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Université de Bordeaux ; CNRS ; CPMOH, F-33405 Talence, France

(Dated: February 13, 2009)

We derive the magnetization and the paraconductivity of Fulde-Ferrell-Larkin-Ovchinnikov
(FFLO) superconductors in their normal state. The FFLO superconducting fluctuations induce os-
cillations of the magnetization between diamagnetism and unusual paramagnetism which originates
in the competition between paramagnetic and orbital effects. We also predict a strong anisotropy of
the paraconductivity when the FFLO transition is approached in contrast with the case of a uniform
BCS state. Finally building a Ginzburg-Levanyuk argument, we demonstrate that these fluctuation
effects can be safely treated within the Gaussian approximation since the critical fluctuations are
proeminent only within an experimentally inaccessible temperature interval.

I. INTRODUCTION.

Forty years ago, Fulde and Ferrell1, and Larkin and
Ovchinnikov2 predicted that the paramagnetism of the
electron gas might induce a novel superconducting state
wherein the order parameter is modulated in real-space.
In their original proposal, these authors considered a sin-
glet s-wave superconductor perturbed by the Zeeman
effect only, and neglected completely the orbital cou-
pling and the disorder. For most type-II superconduc-
tors, the superconductivity is destroyed by the orbital
pair-breaking effect which leads to a more familiar in-
homogeneous superconducting state: the Abrikosov vor-
tex lattice. In order to observe the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) state, the paramagnetic effect must
break Cooper pairs more efficiently than the orbital one.
Such a situation may be realized in tridimensional (3D)
superconductors with large internal exchange fields, like
the rare-earth magnetic superconductor ErRh4B4, see3

for a review. Another possibility corresponds to a quasi
two-dimensional (2D) layered superconductor wherein
the weakness of the interplane hopping suppresses the
orbital effect for in-plane magnetic field. Being the ratio
of the critical fields in the pure orbital Horb

c (T = 0) and
pure paramagnetic limit Hp(T = 0), the Maki parame-

ter αm =
√

2Horb
c (T = 0)/Hp(T = 0) is a measure of

the relative strength of those pair breaking mechanisms.
Besides demanding a large Maki parameter (αm > 1.8),
the occurance of the FFLO state also requires very clean
samples since it is far less robust against disorder than
the usual vortex lattice, see4 and5 for recent reviews.

Recently, there have been mounting evidence that the
heavy fermion superconductor CeCoIn5 under magnetic
field might fullfil those stringents conditions6,7,8. The
magnetism of this system is still under debate, but myste-
rious superconducting phases have been reported at large
magnetic field and low temperature, both for parallel and
perpendicular orientations of the field relatively to the
basal plane of the tetragonal CeCoIn5 lattice5. In the
field-induced organic superconductor9 λ-(BETS)2FeCl4,
and in the layered organic superconductor10 κ-(BEDT-
TTF)2Cu(NCS)2 the FFLO state have been reported

when a strong magnetic field (20 T for latter one) is ap-
plied along the superconducting planes.

However in practice, the identification of the FFLO
state is hindered by the interplay between orbital and
paramagnetic effects. The first available experimental
clue is the shape of the transition line Hc(T ) separating
the normal state from the inhomogeneous superconduct-
ing state. A lot of theoretical works have been devoted
to the description of this Hc(T ) line. For moderate Maki
parameters, αm < 9, the structure of the FFLO modula-
tion involves a zero Landau level (index n = 0) function
(Gaussian with no additional modulation)11. For higher
Maki parameter, αm > 9, the Cooper pair wave function
of a 3D superconductor consists in a cascade of more ex-
otic solutions, the so-called multi-quanta states, which
are described by a higher (index n > 0) Landau level12.
Such values of Maki parameters are rather high for 3D
compounds (for instance CeCoIn5 has αm = 4.6− 5) but
they can be achieved in layered quasi-2D superconductors
(or superconducting thin films) under in-plane magnetic
fields13. All these studies were performed so far in the
framework of isotropic models, namely for the idealis-
tic case of a spherical Fermi surface in the normal state.
Moreover it has been shown that an elliptic Fermi surface
leads to the same phenomenology at cost of introducing
an angle-dependent Maki parameter14.

In real compounds, the crystal lattice (or the pairing
symmetry) induces a non trivial anisotropy which mat-
ters a lot for the modulated state15,16 since it essentially
lifts the degeneracy between various orientations of the
FFLO modulation. Recently, the interplay of paramag-
netic and orbital effects was reconsidered in the presence
of such a non trivial anisotropy, namely for a Fermi sur-
face which slightly differs from the spherical or elliptical
shape17. Using a perturbative approach, it was found
that even a small anisotropy stabilizes the exotic multi-
quanta states which can therefore exist at lower Maki pa-
rameter (any αm > 1.8) than predicted by the idealized
isotropic models. According to this prediction such states
are therefore likely to occur in any real anisotropic Pauli
limited superconductor. More specifically in the tetrag-
onal symmetry, 3 scenarios are possible for the FFLO
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state: a) Maximal FFLO modulation along the field with
zero Landau level state, b) Highest Landau level mod-
ulation in the plane perpendicular to the field and no
FFLO modulation, and c) Both Landau level and FFLO
modulations. This three scenario picture corresponds to
the tetragonal symmetry and was derived within a sin-
gle Landau level approximation, which is valid at large
field. It may thus be relevant to explain the observation
of two mysterious high-field and low temperature phases
of CeCoIn5, existing for distinct magnetic field orienta-
tions (field inside or perpendicular to the CeIn3 planes)
with contrasted behaviors. Nevertheless the shape of the
Hc(T ) transition line is far from sufficient to establish
a clear correspondance between one phase and a partic-
ular class of solutions among the three a-c possibilities.
It is thus necessary to gain complementary informations
about the transition in order to determine which scenario
among a-c is actually realized. As natural precussors
of the transition, the fluctuations provide informations
about the symmetry breaking superconducting state and
we shall show here that they enable to detect the pres-
ence of a FFLO state and to discriminate between the
various a-c scenarios in the tetragonal 3D case.

In this paper, we evaluate the fluctuation induced con-
ductivity (paraconductivity) and magnetization near the
FFLO transition in both 2D and 3D anisotropic su-
perconductors. We use the modified Ginzburg-Landau
functional18,19,20 which is valid at the vicinity of the tri-
critical point. Previously we calculated the fluctuational
specific heat and conductance near the pure FFLO tran-
sition in the absence of orbital effect21. Our motivation
was to establish a relation between the topology of the
lowest energy fluctuation modes and the divergencies of
the physical properties at the pure FFLO transition. In
the isotropic model, those divergencies are very different
than the standard BCS ones since the topologies of the
degenerate FFLO and BCS modes differ fundamentally.
Unfortunalely, in the anisotropic models, this degener-
acy is lifted and the topologies of FFLO and BCS modes
become quite similar, thereby leading to less contrasted
behaviors.

Here we show that the anisotropy ratio σxx/σyy of the
fluctuational conductivity near the FFLO transition dif-
fers drastically than the one near a standard BCS tran-
sition. Moreover we demonstate that the fluctuation in-
duced magnetization of thin films may oscillate between
positive (paramagnetism) and negative (diamagnetism)
values. These oscillations originate from the compe-
tition between orbital and paramagnetic effects which
tend to promote respectively Landau level modulation
and FFLO modulation. Being precursors of the Meis-
ner or Abrikosov lattice state, the superconducting fluc-
tuations are usually diamagnetic. Therefore the para-
magnetism predicted here is a hallmark of the uncon-
ventional FFLO state. This result can be easily ex-
tended to the case of layered 2D compounds like λ-
(BETS)2FeCl4 or κ-(BEDT-TTF)2Cu(NCS)2. In 3D su-
perconductors under high magnetic field, these oscilla-

tions are blurred out when scenario a) is realized whereas
they pertain when scenario b) takes place, thereby pro-
viding an experimental test to distinghish among the var-
ious possible structures of the order parameter described
in Ref.17. Experimentally, the superconducting fluctua-
tions in CeCoIn5 have been investigated far above Tc and
under low fields22,23. Here we suggest similar measure-
ments near Tc under strong magnetic field and near the
FFLO critical temperature.

The paper is organized as follows. In Sec II, we present
the modified Landau-Ginzburg formalism and the low en-
ergy effective functionals used in the sequel of the paper.
In Sec III, we analyse the case of thin superconducting
films under in-plane magnetic field and predict a strong
dependence of the conductance upon the mutual orien-
tation of the current flow and magnetic field. We also
derive the fluctuation magnetization induced by a tilted
magnetic field pointing out of the film plane. In Sec IV,
we discuss the 3D anisotropic compounds with emphasis
on the fluctuation magnetization. Finally, we provide a
detailled derivation of the Ginzburg-Levanyuk criterion
for the FFLO transition in order to discuss the role of
the critical fluctuations.

II. FORMALISM

At the vicinity of the tricritical point, the FFLO tran-
sition can be described by a modified Ginzburg-Landau
functional derived from the microscopic BCS theory in-
cluding the Zeeman effect. This modified Ginzburg-
Landau functional was first derived in the case of clean
isotropic s-wave superconductors18 and has been ex-
tended to clean/dirty (s-wave and d-wave) singlet super-
conductors with various crystalline symmetry19,20. The
isotropic functional consists in the following expansion
with respect to the superconducting order parameter Ψ
and its spatial derivatives:

H [Ψ (r)] =

∫

dr

[

α |Ψ|2 − g |∇Ψ|2 + γ
∣

∣∇2Ψ
∣

∣

2
]

+

∫

dr

[

β1 |Ψ|4 + µ |Ψ|2 |∇Ψ|2 + β2 |Ψ|6
]

+

∫

dr

[

η
(

(Ψ∗)
2
(∇Ψ)

2
+ (Ψ∗)

2
(∇Ψ)

2
)]

(1)

Here α = a
(

T − T̃c

)

changes sign at the critical temper-

ature T̃c (h) of the uniform superconducting second order
phase transition. The other coefficients also depend on
the temperature and Zeeman splitting h. In particular,
the coefficient g is positive when h/2πT > 0.3 and nega-
tive when h/2πT < 0.3. This induces an inhomogeneous
superconducting phase (g > 0) below the FFLO criti-
cal temperature Tc (h). This FFLO critical temperature

Tc (h) is larger than T̃c (h) when h/2πT > 0.3. Moreover,
γ is positive in the vicinity of the tricritical point thereby
ensuring a finite wave vector modulation.
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The first line of the MGL functional Eq.(1) is suffi-
cient to study the Gaussian fluctuations. In section V
we evaluate the effect of the two other lines and demon-
strate that they can be safely neglected by establishing
a Ginzburg-Levanyuk criterion for the FFLO transition.
In the Fourier representation, the Gaussian functional is
given by

H [Ψ] =
∑

k

εk |Ψk|2 . (2)

where the fluctuation spectrum is εk = α− gk2 + γk4 in
the isotropic case corresponding to Eq.(1). In the sequel
of this paper, we will consider the effects associated with
an anisotropic spectrum which can be written generically
as:

εk = α − gik
2
i + γijk

2
i k2

j . (3)

The terms γijk
2
i k2

j generically produce a deviation from
an elliptic Fermi surface, excepting when the coefficients
gi and γij are related in a very special manner (such that
εk is a function of k

2 and k
4 only).

Finally the density of free energy F , the paraconduc-
tivity tensor σαβ and the magnetization M are given by
the expressions24,25,26

F =
kBT

Ld

∑

k

ln
εk

πkBT
(4)

σαβ =
πe2akBT

4ℏ

1

Ld

∑

k

vkαvkβ

ε3
k

(5)

M = − ∂F

∂H
(6)

where vkα = ∂εk/∂kα is the velocity component along
the α axis.

III. SUPERCONDUCTING THIN FILMS

Here we consider thin superconducting films under in-
plane magnetic field wherein the FFLO state is expected
to occur due to the smallness of the orbital effect. We
investigate the anisotropy of the paraconductivity when
measured along or perpendicular to the applied mag-
netic field H = Hex. We demonstrate that the con-
ductivity becomes extremely anisotropic when approach-
ing the FFLO transition, whereas σxx/σyy ≃ 1 near the
BCS transition, thereby providing an experimental tool
to identify the FFLO state. Finally, we also discuss the
effect of a tilted magnetic field. Under strong perpendic-
ular field, the magnetization exhibits oscillations between
diamagnetic and paramagnetic behavior in sharp con-
trast with the usual fluctuation induced diamagnetism
predicted and observed close to the BCS transition25,26.

FIG. 1: Minima of the fluctuation spectrum Eq. (7) for
the two-dimensional model with square symmetry. The open
(filled) ellipses indicate the locations of the lowest energy fluc-
tuations for η < 1 (η > 1). Note that in the isotropic model
(η = 1), there is an infinity of degenerate minima located on
the circle (solid line).

A. Square symmetry

We first consider films which are sufficiently thin to
neglect the orbital effect induced by the in-plane mag-
netic field H = Hex. This approximation is correct if
Hξd ≪ Φ0, where ξ is the superconducting coherence
length and Φ0 = h/2e the superconducting quantum of
flux. Owing to the sizeable Zeeman effect, the parame-
ter g may change sign, thereby indicating an instability
towards the inhomogeneous FFLO state when g is nega-
tive. Then in the normal state, fluctuations are described
by the spectrum

εk = α − gk2 + γk4 + 2γ (η − 1)k2
xk2

y, (7)

where γ > 0. Although the x and y directions are equiv-
alent, the quartic terms k2

xk2
y introduce a non trivial

anisotropy controlled by the parameter η. Isotropy is
restored only for the case η = 1 which corresponds to a
circular Fermi surface and has been treated elsewhere21.

Here we investigate the effect of the anisotropy near the
FFLO transition (g > 0), starting with the case η > 1.
The spectrum εk has four minima located along the x
and y axis, namely at points A± (±q0, 0) or B± (0,±q0)
of the reciprocal space, where q2

0 = g/2γ (Fig.1). The
spectrum can be expanded around each of those minima.
For instance near the minima A± located along the x
axis, the spectrum is approximated by

ε
(A±)
k

≈ τ + 2g (kx ∓ q0)
2
+ g (η − 1)k2

y (8)

with τ = α − g2/4γ. Since the effective masses along
x and y directions are different, the fluctuations around
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each of those two minima break the symmetry between

x and y axis: σ
(A±)
xx /σ

(A±)
yy 6= 1. Of course this symmetry

must be restored if one takes into account the minima
B± (0,±q0) located along the y axis. Indeed the spec-
trum around B± is given by

ε
(B±)
k

≈ τ + g (η − 1) k2
x + 2g (ky ∓ q0)

2
, (9)

where the effective masses along x and y axis are ex-
changed in comparison with (8).

Finally, we evaluate the integral Eq.(5) over the whole
reciprocal space by summing the contributions from the
four minima. Accordingly the total paraconductivity

σxx = 2(σ
(A+)
xx + σ

(B+)
xx ) diverges at the FFLO transition

as:

σxx = σyy =
e2akB

4
√

2ℏ

1 + η√
η − 1

(

Tc

T − Tc

)

. (10)

The second case η < 1 can be treated along the
same line of reasoning, albeit the four degenerate min-
ima (q0x, q0y) are now located on the diagonals with
q2
0x = q2

0y = q2
0/2. The spectrum can be expanded as

εk ≈ τ − gij (ki − q0i) (kj − q0j) , (11)

around any of those four minima. Here we have τ = α−
g2/2γ (1 + η) and Einstein summation over index i, j =
x, y is used. For instance, we find

gxx = gyy =
2g

1 + η
and gxy = gyx =

2gη

1 + η
(12)

around A′
+(q0/

√
2, q0/

√
2). Diagonalization of this ten-

sor leads to the eigenvalues λX = 2g and λY =
2g (1 − η) / (1 + η) along the principal axis X and Y . Fi-
nally summation over the four minima (Fig.1) restores
the equality between σxx and σyy

σxx = σyy =
e2akB

2ℏ

g2η2

(1 + η)
3

√

1 + η

1 − η

(

Tc

T − Tc

)

(13)

Note that above expressions Eqs.(10,13) both diverge
for η → 1, which indicates stronger Gaussian fluctuations
in the isotropic model21.

B. Rectangular anisotropy

Here we consider superconducting films having non
equivalent x and y directions. In order to describe the
physics of the FFLO fluctuations in the absence of orbital
effect (limit Hξd ≪ Φ0), we consider the spectrum

εk = α − gk2 + γ1k
4
x + γ2k

4
y + 2γηk2

xk2
y (14)

close to the FFLO transition (g > 0).
The positions of the εk minima depend on the pa-

rameters γ, γ1 and γ2 (Fig.2). There are three differ-
ent possibilities depending on the range of parameters:

FIG. 2: Lowest energy fluctuations in the two-dimensional
model with rectangular symmetry. In the gray area, the four
minima of the fluctuation spectrum are located on the di-
agonals when both γ1 and γ2 exceeds a threshold value γη.
Otherwise, the spectrum has only two minima located on the
axis x (or y). Note that the line γ1 = γ2 corresponds to the
square model illustrated in Fig. 1.

two minima A±

(

±
√

g/2γ1, 0
)

along x axis, or two min-

ima B±

(

0,±
√

g/2γ2

)

along y axis, or four minima Ci

(i = 1, .., 4). As in the preceding subsection, the para-
conductivity is obtained by summing the contributions
from the fluctuations around the relevant energy minima.
We now provide the expressions of the conductivity ratio
σxx/σyy for the different configurations of these minima.

Two minima along x axis (γ2 > γ1):

σxx

σyy
=

σ
(A+)
xx + σ

(A−)
xx

σ
(A+)
yy + σ

(A−)
yy

=
γη − γ2

2γ2
. (15)

Two minima along y axis (γ2 < γ1):

σxx

σyy
=

σ
(B+)
xx + σ

(B−)
xx

σ
(B+)
yy + σ

(B−)
yy

=
2γ1

γη − γ1
. (16)

Four minima shifted from the x and y axis (γ1, γ2 > γη):

σxx

σyy
=

∑

i

σ
(Ci)
xx

∑

i

σ
(Ci)
yy

=
γ1

γ2

γη − γ2

γη − γ1
. (17)

In the latter case, on recovers the square symme-
try (σxx = σyy) when γ1 = γ2. Otherwise (when
min(γ1, γ2) < γη) the square case is retrieved provided
that all the contributions from the A± and B± minima
are collected.
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C. Anisotropic films with in-plane magnetic field.

In the models presented above, the orbital motion of
the electrons was neglected, which corresponds to the
limit of vanishing film thickness (Hξd ≪ Φ0). Here we
treat perturbatively the orbital effect of the in-plane mag-
netic field which fixes the direction of the FFLO modula-
tion. Even in the square symmetric case, the spectrum εk

has only two-degenerate true minima instead of four, and
the paraconductivity σxx may differ from σyy. In pres-
ence of the orbital effect, the modified Ginzburg-Landau
functional is obtained as

H = α |Ψ|2 − g
[

|ΠxΨ|2 + |ΠyΨ|2
]

+

+ γ
[

∣

∣Π2
xΨ
∣

∣

2
+
∣

∣Π2
yΨ
∣

∣

2
+ |ΠxΠyΨ|2 + |ΠyΠxΨ|2

]

+

+ γη
[

Π2
xΨ
(

Π2
yΨ
)∗

+
(

Π2
xΨ
)∗

Π2
yΨ
]

(18)

from Eq.(1) after the usual Peierls substitution Πx = ∂x

and Πy = ∂y + 2iezH/ℏ within the Landau gauge. In
the case of thin films with a strong confinement in the z
direction, the dispersion can be written as

εk = α − g

(

k2 +
(Hd)2

12Φ2
0

)

+ γ

(

k4 +
(Hd)4

80Φ4
0

)

+

+ 2γ (η − 1) k2
xk2

y +
(Hd)

2

6Φ2
0

(

γηk2
x + 3γk2

y

)

(19)

where k2 = k2
x + k2

y, and d is the width of the film along

the z-axis27. If d = 0, one recovers the model of section
III A, while for d 6= 0, the minima are displaced as follows
(η > 1):

A± → A±





√

g

2γ
− η (Hd)

2

12Φ2
0

, 0



 , (20)

B± → B±



0,

√

g

2γ
− (Hd)2

4Φ2
0



 . (21)

The critical temperature associated with modulation A±

differs from the one for B±. It turns out that the FFLO
modulation occurs along the field (points A±) for η < 3.
Strikingly for η > 3 the modulation occurs along the
y-axis (points B±) which is perpendicular to the ap-
plied field27. Owing to the smallness of the parameter
Hξd/Φ0, we can expand the ”effective mass” tensors gij

around their values for the model without orbital effect
(Hξd/Φ0 = 0). Finally summing over the A+ and A−

(or the B+ and B−) contributions the ratio between the
paraconductivities measured along or perpendicular to
the field is

σxx

σyy
= 1 +

γ

6g

(

Hd

Φ0

)2 [
η − 3

η − 1
+

g2

2γτ

(η − 3)2

η + 1

]

(22)

for 1 < η < 3 and with τ = α − g2/4γ.
As a main result of this section, the ratio σxx/σyy con-

tains a contribution which diverges at the FFLO transi-
tion. This is in strinking contrast with the regular be-
havior of this ratio

(

σxx

σyy

)

BCS

= 1 − γ (η − 3)

6g

(

Hd

Φ0

)2

(23)

near the BCS transition. Such an enhancement of
σxx/σyy may serve as an experimental signature of the
FFLO state. This property is reminiscent of the recent
finding that critical current oscillates as a function of
magnetic orientation in anisotropic 2D films27.

D. Effect of a tilted magnetic field

Finally, we discuss the effect of a tilted magnetic field
H = H‖ex + H⊥ez pointing out of the film plane. The
perpendicular component H⊥ez quantizes the in-plane
motion of the fluctuating Cooper pairs, and induces a fi-
nite magnetization. In this subsection, we neglect the or-
bital motion associated with the in-plane part of the field,
which is correct for H‖ξd ≪ Φ0. Thus, the Ginzburg-
Landau functional is obtained by the Peierls substitution
Dx = ∂x and Dy = ∂y + 2iexH⊥/ℏ. In the anisotropic
case, the eigenmodes of the operator

H = α |Ψ|2 − g
[

|DxΨ|2 + |DyΨ|2
]

+

+ γ
[

∣

∣D2
xΨ
∣

∣

2
+
∣

∣D2
yΨ
∣

∣

2
+ |DxDyΨ|2 + |DyDxΨ|2

]

+

+ γη
[

D2
xΨ
(

D2
yΨ
)∗

+
(

D2
xΨ
)∗

D2
yΨ
]

(24)

are not known exactly precluding an analytical evalua-
tion of the magnetization. In the following, we derive
a simple formula for the film magnetization within the
isotropic model. Recently this isotropic model was used
in order to compute the fluctuational magnetization of
small rings made of a FFLO superconductor (persistent
currents)28. Here we evaluate the magnetization in the
simpler planar geometry.

The isotropic version of the operator H in Eq.(24) is
simply H = α − gD2 + γD

4 which can be diagonal-
ized exactly29. The eigenmodes are the standard Landau
wavefunctions whose energies are modified as

En = τ + γ(Q2
n − q2

0)2, (25)

where we introduced

Q2
n ≡ 4eH⊥

ℏ

(

n +
1

2

)

n = 0, 1, 2, .. (26)

and q2
0 = g/2γ. This particular form of the eigenener-

gies enables both degeneracies between the Landau levels
(En = En+1) and commensurability effects between the
wavevectors Qn and q0.
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The Gaussian integration over the fluctuating order
parameter leads to the free energy per surface unit

F =
H⊥

Φ0
kBT

∞
∑

n=0

ln
En

πkBT
, (27)

where Φ0 = h/2e is the superconducting flux quantum
and H⊥/Φ0 is the degeneracy of the n-th Landau level
per unit surface of the film30.

For large perpendicular field, namely H⊥/Φ0 ≫
√

τ/γ,
the Landau levels are well separated from each others
and the main contribution to the free energy (27) comes
either from the single level with minimal energy En, or
from two levels when a degeneracy (En = En+1) occurs.

Let us first consider the nondegenerate case. Then the
free energy is simply given by the single level contribution

F =
H⊥

Φ0
kBT ln

En

πkBT
(28)

and the corresponding orbital magnetization (per unit
surface)

Mn = − (8n + 4)kBT

Φ2
0

(

γ(Q2
n − q2

0)

τ + γ(Q2
n − q2

0)2

)

H⊥ (29)

is highly nonlinear since the prefactor of H⊥ depends
strongly on the field and on temperature. Importantly
the magnetization may change sign due to the presence
of the factor Q2

n − q2
0 in the numerator. In order to make

more transparent the formula Eq.(29), one may intro-
duce the field-dependent temperature Tcn(H) where the
denominator vanishes:

a(T − Tcn) = τ + γ(Q2
n − q2

0)2 (30)

This relation defines the second-order transition line
T

(n)
c (H) between the normal and the modulated super-

conducting state described by the n-th Landau level. We
also define the points like A,C,E (Fig.3) along this tran-
sition line where the numerator vanishes since Q2

n = q2
0 .

Those points are also located on the second-order transi-
tion line TcP (H) between the normal and the FFLO su-
perconducting state calculated in the pure paramagnetic
limit. In the normal state, the orbital magnetization can
be therefore reexpressed as

Mn = − (8n + 4)kBT

Φ2
0

γ

a

(

Q2
n − q2

0

T − Tcn

)

H⊥ (31)

This 2D magnetization is diamagnetic when Q2
n > q2

0

and paramagnetic when Q2
n < q2

0 (Fig.3). In contrast,
the fluctuation magnetization is always diamagnetic in
the BCS case. However Mn follows a similar power law

(T − T
(n)
c )−1 and is on the same order of magnitude

than the BCS magnetization26. Consequently we expect
that the oscillations between diamagnetism and param-
agnetism should be measurable in thin films of FFLO su-
perconductors. This single mode approximation breaks

down when the n-th and (n+1)-th Landau levels are de-
generate, namely when En = En+1. Then the two levels
must be included together in the free energy, whereas the
other Landau levels are still far in energy and can be ne-
glected safely. The resulting magnetization Mn + Mn+1

is slightly diamagnetic at degeneracy.
The single mode approximation also breaks down in

the weak field limit (H⊥/Φ0 ≪
√

τ/γ) where the Landau
level separation becomes so small that all the levels have
to be taken into account. This situation corresponds to
a magnetic field which is slightly tilted out of the film
plane. Then the discrete sum (27) can be replaced by an
integral since the level spacing is also small. Using the
formula

∞
∑

n=0

f

(

n +
1

2

)

≈
∫ ∞

0

f(x)dx +
1

24
f ′(0), (32)

the fluctuational free energy

F = F0 −
π

3

kBT

Φ2
0

γq2
0

τ + γq4
0

H2
⊥ (33)

is obtained. The integral in the right side of Eq.(32)
corresponds to the free energy F0 = F (H⊥ = 0) in the
absence of perpendicular field. Here τ = α − g2/4γ and
γq2

0 = g/2, thus the denominator is simply τ +γq4
0 = α =

a(T − Tc0). Finally the orbital magnetization

M =
π

3

kBT

Φ2
0

g

a(T − Tc0)
H⊥ (34)

corresponds to an unusual paramagnetic response for su-
perconducting fluctuations. We have followed closely the
derivation of the fluctuation magnetization at the BCS
superconducting transition31. We find a very similar re-
sult than the BCS one. The important difference is that
but here the coefficient g becomes positive at the tri-
critical point (Fig.3), turning the usual diamagnetism of
superconducting fluctuations into paramagnetism.

As a main result of this section, we have shown
that under strong perpendicular field the FFLO fluctu-
ations induce an oscillatory behavior of the magnetiza-
tion which switches between diamagnetism and param-
agnetism. Under a small perpendicular field, the mag-
netization is always paramagnetic. This situation is in
strong contrast with the standard BCS case where the
magnetization is always diamagnetic. Nevertheless the
power law (T − Tc0)

−1 describing the divergency of the
magnetization is the same than in the BCS case for 2D
superconductors26.

IV. ANISOTROPIC 3D SUPERCONDUCTORS

It is commonly believed that the FFLO state in
CeCoIn5 corresponds to a modulation along the applied
magnetic field. Nevertheless it was argued recently that
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this situation is unlikely to happen for arbitrary field ori-
entations when the tetragonal anisotropy of CeCoIn5 is
properly taken into account. Apparently if the order pa-
rameter modulation is along the field for H ⊥ c (resp.
H ‖ c), then the modulation is likely to be perpendicu-
lar to the field for H ‖ c (resp. H ⊥ c)17. Here we in-
vestigate the FFLO fluctuations in anisotropic 3D com-
pounds, building upon the various mean-field scenarios
reported in Ref17. We evaluate the paraconductivity σ
and the fluctuational magnetization M along the mag-
netic field H = Hez. In particular, we demonstrate be-
low that the magnetization oscillates between sizeable
diamagnetism and paramagnetism when the modulation
is perpendicular to the field (Landau level like). Those
oscillations are the 3D counterparts of the ones pre-
dicted in the previous section for superconducting films.
In contrast the magnetization is shown to be strongly
suppressed when the modulation occurs along the field
(FFLO like modulation). In the 3D case, magnetization
measurements therefore provide an experimental tool to
discriminate between the two possible order parameter
structures uncovered in Ref17.

A. Mean field

We start by a short reviewing of the mean-field prop-
erties of the functional

H = α |Ψ|2 −
∑

i=x,y,z

g |DiΨ|2 + γ

∣

∣

∣

∣

∣

∣

∑

i=x,y,z

D2
i

∣

∣

∣

∣

∣

∣

2

+ εz

∣

∣D2
zΨ
∣

∣

2
+ εx(|DxDyΨ|2 + |DyDxΨ|2)

+ ε(|DxDzΨ|2 + |DzDxΨ|2)
+ ε(|DyDzΨ|2 + |DzDyΨ|2) (35)

consistent with the tetragonal symmetry of CeCoIn5.
The terms εz, εx and ε describe nontrivial (namely dif-
ferent from a simple elliptical) anisotropy17. Note that
the cubic symmetry corresponds to εx = ε and εz = 0.
It was shown that two kinds of modulated superconduct-
ing states (scenarios a) and b) mentioned above in the
general introduction) are the most likely to occur when
anisotropies are properly taken into account. The first
class of solutions corresponds to order parameters mod-
ulated along the field with characteristic FFLO wave-
vector q0 and in the n = 0 Landau level. The corre-
sponding fluctuations have typical spectrum

E(kz) = τ + γ

(

2eH

ℏ
+ k2

z − q2
0

)2

(36)

which indicates an instability towards finite modulation
along the z axis (magnetic field). Here the lowest Landau
level is favorable, n = 0 and γ is a renormalized param-
eter which depends on εz, εx and ε. In the second class
of solutions, the modulation occurs in the plane perpen-
dicular to the field and is described by a higher (n > 0)

Landau level. Then the dispersion of the fluctuations can
be approximated as follows

E(kz) = τ + γ(Q2
n − q2

0)
2 + gk2

z (37)

where

Q2
n ≡ 4eH

ℏ

(

n +
1

2

)

n = 0, 1, 2, .. (38)

This spectrum differs from Eq.(25) by the kinetic energy
gk2

z along the field. Note that here γ and g are also
renormalized parameters which depends on εz, εx and ε
in a complicated manner17.

B. Fluctuation magnetization

Here we evaluate the magnetization induced by the
FFLO fluctuations taking into account the intrinsic
anisotropy present in 3D compounds. The FFLO transi-
tion might happen under low or strong field, depending
on the underlaying microscopic mechanism. For instance,
in the rare earth magnetic superconductor ErRh4B4 a
small field is sufficient to polarize the internal moments,
and the FFLO transition is thus expected at low applied
magnetic field3. Here we treat the case of the FFLO
transition occuring under strong magnetic field which is
relevant for the case of the heavy fermion superconduc-
tor CeCoIn5. Using a single Landau level approximation,
we demonstrate that the magnetization exhibits qualita-
tively distinct behaviors depending on the class of solu-
tions.

FFLO-like modulation along the field, characterized by
a finite wave-vector q0 and Landau index n = 0 (scenario
a) discussed in the introduction). The 3D density of free
energy is given by the integral

F = kBT
H

Φ0

∫

dkz

2π
ln

E(kz)

πkBT
(39)

where the energy depends on the magnetic field as fol-
lows:

E(kz) = τ + γ

(

2eH

ℏ
+ k2

z − q2
0

)2

. (40)

Hence the most divergent part of the orbital magnetiza-
tion (per unit volume) M = −∂F/∂H is given by

M = −2kBT

Φ2
0

×

×
(

∫ ∞

−∞

dkz

γ
(

2eH/ℏ + k2
z − q2

0

)

τ + γ (2eH/ℏ + k2
z − q2

0)
2

)

H, (41)

where Φ0 = h/(2e). Since the numerator of the inte-
grand cancels and changes sign as a function of kz, one
expects a strong suppression of the fluctuation magneti-
zation compared to the uniform BCS case wherein such
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a cancellation does not occur. Indeed the magnetiza-
tion M diverges logarithmically at the FFLO transition
which is less divergent than the τ−1/2 law predicted in the
standard BCS case. Therefore the presence of a genuine
FFLO state should be detected as a suppression of the
fluctuation diamagnetism observed near the BCS tran-
sition. In comparison with the 2D case, the oscillations
between paramagnetism and diamagnetism predicted in
the previous section are blurred out by the dispersion
over the momentum kz along the field.

Landau level modulation perpendicular to the field (sce-
nario b) discussed in the introduction). The dispersion
of the fluctuations

E(kz) = τ + γ(Q2
n − q2

0)2 + gk2
z (42)

now favors the absence of modulation along the z axis in
contrast to the spectrum Eq.(40). Upon increasing the
parameter q2

0 , the lowest energy Landau level is succes-
sively n = 0, then n = 1 etc... Near the BCS transi-
tion (g > 0), the fluctuations induce diamagnetism and
a lowering of the critical field Hc2(T ) below the purely
paramagnetic critical field HP (T ) at the same tempera-
ture (Fig.3). When the n-th Landau level is realized and
when all the other Landau levels are distant in energy,
one can single out the contribution of this main level to
the density of free energy

F = kBT
H

Φ0

∫ ∞

−∞

dkz

2π
ln

En(kz)

πkBT
. (43)

Writing the orbital magnetization as

Mn = − (4n + 2)kBT

Φ2
0

×

×
(∫ ∞

−∞

dkz
γ(Q2

n − q2
0)

τ + γ(Q2
n − q2

0)
2 + gk2

z

)

H⊥, (44)

shows that the 2D oscillations are no longer suppressed
by the integration over kz since the numerator is inde-
pendent of kz . Calculating the integral shows that the
magnetization diverges as

Mn = − (4n + 2)kBT

Φ2
0

γ

(ag)
1/2

Q2
n − q2

0

(T − Tcn)
1/2

H⊥ (45)

with the same power law than in the BCS transition of
3D superconductors26. Unlike the BCS case, this fluctua-
tion magnetization changes sign being diamagnetic when
Q2

n > q2
0 (arcs BC, DE on Fig.3) and paramagnetic when

Q2
n < q2

0 (arcs AB, CD).
In brief, the magnetization is sizeable and oscillates be-

tween para- and diamagnetism when the superconduct-
ing order parameter is modulated perpendicularly to the
field, whereas it is strongly suppressed when the order
parameter is modulated along the field. Therefore mag-
netization measurements may serve as a test to discrim-
inate between FFLO and Landau level like modulations
in 3D anisotropic superconductors.

H

TT

HP
g = 0

g > 0 g < 0ABCDE

1

FIG. 3: Schematic field-temperature (H,T ) phase diagram
showing the cascade of Landau levels. The thick dashed curve
represents the critical field in the absence of orbital effect.
In presence of orbital effect, the critical field is reduced and
described by the thin dashed curves which corresponds re-
spectively to the n = 0, n = 1 and n = 2 Landau levels. The
solid line represents schematically the expected transition line
between the normal and the superconducting states. The fluc-
tuations are diamagnetic between zero field (H = 0, Tc) and
B, paramagnetic near the arc AB, then again diamagnetic
near the arc BC, etc...The Landau levels are degenerate at
points B,D, etc... This schematic picture is relevant for both
2D FFLO superconductors and for 3D ones where the Lan-
dau level modulation is realized (scenario b) evoked in the
introduction).

V. GINZBURG-LEVANYUK CRITERION FOR

FFLO PHASES.

Now, we address the validity of the Gaussian analy-
sis used in the preceding sections. Using a Ginzburg-
Levanyuk type of argument32,33, we obtain that the size
of the critical region in FFLO superconductors is more
extended than in usual uniform superconductor case.
Nevertheless the main conclusion of this section is that
the critical region remains extremely small in FFLO su-
perconductors thereby supporting our Gaussian analysis
for small ratio Tc/EF between the critical temperature
and the Fermi energy EF . This fact makes very difficult
the observation of the phenomena (first-order transition)
predicted by renormalization group studies34,35.

A. Isotropic model

When the temperature is sufficiently close to the crit-
ical one, interactions between the fluctuation modes be-
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come so strong that the Gaussian approximation breaks
down. In order to quantify the range of temperature
where this breakdown occurs, we shall use the isotropic
MGL functional18,19,20

H [Ψ] = Nd(0)

∫

dr

[

α |Ψ|2 − gξ2 |∂Ψ|2 + ξ4
∣

∣∂2Ψ
∣

∣

2
]

+ Nd(0)

∫

dr

[

g

T 2
c

|Ψ|4 +
1

T 4
c

|Ψ|6
]

. (46)

Here Nd(0) is the d-dimensional electronic density of
states and ξ = vF /Tc the superconducting coherence
length. In this section, we will use the notations kB =
ℏ = 1, α = (T − T̃c)/T̃c and τ = α− g2/4 = (T −Tc)/Tc.
In the spirit of the original Ginzburg-Levanyuk criterion,
we evaluate the various free and interaction terms within
the Gaussian approximation

〈H〉0 = Nd(0)
∑

k



τ +
(

k2 − q2
0

)2
ξ4 + g̃

2

T 2
c

1

Ld

∑

k′

〈

|Ψk′ |2
〉

0
+

(

2

T 2
c

1

Ld

∑

k′

〈

|Ψk′ |2
〉

0

)2




〈

|Ψk|2
〉

0
(47)

and look for the conditions under which the interaction
terms can be safely neglected in comparison to the Gaus-
sian ones. Note that in this problem the form of the free
field correlator

〈

|Ψk|2
〉

0
=

πTc/Nd(0)

τ + ξ4 (k2 − q2
0)

2 . (48)

is rather special due to the proximity of the FFLO tran-
sition. Here the wavevector q0 is defined by g = 2q2

0ξ
2.

The dimensionless function g cancels at the tricritical
point, and increases when one follows the FFLO/normal
transition line towards the low temperatures (and thus
high fields). We must distinguish two regimes depending

on the relative strength of the |Ψ|4 and |Ψ|6 interaction
terms, and on the quadratic or quartic dispersion of the
fluctuations.

Far from the tricritical point, namely when g >
(Tc/EF )2(d−1)/(6−d), the leading correction to the Gaus-

sian behavior originates from the |Ψ|4 interaction term.
Morover the fluctuations propagate with a quadratic dis-
persion, and the correlator Eq.(48) can be approximated
as

〈

|Ψk|2
〉

0
=

πTc/Nd(0)

τ + 4q2
0ξ

4 (k − q0)
2 (49)

when evaluating the sum

g

T 2
c Ld

∑

k′

〈

|Ψk′ |2
〉

0
=

gd/2τ−1/2

TcNd(0)ξd
. (50)

Using TcNd(0)ξd = (EF /Tc)
d−1, we find that the |Ψ|4 in-

teraction terms are negligible in comparison to the Gaus-
sian ones when the condition (Ginzburg-Levanyuk crite-
rion)

τ ≫ gd/3

(

Tc

EF

)2(d−1)/3

(51)

is fullfilled. The critical region width is larger than in
the standard BCS case (τ ≫ (Tc/EF )4 for d = 3 and
τ ≫ Tc/EF for d = 2) but it remains extremelly thin.

Near the tricritical point, when g <
(Tc/EF )2(d−1)/(6−d), the |Ψ|6 interaction becomes

stronger than the |Ψ|4 one since this latter contribution
is suppressed by the extremelly small prefactor g. In
particular, along the g = 0 line in the (H, T ) diagram,

the |∇Ψ|2 and |Ψ|4 terms are totally absent from
the functional18. Therefore one should compute the

mean value
〈

|Ψk|2
〉

0
with a purely quartic momentum

dependence. Since

1

T 2
c

1

Nd(0)Ld

∑

k′

〈

|Ψk|2
〉

0
=

τ (d−4)/4

TcNd(0)ξd
, (52)

the condition to neglect the |Ψ|6 interaction between the
fluctuation modes is thus

τ ≫
(

Tc

EF

)4(d−1)/(6−d)

(53)

The critical fluctuations are present in a larger region
of the phase diagram than for BCS superconductivity26.
During the completion of this work, we became aware of
Ref.28 where the Ginzburg-Levanyuk criterion is derived
by evaluting exclusively the |Ψ|4 interaction term. We
therefore obtain the same Ginzburg-Levanyuk criterion
as in Ref.28 for the large g regime whereas our criteria
differ when approaching the tricritical point. In spite of
this discrepancy, both procedures lead to the same practi-
cal conclusion that the critical region remains extremelly
thin and inaccessible for experimental observations, be-
cause of the smallness of the ratio Tc/EF ∼ 10−2−10−3.

B. Anisotropic model.

We now derive the Ginzburg-Levanyuk criterion in the
case of anistropic FFLO superconductors. The large g
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regime is modified in comparison to the isotropic case,
since there the low energy fluctuations are located around
few isolated points instead being spread over a large shell
of radius q0.

Far from the tricritical point, namely when g >
(Tc/EF )2(d−1)/(6−d), the leading correction to the Gaus-

sian behavior originates from the |Ψ|4 interaction term.
Morover the fluctuations propagate with a quadratic dis-
persion, and the correlator Eq.(48) can be approximated
as

〈

|Ψk|2
〉

0
=

πTc/Nd(0)

τ + gk2ξ2
. (54)

Evaluating the sum

g

T 2
c Ld

∑

k′

〈

|Ψk′ |2
〉

0
=

(

τ

g

)
(d−2)/2

1

TcNd(0)ξd
(55)

and using TcNd(0)ξd = (EF /Tc)
d−1, we find that the

|Ψ|4 interaction terms are negligible in comparison to the
Gaussian ones when the condition (Ginzburg-Levanyuk
criterion)

τ ≫ g(2−d)/(4−d)

(

Tc

EF

)2(d−1)/(4−d)

(56)

is fullfilled. This Ginzburg-Levanyuk criterion is similar
(same power of Tc/EF ) than the one encountered in the
standard BCS case.

Near the tricritical point, when g <
(Tc/EF )2(d−1)/(6−d), the lowest energy fluctuations
are located around the origin of the reciprocal space
and have a quartic dispersion like in the isotropic model
studied above. The Ginzburg-Levanyuk criterion is thus
again

τ ≫
(

Tc

EF

)4(d−1)/(6−d)

(57)

near the tricritical point.

C. Concluding remarks

The FFLO critical fluctuations are present in a
larger region of the phase diagram than for BCS

superconductivity26. Nevertheless, for superconducting
compounds, the ratio Tc/EF ∼ 10−3 is small and thus
the critical region remains hardly accessible for experi-
mental observations.

VI. CONCLUSION.

We investigated the conductivity and the orbital mag-
netization associated with superconducting fluctuations
above the FFLO critical temperature or field. Both in
2D and 3D models, we shown that these properties dif-
fer considerably than their counterparts at the vicinity
of a standard BCS transition towards an homogeneous
superconducting state, thereby providing an experimen-
tal tool to detect the inhomogeneous state. First, the
paraconductivity of thin superconducting films exhibits
a strong anisotropy when measured parallel or perpen-
dicular to the applied magnetic field. Second, the or-
bital magnetization oscillates between diamagnetic and
paramagnetic behaviors whereas the uniform BCS state
always induces diamagnetic fluctuations above Tc. We
suggest performing magnetization and conductance mea-
surements along the FFLO transition line in compounds
where the FFLO state has been recently reported. In
2D organic superconductors9,10, the magnetization os-
cillations should be even more pronounced than in the
3D magnetic superconductors (ErRh4B4 , see3) or in the
case of the anisotropic 3D heavy fermion superconductor
CeCoIn5

6,7,8. In the 3D case, we find that the absence of
such oscillations reveals a FFLO state modulated along
the field whereas presence of oscillations should be asso-
ciated with a multiquanta Landau modulation perpen-
dicular to the field.
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