20,21. All the results of this paper
are derived within the Gaussian approximation which
consists in using HG [Ψ] as the free energy functional
thereby neglecting completely Hint [Ψ]. In the spirit of
the original35,36 and textbook25 Ginzburg-Levanyuk cri-
terion, we evaluate the interaction terms

Hint [Ψ] = Nd(0)

∫
dr

[
g̃

T 2
c

|Ψ|4 +
1

T 4
c

|Ψ|6
]

. (48)

in order to compare them with HG [Ψ].
We have introduced the dimensionless coefficients α̃ =

(T −T̃c)/T̃c, τ̃ = (T −Tc)/Tc, and g̃ to make apparent the
order of magnitude of ech term in the MGL functional as
a function of the the energy scales Tc and EF . In partic-
ular the dimensionless parameter g̃ is of order one. We
have also introduced the d-dimensional electronic den-
sity of states Nd(0) and the superconducting coherence
length ξ = vF /Tc (we set ℏ = 1). Here q2

0 = g̃/2ξ2 in
analogy with the transformation performed in Eq. (5).
It is a rather particular property of the MGL functional
that the coefficients of the |Ψ|4 and |∂Ψ|2 vanish at the

same point (H, T ) of the phase diagram (the tricritical
point)19. For this reason and since we are solely inter-
ested in orders of magnitude here, we have denoted the
coefficient of the |Ψ|4 term by the same g̃ used for the

|∂Ψ|2.
For examples of phase transitions, one usually eval-

uates only the |Ψ|4 terms25. Here the situation of the
FFLO transition is rather specific since on the line g̃ =
g = 0 of the (T, H) phase diagram the coefficient of the

|Ψ|4 term vanishes. Therefore one should evaluate the

next interacting term, |Ψ|6, for the regions near this line
g̃ = 0. Sufficiently far away from this line g̃ = 0 (see the
quantitative criterion below), one may simply evaluate

the |Ψ|4 term.

Using Wick theorem to evaluate Hint [Ψ] = H
(4)
int [Ψ] +

H
(6)
int [Ψ], we find

H
(4)
int [Ψ] =

2g̃Nd(0)

T 2
c Ld

∑

k,k′

〈
|Ψk|2

〉

0

〈
|Ψk′ |2

〉

0
(49)

for the |Ψ|4 term, and

H
(6)
int [Ψ] = Nd(0)

∑

k

(
2

T 2
c Ld

∑

k′

〈
|Ψk′ |2

〉

0

)2 〈
|Ψk|2

〉

0
,

(50)

for the |Ψ|6 term. Note that in this problem the form of
the free field correlator

〈
|Ψk|2

〉

0
=

πkBTc/Nd(0)

τ̃ + ξ4 (k2 − q2
0)

2 . (51)

is rather special due to the proximity of the FFLO tran-
sition.

B. Isotropic model

Far from the tricritical point, namely when g̃ >

(Tc/EF )2(d−1)/(6−d), the leading correction to the Gaus-

sian behavior originates from the |Ψ|4 interaction term.
Morover the fluctuations propagate with a quadratic dis-
persion, and the correlator Eq.(51) can be approximated
as

〈
|Ψk|2

〉

0
=

πkBTc/Nd(0)

τ̃ + 4q2
0ξ

4 (k − q0)
2 (52)

when evaluating the sum

g̃

T 2
c Ld

∑

k′

〈
|Ψk′ |2

〉

0
=

g̃d/2τ̃−1/2

TcNd(0)ξd
. (53)

Using TcNd(0)ξd = (EF /Tc)
d−1, we find that the |Ψ|4 in-

teraction terms are negligible in comparison to the Gaus-
sian ones when the condition (Ginzburg-Levanyuk crite-
rion)

τ̃ ≫ g̃d/3

(
Tc

EF

)2(d−1)/3

(54)
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is fullfilled. The critical region width is larger than in
the standard BCS case (τ ≫ (Tc/EF )4 for d = 3 and
τ̃ ≫ Tc/EF for d = 2) but it remains extremelly thin.

Near the tricritical point, when g̃ 6

(Tc/EF )2(d−1)/(6−d), the |Ψ|6 interaction becomes

stronger than the |Ψ|4 one since this latter contribution
is suppressed by the extremelly small prefactor g̃. In
particular, along the g̃ = g = 0 line in the (H, T )

diagram, the |∇Ψ|2 and |Ψ|4 terms are totally absent
from the functional19. Therefore one should compute the

mean value
〈
|Ψk|2

〉

0
with a purely quartic momentum

dependence. Since

1

T 2
c

1

Nd(0)Ld

∑

k′

〈
|Ψk′ |2

〉

0
=

τ̃ (d−4)/4

TcNd(0)ξd
, (55)

the condition to neglect the |Ψ|6 interaction between the
fluctuation modes is thus

τ̃ ≫
(

Tc

EF

)4(d−1)/(6−d)

(56)

The critical fluctuations are present in a larger region
of the phase diagram than for BCS superconductivity28.
During the completion of this work, we became aware
of Ref.30 where the Ginzburg-Levanyuk criterion is de-
rived by evaluting exclusively the |Ψ|4 interaction term.
We therefore obtain the same Ginzburg-Levanyuk cri-
terion as in Ref.30 for the large g̃ regime whereas our
criteria differ when approaching the tricritical point. In
spite of this discrepancy, both procedures lead to the
same practical conclusion that the critical region re-
mains extremelly thin and inaccessible for experimen-
tal observations, because of the smallness of the ratio
Tc/EF ∼ (10−2 − 10−3).

C. Anisotropic model.

We now derive the Ginzburg-Levanyuk criterion in the
case of anistropic FFLO superconductors. The large g
regime is modified in comparison to the isotropic case,
since there the low energy fluctuations are located around
few isolated points instead being spread over a large shell
of radius q0.

Far from the tricritical point, namely when g̃ >

(Tc/EF )2(d−1)/(6−d), the leading correction to the Gaus-

sian behavior originates from the |Ψ|4 interaction term.

Moreover the fluctuations propagate with a quadratic
dispersion, and the correlator Eq.(51) can be approxi-
mated as

〈
|Ψk|2

〉

0
=

πkBTc/Nd(0)

τ̃ + g̃k2ξ2
. (57)

Evaluating the sum

g̃

T 2
c Ld

∑

k′

〈
|Ψk′ |2

〉

0
=

(
τ

g̃

)(d−2)/2

1

TcNd(0)ξd
(58)

and using TcNd(0)ξd = (EF /Tc)
d−1, we find that the

|Ψ|4 interaction terms are negligible in comparison to the
Gaussian ones when the condition (Ginzburg-Levanyuk
criterion)

τ̃ ≫ g̃(2−d)/(4−d)

(
Tc

EF

)2(d−1)/(4−d)

(59)

is fullfilled. This Ginzburg-Levanyuk criterion is similar
(same power of Tc/EF ) than the one encountered in the
standard BCS case.

Near the tricritical point, when g̃ 6

(Tc/EF )2(d−1)/(6−d), the lowest energy fluctuations
are located around the origin of the reciprocal space
and have a quartic dispersion like in the isotropic model
studied above. The Ginzburg-Levanyuk criterion is thus
again

τ̃ ≫
(

Tc

EF

)4(d−1)/(6−d)

(60)

near the tricritical point.

D. Conclusion

We have obtained that the size of the critical re-
gion in FFLO superconductors is more extended than
in the usual uniform superconductor case. Neverthe-
less, for superconducting compounds, the ratio Tc/EF ∼
(10−2 − 10−3) is small and the critical region thus re-
mains hardly accessible for experimental observations,
thereby supporting the Gaussian analysis performed in
this paper. This fact makes very difficult the observa-
tion of the phenomena (first-order transition) predicted
by renormalization group studies37,38.
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