N
N

N

HAL

open science

A Formal Model of a Multi-step Coordination Protocol
for Self-adaptive Software Using Coloured Petri Nets
Najla Hadj-Kacem, Ahmed Hadj Kacem, Khalil Drira

» To cite this version:

Najla Hadj-Kacem, Ahmed Hadj Kacem, Khalil Drira. A Formal Model of a Multi-step Coordination
Protocol for Self-adaptive Software Using Coloured Petri Nets. International Journal of Computing

and Information Sciences (IJCIS), 2009, 7 (1), http://www.ijcis.info/. hal-00361145

HAL Id: hal-00361145
https://hal.science/hal-00361145
Submitted on 13 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00361145
https://hal.archives-ouvertes.fr

A Formal Model of a Multi-step
Coordination Protocol for Self-adaptive
Software Using Coloured Petri Nets

Najla Hadj Kacem', Ahmed Hadj Kacem' and Khalil Drira??

! ReDCAD Laboratory - University of Sfax

B.P.1088, 3018 Sfax, Tunisia
najla.hadjkacem@isimsf.rnu.tn, ahmed@fsegs.rnu.tn

2 CNRS - LAAS
7 Avenue du Colonel Roche, F-31077 Toulouse, France

3 University of Toulouse - UPS, INSA, INP, ISAE - LAAS

F-31077 Toulouse, France
khalil@laas.fr

Abstract. Technology advances continue to make computing environments ever changing and more com-
plex. In the presence of such environments software systems are increasingly expected to continue operating
at run-time. As human intervention becomes costly, time-consuming and error-prone, these systems should
be equipped with self-adaptation capabilities in order to adapt themselves in response to environmental
changes. While most of the research in this area focuses on individual parts of an adaptive system, our work
leverages on this research but tackles the problem where interdependent and distributed adaptations are
concurrently performed. In this paper, we approach behavioural changes of component-based systems in
two stages. First, we propose a process to individually adapt one component at a time. Second, we elaborate
a coordination protocol to maintain globally consistent state when implementing distributed adaptations.
To achieve correct coordination, rather than only considering dependency relations between multiple adap-
tations, our approach further focuses on dependency relations between components at run-time. Motivated
by the potential benefits of using formalisms, we construct a formal model of our protocol using Coloured
Petri Nets in order for an adaptive system to be trusted after adaptation. In the model, we make sufficient
abstraction of details, but still deal with the core of the protocol. This makes the model simpler and the
analysis easier due to restricted state space size. We verify key behavioural properties and conduct CTL
model checking to assess the correctness of the model and thereby the correctness of the protocol.

Keywords: Self-adaptation, Consistency Preservation, Adaptation Process, Coordination Protocol, Mod-
elling, Analysis.

Received: May 30, 2008 | Revised: December 2, 2008 | Accepted: December 30, 2008

1 Introduction

Today’s distributed software systems require flexibil-
ity and robustness in the presence of ever changing
environments. In fact, the environmental conditions
in which a distributed system runs are likely to pe-
riodically change during the system lifetime. Such
changes can significantly impact the system function-
ality and/or quality characteristics. In consequence,
software systems are increasingly expected to adapt
during run time in response to these changes while
operational, without compromising their consistency
[1]. However, manually adapting complex systems is
a costly and error-prone process. Automating the

adaptation process becomes an imperative undertak-
ing, so as to enable systems to adapt themselves with
minimal human interaction.

Self-adaptation is a relatively novel approach [2]
that addresses requirements for self-management ca-
pabilities in software. As recognized by the DARPA
Broad Agency, a self-adaptive software evaluates its
own behaviour and changes behaviour when the eval-
uation indicates that it is not accomplishing what the
software is intended to do, or when better function-
ality or performance is possible [3].

In line with Hofmeister [4], Aksit [5] classifies

adaptation into two broad categories, namely struc-
tural adaptation and behavioural adaptation. The

Najla
Text Box
Received: May 30, 2008 | Revised: December 2, 2008 | Accepted: December 30, 2008

first results in architectural changes of the system
(e.g., addition or removal of entities), whereas the
second causes functionality modification of the com-
putational entities involved. Dynamic change in the
functionality of a computing system is of particular
interest here, as it is more critical than a change
in the structure. To successfully address complex
system functionality issues and flexibility require-
ments, we use the component-oriented technology.
More specifically, we are mainly concerned with re-
placement of a component implementation rather
than simple component tuning such as adjusting a
parameter.

There are many challenges in developing self-
adaptive capabilities for a software system. The ma-
jor challenge deals with consistency preservation to
avoid undesirable transient behaviour [1]. Whatever
functionality change to be enforced, it should result
in a correctly operating system. When some situ-
ations require coordinated adaptations of multiple
system components it is important to have coordi-
nation mechanisms to maintain a globally consistent
state.

As the complexity of adaptive systems increases,
so does the need for mechanisms that trust systems
to operate correctly after adaptation. Formal meth-
ods are perceived as an appropriate way of increasing
confidence in adaptive systems [6][7].

This paper describes an approach to behavioural
changes of component-based systems. The main fea-
tures differentiating our approach from existing work
are: (1) Unlike most approaches in which the adap-
tation logic is hard-wired into the business logic, our
approach follows the principle of separation of con-
cerns; it separates the adaptation logic of a compo-
nent from its business logic, thereby increasing sys-
tem flexibility and reusability. Modularity is also im-
proved by provisioning the business logic specific to
each component a number of implementations. To
make this more manageable, we split up the imple-
mentations into categories. Implementations that be-
long to the same category are functionally equivalent
but each one is tailored to accommodate changes in
quality of service requirements. (2) While most of the
research focuses on individual parts of a computing
system, our approach leverages on this research but
tackles the problem where interdependent and dis-
tributed adaptations are concurrently performed. To
do so, we propose a process to individually adapt
one component at a time and elaborate a coordina-
tion protocol implementing distributed adaptations.
(3) To achieve correct coordination, rather than only
considering dependency relations between multiple
adaptations, our approach further focuses on depen-
dency relations between components at run-time. (4)
Contrary to other ad hoc solutions, we investigate

the application of Coloured Petri Nets (CPN) [8] [9]
as implemented in CPN Tools [10] in order to trust
adaptive systems after adaptation. We construct a
model of the coordination protocol. In the model, we
make sufficient abstraction of details, but still deal
with the core of the protocol. Also, we use the simu-
lation and analysis facilities of CPN Tools to assess
the correctness of the model and thereby the cor-
rectness of the protocol. The CPN formalism is cho-
sen because it supports structured data types, sup-
ports construction of compact parameterizable mod-
els, and allows models to be hierarchically structured
into a set of modules.

The remainder of the paper is organized as fol-
lows. Section 2 surveys related work. Section 3 de-
scribes the model behind our proposal. Section 4
identifies a number of consistency requirements that
need to be fulfilled. Section 5 introduces our ap-
proach. Section 6 presents the formal model of the
protocol. Section 7 shows our state space analysis
results. Finally, Section 8 presents conclusions and
future work.

2 Related work

Even though software adaptation receives increas-
ing attention from the research community, a com-
mon terminology that may be used uniformly is not
provided. Some of the terms used in related work
may have slightly different meanings depending on
the targeted system (e.g., dynamic change [11], dy-
namic update [12], hot swapping [13], reconfiguration
[14]). The associated research focuses on many areas.
We limit our discussion to solutions that address the
challenge of consistency preservation. Goudarzi [15]
identifies two categories of the approaches to sys-
tem consistency: preservation through recovery and
preservation through prevention. In the former the
application developer has to implement functional-
ity in the application or in the underlying frame-
work to deal with the inconsistencies introduced at
system adaptation time (e.g., Chorus [16], LUCOS
[17], POLUS [18]). This approach is closely language
and operating system dependent. For this reason, it
is complicated and thus too painful for the develop-
ers. The potential of the latter case is to prevent the
introduction of inconsistencies by driving the system
to a safe state before actually applying adaptation.
The rest of this section reviews some of the main
research towards preventive solutions in the area of
behavioural adaptation.

Existing research can be categorized based on the
adaptation scope. Adaptive systems can be adapted
at the granularity of a procedure, an object or a
component. Operating at the procedure granularity-
level, both [19] and [20] recognize consistency re-

quirements by waiting until a procedure is inactive.
For object-oriented systems, [12] enforces safety of
a class by waiting until no methods of the class
are active. In [13], object quiescence is defined as
a state in which the object is not executing any of
its methods. In a component-based context, the pi-
oneering work done by Kramer and Magee [11] pro-
vides a fundamental definition of quiescence as any
state in which a component is not within a com-
munication and will neither receive nor initiate any
new communication. The work of [14] introduces a
hot-swapping technique which does not allow the old
and the new components to execute simultaneously.
In [21], the SOFA (SOFtware Appliances) and its
extension DCUP (Dynamic Component UPdating)
associate to each component one manager to ensure
consistent state while replacing its replaceable part
by a new version.

A common characteristic to the presented works
is the process they rely on to safely apply changes.
Adaptive process consists of at least three stages:
bring the affected entities into a safe state, perform
the adaptive action, and reactivate the affected en-
tities to resume normal computation. Even though
these solutions have some interest features to be
helpful for our adaptation process, they are limited
by their lack of support for multiple interdependent
and potentially distributed adaptations.

While the previously presented trend focuses on
individual adaptive entity at a time, several ap-
proaches are recently proposed to extend the local
scope by considering distribution issues, e.g., [22],
[23], [24]. In [22], Kon et al. present a generic ar-
chitecture for managing dependencies in distributed
component systems and discuss how it can be used
to support automatic reconfiguration. The main fo-
cus is on maintaining both the local and network-
wide consistency of a distributed system thanks to
the explicit management of inter-component depen-
dencies. The main problem with this approach is
that the coordination code is mingled with the ap-
plication business code, mitigating the advantages
of reasoning about the adaptation logic and reusing
it. Cactus [23] is a framework for constructing con-
figurable services in distributed systems. In Cactus,
a host is organized hierarchically into layers, where
each layer includes many adaptive components. Each
adaptive component encapsulates alternative imple-
mentations of a specific service. Adaptations by mul-
tiple related components are coordinated using a
graceful adaptation protocol. CARISMA project in
[24] is a middleware system made up from adapt-
able services. It is based on the provision of multiple
implementations of the same service but with differ-
ent behaviours. When used, the middleware checks
the application profile document and compares with

the current execution context to evaluate which be-
haviour the service component should use when pro-
viding its service. These behaviours may conflict. An
auction protocol is then proposed for conflict reso-
lution. The system, while having the advantages of
cleaner separation of coordination and business log-
ics, is limited to runtime support of adaptation co-
ordination to resolve potential conflicts.

What differs in all the surveyed solutions is the
design and the implementation of adaptation mecha-
nisms. Most of the mechanisms are ad hoc; they are
highly platform specific and lack adequate formal-
ism. Unless adaptation mechanisms are addressed in
a more comprehensive and formal setting, adaptive
systems will be error-prone. In this perspective, sig-
nificant effort is spent for formally specifying struc-
tural changes of adaptive systems. Bradbury’s sur-
vey of contributions in this area [25] examines a
number of specification approaches to dynamic soft-
ware architecture and further classifies them based
on graphs, process algebras logic, and other for-
malisms. The importance of formal approaches to
behavioural adaptation is relatively not emphasized
regarding the few effort that is spent on it in exist-
ing research. In [26], Magee et al. require the use of
a formal configuration model to describe a system.
The system model is described in the configuration
language Darwin, and is produced during the devel-
opment process by the application designer. The idea
behind this model is to identify which computation
of the system should be deferred in order to reach
safe state. This is contrary to our approach, in which
this is done dynamically at run time. More recently,
Biyani and Kulkarni [7] propose an approach to for-
mally verify adaptation in a distributed system. This
approach differs from our work in the sense that the
system does not need to be in a safe state before an
adaptation can be applied. Consistency preservation
of an adaptive system depends on the satisfaction of
transitional-invariants during and after an adapta-
tion. Another approach for formally addressing the
problem of component adaptation is to ensure the
correct composition of components. In [27], Xiong
and Weishi provide a synthesis of the current state-
of-the-art in this research area.

3 System model

The model presented in this paper aims at sup-
porting the self-adaptation of distributed systems,
composed by multiple components spanning across
multiple nodes. Following the separation of concerns
principle we provide a clean decoupling of the adap-
tation logic from the business logic of a component.
This can potentially decrease development costs, by
increasing reuse and flexibility. Modularity is also

improved by provisioning the business logic specific
to each component a number of implementations
grouped into categories. Implementations that be-
long to the same category are functionally equivalent
but each one is intended to accommodate changes in
quality of service requirements. Another important
aspect of the model is the assignment of an adaptor
agent to each component. An adaptor is responsible
for the lifecycle management of a component while
locally invoking adaptive operations on it.

Furthermore, we assume that the overall system
adaptation is controlled by a remote node, the adap-
tation manager. The manager uses feedback on the
state of the managed components and the state of
their execution environment to make any necessary
adaptation decision. Therefore, at each node there
are context sensors. These sensors are able to capture
context information locally. Using event-based ex-
changes sensed information is communicated to the
context monitor that stores and interprets it to re-
port relevant changes. Processed information is made
available to the manager by the following methods
[28]:

— Subscription/notification protocol: The manager
can subscribe only to the events of interest. As
soon as a relevant change occurs, the monitor is
required to provide a notification event about it.

— FEaxplicit query: The manager can ask the monitor
for context information by a query and expect an
answer.

— Polling: The manager looks for context informa-
tion periodically from the monitor.

All context informations received by the manager
start evaluation process to establish whether the sys-
tem should be adapted.

Consider, for example, a set of nodes that par-
ticipate in a distributed multimedia application. All
participants are receiving a shared multicast media
stream, and different kinds of media are supported,
namely text, audio, video. Suppose the manager re-
ceives from the monitor context information about
a significant change in the current network band-
width. The manager subsequently may decide to (i)
change how the exchanged data is encoded, or to (ii)
adjust the media quality (e.g., high, medium, low).
Accordingly, updating the receiving affected compo-
nents depends on whether the new and original im-
plementations belong to different or same categories.

4 Consistency requirements

In this section, we identify consistency requirements
that need to be fulfilled in order to ensure that the
system is left in a correct state after adaptation.

Consistency requirements we consider are of two
types: specific and generic. While specific require-
ments are typically system-dependent, generic re-
quirements should hold with respect to three aspects
including component integrity, communication chan-
nels integrity and global system correctness. The first
aspect checks whether the new component imple-
mentation starts its computation, after being initi-
ated, with appropriate state information. This means
that there is a need for state transfer which provides
the new implementation enough state information to
resume the execution correctly. The second aspect
checks whether the communications in progress are
compromised by an adaptive action. That is, they
should eventually be completed (e.g., before or after
adaptation). The latter aspect guarantees that the
overall system consistency is preserved in case mul-
tiple components are concurrently adapted. Thus,
coordination mechanisms are needed for reasoning
and determining undesired behaviours, such as dead-
locks, cycles, or conflicts. In the following section we
show how the proposed adaptation process and co-
ordination protocol meet these requirements.

5 Proposed approach

This section details our approach to behavioural
changes in software. The approach takes advantage
of using roles as basic building blocks for modelling
protocols. In the following, we briefly present the
main roles. Next, we introduce an adaptation pro-
cess to individually adapt one component at a time,
and for global adaptation we elaborate a coordina-
tion protocol to maintain globally consistent state.
The starting point is to identify the key roles.
Here a role can be viewed as an abstraction of func-
tionality whereas an agent is the physical entity that
carries out the functionality. In this paper, the ap-
proach embodied in the above-described model as-
sumes that the overall system adaptation is con-
trolled by the adaptation manager. The manager’s
main functionalities are detecting significant envi-
ronmental changes, identifying possible solutions and
enforcing the optimal one in the running system.
The process by which solutions are produced is re-
ferred to as planning process. A plan is selected and
executed based on its optimality. It can be argued
that the problems of conflicting and cyclic decisions
between concurrent adaptations are resolved during
planning. Nonetheless, other types of problems can
occur due to dependency relationships between each
affected component and its cooperative components
(its clients and the components on which it depends).
Namely, clients have to refrain from initiating com-
munications to components under adaptation to not

cause state instability. Recall that an adaptive com-
ponent has no support for changing its own state.
Only its adaptor can impose such state changes. To
do so, the adaptor monitors the state of the compo-
nent and intercepts the messages going into or out
of the component during adaptation. Furthermore,
it stores adaptation methods that can be fired to
invoke operations on the component. From a func-
tional perspective, three main roles are identified as
needed: Manager, Adaptor and Initiator.

Manager: This role is instantiated with the
agent (A_Manager) that is the global coordina-
tor responsible for detecting relevant environmental
changes, for the planning process and for the correct
enforcement of the optimal system adaptation plan.

Adaptor: The functionalities associated with
this role may be carried out by an agent (A_Adaptor)
which is responsible for managing the adaptation
logic code of a component affected (AC) by an adap-
tive action. The adaptation process to be performed
by an A_Adaptor is described in more detail later in
this section.

Initiator: This role may be carried out by an
agent (A_Initiator) which is responsible for manag-
ing the adaptation logic code of a component not
affected by an adaptive action but capable of initiat-
ing communications to an AC. The main functional-
ities an A_Initiator has to perform are: (i) to react
to each passivation request sent by an A_Adaptor so
that it refrains its associated component from initiat-
ing communications to a specific AC, and (ii) when
an activation request arrives, to allow resuming the
active behaviour.

5.1 Adaptation process

The prime concern of the adaptation process is how
to maintain the consistency at the local component
level. During this process, each A_Adaptor is re-
sponsible for managing the lifecycle of its associated
AC. This is achieved by forcing AC, initially in the
running state, in appropriate states (Figure 1) while
carrying out the steps of the adaptation process.

—> running <9

Step O

passive -

resuming

Fig. 1. Component state transitions during adapta-
tion.

A step can either end up with success or failure.
In case of failure, a rollback mechanism is needed to
return to the original state. A history of chronologi-
cally ordered operations, that are performed at adap-
tation time, has to be recorded by each A_Adaptor.

The adaptation process consists of a sequence of
five steps which are briefly explained below.

Step 0: A notification about a new adaptation
from the A_Manager triggers the first step. Upon
interception of such a message, an A_Adaptor drives
AC to the passive state. It calculates the potential
benefits of replacing the current AC' implementa-
tion, in the presence of changes in the available
resources or application demands. After this, it de-
cides whether to accept or refuse.

Step 1: When the adaptation plan is intercepted,
an A_Adaptor computes the set of all affected com-
ponents and extracts as parameter of its own task the
identifier of the new implementation (New_Imp). It
verifies whether the New_Imp and the old imple-
mentation (Old_-Imp) share category membership.
Accordingly, two possible strategies are available to
drive AC' to the safe state, as follows.

— Case i: Same categories Before suspending
the execution of AC, an A_Adaptor must en-
sure a consistent continuation of the execution
flow after adaptation. To do so, it is required
that the Old_I'mp leaves off where the New_Imp
can start correctly. Suspending the execution of
the Old_I'mp implies freezing processing message
communications. There will not be any outgoing
message sent by AC, but all incoming messages
will be intercepted, serialized and stored into a
buffer in FIFO order.

— Case ii: Different categories In this case,
driving AC to the safe state must be de-
layed until all its communication channels are
empty. Thus, clients of AC should not start new
communications to AC' waiting for the adapta-
tion to complete. To ensure this, an A_Adaptor
sends a passivation request to the concerned
A_TInitiator(s). In parallel, intercepted incoming
messages are forwarded to AC. When this is fin-
ished the execution of AC' is suspended.

Step 2: After loading the New_Imp, two strate-
gies are available to drive AC to the ready state, as
follows.

— Case i: Same categories State transfer opera-
tion has to retrieve the state from the Old_Imp
and set it back to the New_Imp. To achieve this,
it is required that every implementation provides
the typical state access methods get_state and
set_state.

— Case ii: Different categories As the Old_Imp
finishes processing all incoming client messages
before being removed, no state transfer needs to
be performed.

Step 3: The existing link an A_Adaptor has
with the Old_I'mp is substituted by a link with the
New_Imp. AC is then driven to the adapted state.

Step 4: After all preceding steps succeed, AC
has to resume its execution. The following strategies
are available to drive AC' to the resuming state.

— Case i: Same categories An A_Adaptor
fetches out queued incoming messages, furthers
new ones and redirects them to the New_Imp.

— Case ii: Different categories Activation re-
quest can be sent by an A_Adaptor to the con-
cerned A_Initiator(s).

Finally, the Old_I'mp can be removed, followed
by driving AC to the initial running state.

5.2 Coordination protocol

The local adaptation scope is extended here by con-
sidering distribution issues. We introduce a message-
based protocol that describes how interacting roles
coordinate to achieve adaptations. We summarize
below the rules governing the interactions at the
A_Manager, the A_Adaptors and the A_Initiators
sides.

A_Manager side The A_Manager initiates the pro-
tocol by broadcasting an adaptation notification to
AC's, asking each A_Adaptor whether it is willing
to exhibit an adaptive behaviour. The notification
may describe the global distributed context infor-
mation and the type of required adaptation. If all
A_Adaptors positively reply then the A_Manager
broadcasts to them the established adaptation plan.
Otherwise, in case at least one A_Adaptor refuses,
the A_Manager cancels the adaptation and prop-
agates this information to the A_Adaptors having
accepted.

Suppose that all A_Adaptors receive the plan.
At this point each A_Adaptor is conducting step 1.
It can either drive AC' to the safe state, or fail.
On the receipt of replies from all A_Adaptors, the
A_Manager either (i) sends a message specifying the
next state, if all replies are positive; or (ii) receives
at least one negative reply, cancels adaptation and
sends cancel messages to all A_Adaptors.

Once all A_Adaptors have brought the AC's into
the safe state, the A_Manager allows them to si-
multaneously conduct step 2 and afterwards step 3,

while still taking the same principle into account: if
an A_Adaptor fails locally so does the adaptation
globally. Finally, when all A_Adaptors proceed to
step 4 this implies a successful adaptation. In this
case, the A_Manager waits for all AC's to be in the
resuming state. If this happened, it can pick up its
cyclic behaviour.

A_Adaptors side Before actually performing adap-
tation, each A_Adaptor is in the idle state. Upon
interception of an adaptation notification targeted
to its associated AC, an A_Adaptor executes step 0.
This will result in either an acceptation or a refusal.
In the first case, it waits for a response from the
A_Manager. In the second case, it exits the adapta-
tion process. This means it will roll back AC to the
original state. An A_Adaptor waiting for a response
remains blocked until it receives either (i) a cancel
message after which it exits the adaptation process,
or (ii) an adaptation plan that causes it to proceed
to step 1. After performing step 1, AC may be driven
to the safe state or not. If the safe state is reach-
able, an A_Adaptor informs the A_Manager and has
to be waiting for a response telling it to proceed or
to cancel. As for step 1, an A_Adaptor performs step
2 and so on sequentially step 3, until it receives a
message asking it to resume the normal execution
according to step 4. Finally, when step 4 is finished
it returns to the initial idle state.

A_Initiators side Initially, each A_Initiator is in
the idle state. Once it intercepts a passivation re-
quest from an A_Adaptor, it immediately performs
some operations to block outgoing channels directed
to the specific AC'. When this is achieved it sends the
demanding A_Adaptor a message indicating that the
passivation is done. Then, it remains waiting for an
activation request to resume active behaviour, after
which it sends the A_Adaptor a message indicating
that the activation is done. Finally, it returns to the
idle state.

6 The protocol CPN model

Central in this section is our aim to trust the coordi-
nation protocol to behave as expected. We start by
giving an overview on CPN. Next, we present the as-
sumptions taken into account when constructing the
protocol model. In the remaining subsections we de-
tail the description of some individual modules con-
stituting the model.

6.1 Coloured Petri Nets

Petri Nets (PN) provide a well known formalism for
modelling concurrent and distributed systems, pro-

tocols included. A traditional PN is a directed graph
in which each node is either a place (drawn as ellipse)
or a transition (straight bar or rectangle). Places can
be considered as conditions on the system control
states and transitions as actions. Each edge (oriented
arc) connects a place to a transition or vice versa. To-
kens are the marker of a place. A transition is said to
be enabled if a sufficient number of tokens, accord-
ing to the arc inscriptions, fills every input place.
An enabled transition can fire (or occur) and create
a specified number of tokens in each output place.

Coloured Petri Nets (CPN) are a high-level PN
where tokens are of some specified type (colour set).
The arc inscriptions are functions used to determine
both the quantity and the value of tokens to be re-
moved or created. The guards are boolean expres-
sions associated with the transitions. A guard is used
to restrict possible action occurrences.

6.2 Modelling assumptions

Before proceeding, it is worth noting the following
assumptions adopted when constructing our CPN
model.

Reliable communication: The starting assump-
tion is that the communication channel between in-
teracting roles is reliable so as to avoid loss, duplica-
tion or permutation of messages during adaptation.

Well established plan: 1t is also assumed that the
manager has identified the optimal plan, then it rec-
ognizes components involved in the adaptation.

No timeout constraint: The model assumes that
all adaptors reply to the manager within a reason-
able bounded time.

Abstract modelling of messages: All fields in the
messages are omitted as these do not impact the pro-
tocol logic.

Termination: The manager and all adaptors do
not resume or roll back after adaptation that is suc-
cessfully performed or not, but rather do either exit
with a FAIL or a SUCCESS state. This assumption
helps us to prove proper termination.

6.3 Overview of the CPN model

Figure 2 shows the hierarchical structure of the pro-
tocol CPN model. Each node in Figure 2 represents
a page (module). The complete model is then hierar-
chically structured into 24 pages. An arc between two
nodes means that the superpage (source node) con-
tains a substitution transition whose behaviour is de-
scribed in the subpage (destination node). We adopt
the convention that a substitution transition and its
associated page have the same name. As represen-
tative pages of the CPN model we consider dashed
nodes. In the following sections we explain in more
detail how they are modelled.

[~ MNG_Step_1 |

I~ MNG_Step_2
I~ MNG_Step_3
(NG _step_4)

DCateg_Frz_AC
SCateg_Frz_AC

— AA_Step_2
SCateg_St_Trsf

[AA S5]

Nt~ inifiator Agents)
I~ 1A_Psv |
IA_Act

~—{ Communication Channel |

Fig. 2. The protocol CPN model hierarchy.

6.4 The Top page

Page Top, depicted in Figure 3, is the topmost page of
the CPN model and provides the highest abstraction
view of the model. This page has four substitution
transitions: Adaptation Manager, Adaptor Agents,
Initiator Agents and Communication Channel.

Also in Figure 3, there are eight places. Each
place represents an input or an output message buffer
to model interactions between roles. For example,
when the manager sends a message, it will appear as
a token on the place OutgoingMsg MNG to AA; and
similarly a message received by the manager will ap-
pear as a token on the place IncomingMsg MNG from
AA.

Adaptation
Manager

Adzptation Manager TAdaptor Agents

N e PPy el
:

‘Adaptor Tnitiator
Agents Agents

Initiator Agents

OutgoingMsy
T cond kkjj P iR
ti Ch: |

to M
(i Communication Channel [~
Commi

ion Channel |

Fig. 3. The Top page.

The colour sets AAxMsgMNG and AAxMsgAA are
used to model the messages in the protocol that are

present on the two places respectively. They are de-
fined as follows:

1. val NbrAA=3;

2. colset AA=index A with 1..NbrAA;

3. colset MsgAA=with Refuse|Accept|SfStDone|SfStCancelled|
RdStDone |RdStCancelled | ImpChgDone | ImpChgCancelled|
PsvReq|ActReq|RsmDone;

4. colset MsgMNG=with AdpNotif|Cancel|AdpPlan|ReadyStReql|

Rollback|ChgImpReq|RsmReq;
. colset AAxMsgAA=product AA * MsgAA;
6. colset AAxMsgMNG=product AA * MsgMNG;

o

Lines 1-2 declare the colour set AA. First, we de-
clare NbrAA to be a constant and give it the value
3. That is, NbrAA is a parameter of the model by
which we can change the number of adaptors. Next,
we declare AA to be the identifier of the adaptors.

The colour sets MsgAA and MsgMNG (Lines 3-4)
are used to define the messages transmitted over the
communication medium from the adaptors to the
manager and from the manager to the adaptors re-
spectively.

The remaining colour set AAxMsgAA (Line 5) is
defined to be the product of the types AA and MsgAA.
Tokens of the colour set AAxMsgAA are two-tuples
where the first element denotes the identifier of the
adaptor source of the message, and the second ele-
ment containing the message.

6.5 The Adaptation Manager page

Figure 4 depicts the page Adaptation Manager mod-
elling the manager side of the protocol. The page
captures the high-level overview of the module and
structures it into five substitution transitions. Each
substitution transition is named by a process step
and is linked with a subpage which models the man-
ager behaviour in this step. This gives us a better
compact and readable model.

There are six places in Figure 4. They represent
the core set of states the manager goes through dur-
ing adaptation. The place Manager, typed by the
colour set StMNG, models the initial state ACTIVE
and the two terminal (accepting or halt) states FAIL
and SUCCESS for the manager. The remaining five
places store state changes of the manager related
to performing process steps. Typed by the colour
set AAxStMNG, these places identify the state of the
manager with respect to the adaptors. Note that the
states are named to reflect the current step; prefixes
are used to identify whether step 0 (N_), step 1 (Sf_),
step 2 (Rd_), step 3 (Ch_) or step 4 (Rsm_) is perform-
ing.

The first place Manager has an initial marking of
one ACTIVE token. This indicates that the manager
is initially in the ready state. From this marking,
only the Start_NwAd transition is enabled and when
it occurs it will initialize the adaptation process by
putting on the place Mng_Ntf as many tokens as the

manager has involved adaptors. Each token models
that the manager is in the N_START state for each of
the adaptors.

StMNG___ ACTIVE

MNG_Step 0

MNG_Step_0

MNG_Step 11

MNG_Step_1

MNG_Step 21

MNG_Step_2

AMNG Step 3|

MNG_Step_3

AAXStMNG.mult(AA.all(), 1’ Ch_END)

FAIL

AAXStMNG.mult(AA.all(), 1'Rsm_START)
MNG_Step 4

MNG_Step_a

AAXSMNG.mult(AA.all(), 1’ Rsm_END)
AAXMsQAA |AAXMSIMNG W

coming ltgoingM:
NG from MNG to
In out

AAXSEMNG

SUCCESS

Fig. 4. The Adaptation Manager page.

After step 0 holds via the substitution transition
MNG_Step_0, two possibilities exist for further pro-
cessing: either the step is successfully terminated by
all adaptors or not. Depending on whether the man-
ager is in the state N_END or N_Cancel for all adap-
tors, the transition Step0_To_1 or Cnl_N is enabled
respectively. The occurrence of Step0_To_1 results
in changing the state of the manager from N_END
to Sf_START with respect to all adaptors, while the
occurrence of Cnl_N moves the manager state from
N_CANCEL to the terminal state FAIL resulting in a
cancelled adaptation.

Once the manager is in the state Sf_START, the
adaptation process is considered to be in progress.
This will start step 1. The adaptation gets success-
fully terminated as soon as the transition Cmpl_Ad
will be fired when the manager is in the state
Rsm_END with respect to all adaptors and will set
the state of the manager to SUCCESS.

6.6 The Adaptor Agents page

The page Adaptor Agents is shown in Figure 5. Sim-
ilarly to the Adaptation Manager page, this page

is structured in such a way that each substitution
transition is used to refer to a process step module
for modelling the behaviour of the adaptors in this
step. The states of the adaptors during adaptation
are modelled by six places. All adaptors are stored
in one individual place; their states need to be ex-
tended with their identifiers. That is, the six places
are typed by the colour set AAxStAA.

Briefly, all adaptors are in the initial state IDLE.
When an adaptation notification AdpNotif arrives
via the IncomingMsg AA from MNG input port place,
the transition Rcv_AdNtf is enabled and when it oc-
curs it sets the state of adaptors, involved in the
adaptation, to N_START.

It should be noted that we adopt the convention
that certain states of the manager and the adaptors
have the same name.

AAXSIAA _ AAXSEAA.muIt(AA.all(), 1" IDLE)

(23, Rsm_END) AAxMsgAA

cmpl_Ad

A 4

Y
Hy Lo ¢ ¢
o M (A Trom 7 o MG/ 5 A T4 7

(a3, SUCCESS)

Fig. 5. The Adaptor Agents page.

6.7 The Initiator Agents page

The Initiator Agents page, shown in Figure 6,
models the behaviour of the initiators during adap-
tation. The modelling of the actions taken by the
initiators is split into two parts. Each part is rep-
resented by a substitution transition. The part re-
sponsible for handling incoming passivation requests
and sending responses is modelled by IA_Psv. The
part responsible for handling incoming activation re-
quests and sending responses is modelled by TA_Act.
Two places are used for modelling the states of the

initiators. The place Initiator Agents stores the
initial state IDLE of all the initiators. The other place
IA_PorA, common to IA_Psv and IA_Act, models the
states of the initiators with respect to the concerned
adaptors.

IAXSHIA _ IAXSHA.mult(IA.all(), 1" IDLE)

Initiator
Agents

(ia", IDLE)

IAXStIAXAA.mUlt(1 ' id, 1° WAIT,
Extr_snder' (filter (fn {xy) => y=ia') AA_IA
o s ((fn (xy) => y=ia') AA_TA))

1A_PorA

Fig. 6. The Initiator Agents page.

6.8 Modelling Interactions

We now describe the pages capturing the in-
teractions between the Adaptation Manager and
the Adaptor Agents modules and between the
Adaptor Agents and the Initiator Agents mod-
ules, particularly during step 1. We show how we
make sufficient abstraction of processing details in
the model, but sill deal with the core of the proto-
col.

Modelling interactions between the manager and
the adaptors

The AA_Step_1 page Figure 7 depicts the page
AA_Step_1 which is the subpage of the substitu-
tion transition AA_Step_1 shown in Figure 5. This
page models how the adaptors operate during step
1. The place AA_Drv_Sf_St (top-left) is used to as-
sociate with each adaptor identifier the initial state
Sf_START, the intermediary state WAIT and the two
terminal states Sf_END and Sf_CANCEL.

After having intercepted the adaptation plan, an
adaptor is in the Sf_START state indicating that it
is ready to drive the component to the safe state.
As previously described, this is conducted in three
stages. At first, an adaptor computes the set of all af-
fected components. Secondly, it extracts as parame-
ter of its own task the identifier of the new implemen-
tation and verifies whether the new and the old im-
plementations share category membership. The third
stage involves bringing the component into the safe
state. Since we do not care about processing that
does not affect the operation of the protocol, the first
and second stages are abstracted away.

Hence, we choose to make this module parame-
terized through the place AA_Categ in order to iden-
tify for each adaptor whether the two implementa-
tions are of the same category or not. The inscription

if size (filter (fn (x,y) => x=ca) AA_IA) <> 0 then 1'aa else empty

AA

AAXSEAA
@\(aﬂ, S START) |

if size (filter (fn (x,y) => x=aa) AA_IA) <> 0
then AAxStAAxIA.mult(1"aa, 1*Psv_READY,

1/ Sf_St_ Start_DC3 [Btr_rcver (fiter (in (x,y) => x=28) Ah_IA))
Y else empty
(a2, DiffCtg) AAXSLAAXIA DCRE P IC
DCateg_Psv_IC
AAXSEAAXIA.mult(1 " aa, 1’ Psv_COMPL,
(aamaat) GERUTOVE (fler (In (xy) => x=22) AA_LA))
Psv2fiz | e
(a2, Frz_READY)
if size (filter (f (xy) => x=2a) AA_IA) = 0
then 1° (22, Frz_READY) AAXSLAA
else empty
AximplCATEG Y.
AA_Categ
AA_CATEG & _ (22, WAIT) (22, SfStDone)

(az, WAIT)

7

J

(as, SfStCancelled) |

L

o - - —
(83, WAIT)
(a2, ReadyStReq)

Rev_
_ | (saSLEND) | paystReq [

(22,WAIT)

comingMst
from M
(a2, Rollback) n

Rov_ | g
| (sa,SfCANCEL) RollReq

(23, ST_START)
»| stert_sctg

(aa, Frz_READY)

(33, SimCtg)

g (23, WAIT)

Snd__

(a3, Frz_COMPL)

ARXMSGAA

ARMSgAAXIA 3
(a3,5fStDane)

SiStDone

5]
oo " "
%ﬁ":‘i@ _ln-_’i@ SULW

Fig. 7. The AA_Step_1 page.

AA_CATEG at the bottom-left side is a constant which
specifies the initial marking of this place. Typed by
the colour set AAxImplCATEG, it associates each adap-
tor identifier with the value SimCtg or DiffCtg.

With respect to Figure 7, the module is decom-
posed into three main parts: i, ii and iii.

Let us consider the part i which models the be-
haviour of the adaptors when the two implemen-
tations are of different categories. In this case, the
transition Start_DCtg is enabled. Depending on the
existence of dependency relationships between an
affected component and its clients, two cases may
arise to fire Start_DCtg. If an adaptor has not
reified dependency relationships (modelled via the
if-then-else expression), then it can directly pro-
ceed to the Frz_READY state. Otherwise, it moves to
the Psv_READY state with respect to concerned ini-
tiators, indicating that passivation requests should
be sent to these initiators in order to refrain the
initiation of messages targeted to the component
under adaptation. This is done in the subpage of
the DCateg_Psv_IC substitution transition. Details
of this subpage will be described later. We expect
that when this is achieved an adaptor will be in the
Psv_COMPL state with respect to the concerned ini-
tiators. At this point in time, the Psv2Frz transition
becomes enabled. By firing this transition a token
is placed on the AA_Frz place, representing that the
adaptor is now ready to start to freeze the compo-
nent (in state Frz_ READY). The place RcdAA ensures

that the same adaptor will not appear in the place
AA_Frz more than once.

When any adaptor is in the Frz_READY state,
it needs to be ensured that all intercepted incom-
ing messages have to finish processing by its as-
sociated component before the actual suspension
can take place. Note that this may be ended ei-
ther successfully or unsuccessfully (e.g., if all inter-
cepted incoming messages are not guaranteed to fin-
ish within bounded time). This processing is hid-
den by the substitution transition DCateg_Frz_AC,
and is simply modelled as a non-deterministic choice
after which an adaptor is expected to be in the
Frz_COMPL or Frz_CNL state. Accordingly, the transi-
tion Snd_SfStDone or Snd_SfStCnl is enabled. After
firing the Snd_SfStDone (resp. Snd_SfStCnl) tran-
sition, a response containing the SfStDone (resp.
SfStCancelled) message is sent to the manager and
the adaptor changes its state from Frz_COMPL (resp.
Frz_CNL) to WAIT.

We now consider part iii to show how the adap-
tors operate when the two implementations are of
the same category. After the transition Start_SCtg
fires, an adaptor proceeds to the state Frz_READY,
in which state it is ready to freeze the component.
But before actually suspending the execution of the
component, it is important that the old implemen-
tation leaves off where the new one can resume cor-
rectly. After component suspension, there will not
be any outgoing message sent by the component but

all incoming messages will be intercepted, serialized
and stored into a buffer in FIFO order. Since these
details do not impact the protocol logic, they are
abstracted away. The adaptor actions for the reach-
ability of the safe state are hidden by the substitu-
tion transition SCateg_Frz_AC, and will simply set
an adaptor in the state Frz_COMPL. At this point, the
transition Snd__SfStDone becomes enabled. When
fired, it passes the message SfStDone to the man-
ager and causes the adaptor to change its state to
WAIT.

As shown in part ii, after the messages from
the manager arrive this lets any adaptor (in state
WAIT) know whether all adaptors involved have
ended successfully step 1 or not, depending on
the incoming message ReadyStReq and Rollback.
The actual interception of such messages is respec-
tively modelled by the transition Rcv_RdyStReq and
Rcv_RollReq. Firing the transition Rcv_RdyStReq
(resp. Rev_RollReq) will cause an adaptor to change
its state from WAIT to Sf_END (resp. Sf_CANCEL).

The MNG_Step_1 page Figure 8 depicts the page
MNG_Step_1 which is the subpage of the substitution
transition MNG_Step_1 shown in Figure 4. In Figure
8, the manager, initially in the state Sf_START for
all adaptors, proceeds to the WAIT state after firing
the transition Wait. It remains in this state wait-
ing for the arrival of responses from all adaptors. As
previously mentioned, an adaptor can either answer
with a SfStDone or SfStCancelled message. Transi-
tions Rcv_SfStDone and Rcv_S£StCnl model the re-
ceipt of these expected messages from the adaptors.
Each time Rcv_SfStDone (resp. Rcv_S£StCnl) fires,
the manager changes state from WAIT to Sf_St_DONE
(resp. Sf_St_CANCELLED) and the reception counter
is incremented by one. This counter is maintained in
the place Count typed by the colour set COUNT. The
manager controls the number of received messages
based on the current state of the counter found in
the single token value cnt (initially 0) of the Count
place. Therefore, a guard is added to S£StCnl_Rcvd
and Cncl_Ad which only allows these transitions to
fire when the value of cnt is equal to the value of
NbrAA. Recall that NbrAA is the maximum number
of adaptors.

Hence, when receiving all responses two possibil-
ities are taken into account by the manager: (1) All
adaptors drive their associated components to the
safe state, then the transition Snd_RdyReq is en-
abled and when fired passes a message ReadyStReq
to all adaptors, and sets the manager in the Sf_END
state; (2) There exists at least one adaptor which
fails to drive its associated component to the safe
state such that the token placed on the place
Boolean, used to control whether or not this hap-

pens, changes from the initial state false to true.
In such a case, the sending of a Rollback mes-
sage to all adaptors is modelled by the transitions
SfStCnl_Rcvd and Cncl_Ad, and causes the man-
ager to change its state to Sf_CANCEL.

AAXSEMNG.mult(AA.all(), 1° SF_START)

»
AAXSEMNG.mUIt(AA.alI(), 1" WAIT) ‘ Wait
(aa, WAIT)
|~ » Rov (aa, SfStDone)
(a, Sf_St_DONE) T StStDone
AAXSEMNG
fing DN) COUNT,
/0] sf_st
—— 10
A
(aa, WAIT) N
> (aa, SfStCancelled)
b (aa, Sf_St_CANCELLED) ‘ SFSHCRl
[(ent=NbrAA) andalso
(token = false orelse
b (a3, Sf_St_CANCELLED) foken = true)]
b (aa, Sf_CANCEL) (aa, Rollback)
AAxMsgMNG
BOOL =
fal
(a8, SF_St_DONE) [ent=NbraA]
»
ke (aa, Sf_CANCEL) ‘ Cnel_Ad (@a, Rollback)
[
AAXSEMNG.mult(AA.all(), 1" Sf_St_DONE)
snd
__ AAXSIMNG.mult(AA.all(), 1" Sf_END) -‘ RdyReq

Fig. 8. The MNG_Step_1 page.

Modelling interactions between the adaptors and
the initiators

The DCateg_Psv_IC page Figure 9 depicts the
page DCateg_Psv_IC, subpage of the AA_Step_1
page (Figure 7). Initially, an adaptor is in the state
Psv_READY with respect to all concerned initiators.
This means it is ready to broadcast passivation re-
quests (PsvReq) to these initiators. The broadcast-
ing is modelled by the transition Snd_PsvReq, which
causes the adaptor to move to the WAIT state for
each of the initiators. Upon receiving an initiator re-
sponse (PsvDone) via the transition Rcv_PsvDone,
the adaptor in the state WAIT for that initiator, will
be in the Psv_Done state after this transition fires.
Once all Psv_Done messages are collected, the tran-
sition A11_Rsp_Rcvd becomes enabled. Firing it sets
the adaptor in the Psv_COMPL state for each of the
initiators.

ARXSEAAXIA. mult{1'aa, 1" Psv READY, »
Extr_rcver' (fiter (fn (xy) => x=aa) AA_IA]
AMXSTAAXIA. mult(1 83, 1" WAIT,

Extr_rcver' (fiter (fn (xy) => x=a3) AA_IA))

Snd_

1
PsvReq [Extr_rever'(filter (fn (x,y) => x=aa) A _1A))

[ia=ia' andalso aa=aa']
(ia', PsvDone, aa')

AAXSEAAXIA (a@, WAIT, ia)

M—k"} (a@, Psv_DONE, ia)
i#is] 4

PsvDone

AXStAAXIA.mult(1"aa, 1 Psv COMPL,
Extr_rcver' (filter (fn (xy) => x=2z) AA_LA)H All_Rsp_
AMXSIAAXIA.mult(1 88, 1 Psv_DONE, Revd
Extr_rcver' (filter (fn (x,y) => x=aa) AA_IA)]

Fig. 9. The DCateg_Psv_IC page.

The IA_Psv page Page IA_Psv depicted in Fig-
ure 10 is the subpage of the Initiator Agents
page (Figure 6). As shown in Figure 6, all initia-
tors are initially in the IDLE state. Firing the transi-
tion Wait_PsvReq brings each initiator to the WAIT
state with respect to the concerned adaptors if any.
According to Figure 9, each time a message PsvReq
from an adaptor reaches an initiator which is in the
state WAIT for that adaptor, the initiator must invoke
a passivation method to block outgoing channels di-
rected to the specific component under adaptation.
As this processing does not affect the protocol logic,
it is abstracted away in the model. An initiator im-
plements the operation of passivation via the occur-
rence of the transition Passivate. After Passivate
fires, the initiator changes its state from WAIT to
PASSIVATED. The sending of the response is mod-
elled by the transition Snd_PsvDone, which causes
the initiator in the PASSIVATED state to move to the
WAIT state, and passes the message PsvDone to the
specific adaptor.

[Ig'=la andalso aa'=aa)
(ia', PASSIVATED, a5') AlxMsgAAXIA

[AXSEIAXAA

Fig. 10. The IA _Psv page.

7 Protocol verification

The purpose of this section is to explain how the
modelled protocol is validated using the analysis fa-
cilities of CPN Tools. This is conducted in two steps.
We first use the simulation to investigate different
scenarios of the model. Next, after conducting the
state space analysis we introduce the standard prop-
erties of CPN and how they can be used to prove be-
havioural properties of the model. Finally, we verify
additional properties by considering CTL formulas.

7.1 Simulation

During the construction of the model, single-step
simulation is used to investigate different scenarios
in detail and check whether the model works as ex-
pected. With its visual feedback, simulation helps us
to understand the behaviour of the protocol, locate
errors and modify the model. Moreover, simulation
provides us flexibility to adjust parameters, which
are detailed later, for evaluating the system.
Simulation is in fact a powerful facility for in-
creasing our confidence in the correctness of the
model. But, conducting several simulations does not

ensure that all possible scenarios are covered. To give
further confidence, we apply state space analysis.

7.2 State space analysis

An important property of our model is that it is pa-
rameterizable with respect to:

— The maximum number of adaptors (NbrAA).

— The maximum number of initiators (NbrIA).

— The relations existing between adaptors and ini-
tiators (AA_IA). Implicitly, this refers to the de-
pendency relationships between affected compo-
nents and their clients. These relationships must
be reified at run-time by the adaptors.

— The information used to identify to each adap-
tor whether the new and the old implementations
share category membership (AA_CATEG).

Accordingly, this allows us to perform analysis
by setting the initial state of the model. State space
analysis relies on computing all reachable states of
the model, and representing these as a directed graph
where nodes represent states and arcs represent oc-
curring events. Table 1 shows the chosen values,
as declared in CPN ML, to set the parameters of
the model in order to carry out three representative
tests. To limit the calculation time we conduct state
space analysis based on small values.

Values [1] Values [2] Values [3]
NbrAA 2 3 3
NbrIA 2 2 2
RIh [[TA I T+ [TAMIANTF [T AN+
14(A(1),1(2)) 19(A(1),I(2)++ 19(A(2),I(1)++

14(A(2),1(2)) 14(A(3),1(1)) ++
1°(A(3),1(2))
AA_CATEG| | 1 (A (1), DiffCtg) ++ |1 (A(1),DiffCtg) ++ |1 (A(1),DiffCtg) T+
1¢(A(2),SimCtg) 14(A(2),8imCtg)++ [1°(A(2),8imCtg)++
1(A(3),DiffCtg) 1¢(A(3),DiffCtg)

Table 1. Values in tests 1-3 to set parameters.

After state space generation, we investigate some
properties using the standard report of CPN Tools.
This report provides information about the size of
the state space and contains answers to a number of
standard properties. Some analysis results are pre-
sented in Table 2 based on a partial state space re-
port. In the following, consider as an example the
test 2 depicted in Table 1.

The first part referred to as statistics shows that
the CPN Tools calculates a full state space, contain-
ing 47,100 nodes and 193,323 arcs in 513 seconds.

The second part contains information about the
home properties. A home marking is a marking it is
always possible to return to. In our model adaptation
can either be successfully achieved, or cancelled. The
model should consequently have no home marking,
as shown in the report.

In the third part, examining the liveness proper-
ties shows that there are 5 dead markings. A dead
marking is a leaf node of the directed graph; a

Properties 1 2 3
Statistics

State Space Nodes 4702 47100 67076
State Space Arcs 14843 193323 274907
State Space Secs 5 513 932
State Space Status Full Full Full
Home Properties

Home Markings [None [None [None

Liveness Properties

Dead Markings [729,2744,3037,3416,4702]

[6932,28523,30932,34857,47100]

[6905,37419,39828,43731,67076]

Dead Transition Instances None

None

None

Live Transition Instances None

None

None

Fairness Properties

No infinite occurrence sequences

Table 2. State space analysis results for tests 1-3.

state in which no transition is enabled. To investi-
gate whether these states represent desired termi-
nal states of the protocol, we use the query function
NodeDescriptor to get a representation of the infor-
mation associated with each dead marking. The last
marking My7100 differs from the remaining markings
in that it represents the case when the protocol ter-
minates with the manager and all adaptors in the
SUCCESS state. That is, the adaptation is successfully
achieved. However, the remaining markings Mggs2,
Mogso3, Msggzo and Msygs7 denote the cases when
the protocol terminates with the manager and all
adaptors in the FAIL state. More precisely, they re-
fer to the adaptation which is cancelled either at step
0, 1, 2 or 3 respectively. Hence, the 5 markings corre-
spond to the desired terminal states of the protocol.
This expectation is confirmed by the absence of live
transition instances.

The final part contains information about the
fairness properties. We see that there is no cyclic
behaviour in the model.

Another issue which should be noted involves the
boundedness properties of the message buffer places.
These properties specify that the minimal number of
tokens that can reside on each place is always zero.
This implies that the messages are exchanged and
processed as expected.

If analysis shows that the model is correct with
respect to the CPN standard properties for each of
the three representative tests, then this will increase
our confidence in the fact that the model is also
correct when varying the parameters.

7.3 Model checking

Even though the standard report proves to be use-
ful to investigate the behaviour of the model, some
properties which are more particular for the model
have to be verified. Thus, we conduct CTL model

checking [29] that represents the act of checking the
truth value of a given CTL formula for a given state
space.

For brevity, an interesting property we check
here states that if the manager receives at least one
negative reply from an adaptor then the adaptation
is cancelled. We consider only a representative prop-
erty that shows that the adaptation is eventually
cancelled in case an adaptor fails to bring its asso-
ciated component into the safe state. To do this,
we use the function eval_node which takes two ar-
guments: the CTL formula to be checked and the
state from where the model checking starts. The ML
code [30] implemented for checking the property is
explained below.

.fun CnlResp((aa,msgaa) : AAxMsgAA)=msgaa;

.val CnlResp’=ext_col CnlResp;

.fun StateAA((aa,staa):AAxStAA)=staa;

.val StateAA’=ext_col StatelA;

.fun AdpIsCancelled(m)=(CnlResp’

. (Mark.Top’OutgoingMsg_AA_to_MNG 1 m)=1‘SfStCancelled);
.val CnlAdState=List.nth(SearchNodes(

EntireGraph,

9. fn m => (AdpIsCancelled m),

10. NolLimit,

11. fnm => m,

12. 01,

13. op ::),0);

14.fun FailStateDone(m)=(

15. (Mark.Adaptation_Manager’Manager 1 m=1°‘FAIL)
16.andalso (StateAA’

17. (Mark.Adaptor_Agents’Adaptor_Agents 1 m)=1‘FAIL));
18.val FailState = NF("noFailState", FailStateDone);
19.val CnlAdp = NF("noAdpIsCancelled", AdpIsCancelled);
20.val myASKCTLFormula = FORALL_NEXT(EV(FailState));
21.eval_node myASKCTLFormula CnlAdState;

W ~NO U WN -

Lines 7-13 implement the value CnlAdState, sec-
ond argument of eval_node (Line 21). This value
uses the standard query function SearchNodes to
find all markings m in the state space that evalu-
ate to true with respect to the predicate function
AdpIsCancelled. As implemented in Lines 5-6, this
function checks whether a SfStCancelled message is
sent by an adaptor to the manager, via each mark-

ing on the place OutgoingMsg AA to MNG. Starting
from the marking which is found, we check for all
successor states that the adaptation will eventually
be cancelled (Line 20). This is done by checking that
the state in which the manager and all adaptors will
be in the FAIL state. The result is given in Figure
11, therefore the property is satisfied.

val CnlResp = fn : AAXMsgAA -> MsgAA
val CnlResp' = fn : AAXMsgAA ms > MsgAA ms
val StateAd = fn | AAXSEAA -> StAA
val StateAd’ = fn | AAXSEAA ms -> SEAA ms
val AdpIsCancelled = fn : Node -> bool
val CnladState = 9989 ; Node
val FailStateDone = fn ; Node -> boal
val FailState = NF ("noFailState”,fn) : A
val Cnladp = NF ("noAdplsCancelled" fn) : A
val myASKCTLFormula =
NOT
(MODAL
(NOT
(OR
(NOT TT,
NOT (MODAL (NOT (FORALL_UNTIL (TT,NF {"naoFailstate",fn))))1))))

A
val it = true ; bool
Fig. 11. The model checking result.

8 Conclusions and future work

Driven by the ever increasing need for mastering
systems complexity in dynamic environments, self-
adaptation becomes crucially important for building
today’s software systems. Throughout this paper we
describe an approach to behavioural adaptation of
component-based distributed systems. The main aim
of our approach is to comprehensively meet the con-
sistency needs, ranging from single component to dis-
tributed system. Even in the presence of failures dur-
ing adaptation, we guarantee the consistency. This
feature is lacked by most of the existing approaches.
Furthermore, in order to trust an adaptive system
to operate correctly after adaptation, we investigate
the application of formal methods by adopting the
CPN formalism. After constructing a CPN model of
the protocol, we use the simulation and analysis fa-
cilities of CPN Tools to assess the correctness of the
protocol.

For future work, several issues require further in-
vestigations. (1) Our approach is pessimistic since
a local failure causes adaptation to be cancelled.
Therefore, causes triggering adaptation cancellation
have to be relaxed. (2) We seek to investigate timeout
in order to ensure that every adaptation is performed
in a reasonable time. (3) Planning process to identify
possible adaptation plans is a work in progress. We
will also focus on the mechanisms that can be im-
plemented to evaluate and choose the most efficient
plan. (4) Even though the adoption of centralized so-
lution guarantees globally optimal adaptation deci-
sions while respecting the coordination constraints,
it may not scale well when applied to managing a
great number of components. A better scalability will
be featured by a decentralized approach which we
address in our ongoing investigations.

References

10.

11.

12.

13.

14.

Kramer, J., Magee, J.: Self-managed systems: An
architectural challenge. In: In Future of Software
Engineering, EEE Computer Society Press (2007)
Laddaga, R.: Self Adaptive Software — Problems and
Projects. In: Proceedings of the Second International
IEEE Workshop on Software Evolvability, Washing-
ton, DC, USA, IEEE Computer Society (2006) 3-10
Laddaga, R.: Self adaptive software (BAA-98-12).
http://www.darpa.mil/ito/Solicitations/PIP_9812.
html (1998)

Hofmeister, C.: Dynamic Reconfiguration. Ph.D,
Thesis, Computer Science Department, University of
Maryland, College Park (1993)

Aksit, M., Choukair, Z.: Dynamic, adaptive and
reconfigurable systems overview and prospective vi-
sion. In: Proceedings of the 23rd International Con-
ference on Distributed Computing Systems, Wash-
ington, DC, USA, IEEE Computer Society (2003)
84-89

Zhang, J., Yang, Z., Cheng, B.H., McKinley, P.K.:
Adding safeness to dynamic adaptation techniques.
In: Proceedings of ICSE 2004 Workshop on Archi-
tecting Dependable Systems. (2004)

Biyani, K., Kulkarni, S.: Concurrency Tradeoffs
in Dynamic Adaptation. In: Proceedings of the
26th ITEEE International ConferenceWorkshops on
Distributed Computing Systems, Washington, DC,
USA, IEEE Computer Society (2006) 4-10

Jensen, K.: An Introduction to the Theoretical
Aspects of Coloured Petri Nets. In: A Decade
of Concurrency, Reflections and Perspectives, REX
School/Symposium, Springer-Verlag (1994) 230-272
Jensen, K.: An Introduction to the Practical Use of
Coloured Petri Nets. In: Lectures on Petri Nets II:
Applications, Advances in Petri Nets, the volumes
are based on the Advanced Course on Petri Nets,
Springer-Verlag (1998) 237-292

Jensen, K., Kristensen, L., Wells, L.: Coloured Petri
Nets and CPN Tools for modelling and validation of
concurrent systems. International Journal on Soft-
ware Tools for Technology Transfer 9(3) (2007) 213-
254

Kramer, J., Magee, J.: The Evolving Philosophers
Problem: Dynamic Change Management. IEEE
Trans. on Soft. Eng. 16(11) (1990) 1293-1306
Orso, A., Rao, A., Harrold, M.: A Technique for Dy-
namic Updating of Java Software. In: Proceedings
of the IEEE International Conference on Software
Maintenance. (2002) 649-658

Appavoo, J., Hui, K., al.: Enabling autonomic be-
havior in systems software with hot swapping. IBM
System Journal 42(1) (2003) 60-76

Janssens, N., Michiels, S., Holvoet, T., Verbaeten,
P.: A Modular Approach Enforcing Safe Reconfigu-
ration of Producer-Consumer Applications. In: Pro-
ceedings of the 20th IEEE International Conference
on Software Maintenance, IEEE Computer Society
(2004) 274-283

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Moazami-Goudarzi, K.: Consistency preserving dy-
namic reconfiguration of distributed systems. Ph.D,
Thesis, Imperial College London (1999)
Hauptmann, S., Wasel, J.: On-line Maintenance with
On-the-fly Software Replacement. In: Proceedings
of the 3rd International Conference on Configurable
Distributed Systems, Washington, DC, USA, IEEE
Computer Society (1996) 70

Chen, H., Chen, R., Zhang, F., Zang, B., Yew, P.:
Live updating operating systems using virtualiza-
tion. In: Proceedings of the 2nd international confer-
ence on Virtual execution environments, New York,
NY, USA, ACM (2006) 35-44

Chen, H., Yu, J., Chen, R., Zang, B., Yew, P.:
POLUS: A POwerful Live Updating System. In:
Proceedings of the 29th international conference on
Software Engineering, Washington, DC, USA, IEEE
Computer Society (2007) 271-281

Lee, I.. DYMOS: A dynamic modification system.
Ph.D, Thesis (1983)

Gupta, D., Jalote, P.: On line software version
change using state transfer between processes. Soft-
ware - Practice and Experience 23(9) (1993) 949-964
Plasil, F., Bélek, D., Janecek, R.: SOFA/DCUP:
Architecture for Component Trading and Dynamic
Updating. In: CDS ’98: Proceedings of the Interna-
tional Conference on Configurable Distributed Sys-
tems, IEEE Computer Society (1998) 43

Kon, F., Campbell, R.: Dependence Management in
Component-Based Distributed Systems. IEEE Con-
currency 8(1) (2000) 26-36

Chen, W., Hiltunen, M., Schlichting, R.: Construct-
ing Adaptive Software in Distributed Systems. In:
Proceedings of the The 21st International Conference
on Distributed Computing Systems, IEEE Computer
Society (2001) 635-643

Capra, L., Emmerich, W., Mascolo, C.: CARISMA:
Context-Aware Reflective mlddleware System for
Mobile Applications. IEEE Trans. on Soft. Eng.
29(10) (2003) 929-945

Bradbury, J., Cordy, J., Dingel, J., Wermelinger, M.:
A survey of self-management in dynamic software ar-
chitecture specifications. In: Proceedings of the 1st
ACM SIGSOFT workshop on Self-managed systems,
New York, NY, USA, ACM (2004) 28-33

Magee, J., Dulay, N., Eisenbach, S., Kramer, J.:
Specifying distributed software architectures. In:
Proceedings of the 5th European Software Engineer-
ing Conference, London, UK, Springer-Verlag (1995)
137-153

Xiong, X., Weishi, Z.: The Current State of Software
Component Adaptation. In: Proceedings of the First
International Conference on Semantics, Knowledge

and Grid, Washington, DC, USA, IEEE Computer
Society (2005) 103

28. Sun, J., Sauvola, J.: Towards a conceptual model
for context-aware adaptive services. In: 4th Interna-
tional Conference on Parallel and Distributed Com-
puting, Applications and Technologies. (2003) 9041

29. Cheng, A., Christensen, S., Mortensen, K.: Model
Checking Coloured Petri Nets Exploiting Strongly
Connected Components. (1996) 169-177

30. Christensen, S., Mortensen, K.: Design/CPN ASK-
CTL Manual. University of Aarhus. (1996)

Najla Hadj Kacem received her
Master degree in Computer Science
in 2005 from the Faculty of Economic
Sciences and Management (FSEG),
University of Sfax, Tunisia. She is now
a Ph.D. student at FSEG and mem-
ber of the ReDCAD Laboratory. Her
current research interests include self-adaptation, coor-
dination protocols in distributed software systems and
formal methods.

Ahmed Hadj Kacem obtained his
diploma of Ph.D. from the University
of Paul Sabatier, Toulouse III (France)
in 1995. He joined the University of
Sfax as an associated professor in 1996.
He participated to the initiation of
many graduate courses. His current
research areas include multi-agent systems and design of
adaptive software architectures.

e

v

Khalil Drira received the Engineer-
ing degree and the M.S. degree (DEA)
in Computer Science from INPT,
the National Polytechnic Institute of
Toulouse, in 1988 and the Ph.D. de-
gree in Computer Science from UPS,
University Paul Sabatier Toulouse,
in 1992. He is, since 1992, Chargé de Recherche CNRS,
a full-time research position at the National Center for
Scientific Research of France. His current research in-
terests include design of adaptive software architectures
and QoS management. He is or has been involved in
several national and international projects in the field
of distributed communicating systems. He is author of
more than 150 regular and invited papers in interna-
tional conferences and journals.

