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Abstract

One feature of contemporary datasets is that instead of the single point value in the
p-dimensional space <p seen in classical data, the data may take interval values thus
producing hypercubes in <p. This paper extends the methodology of classical principal
components to that for interval-valued data. Two methods are proposed, viz., a ver-
tices method which uses all the vertices of the observation’s hypercube, and a centers
method which uses the centroid values. Unlike classical data, each symbolic data point
has internal variation. For both the vertices and centers methods, we obtain interval-
valued symbolic principal components which recapture the internal variation of the ob-
servations, as well as diagnostics such as correlation measures between these principal
components and the random variables and/or the observations themselves. We also pro-
vide a visualization method that further aids in the interpretation of the methodology.
The methods are illustrated in a dataset using measurements of facial characteristics
obtained from a study of face recognition patterns for surveillance purposes, and in
a dataset of species of bats where the measurements are naturally internal-valued. A
comparison with analyses in which classical surrogates replace the intervals, shows how
the symbolic analyses give more informative conclusions.

Keywords: Vertices principal components, centers principal components, correlations, iner-
tia.

1 Introduction

Principal component analysis is a well established method designed to reduce the dimen-
sionality p of a dataset into one of dimension s << p, so as to facilitate the visualization
and extraction of the main trends in a high-dimensional dataset. These techniques have
focused on classical datasets whereby each observation is a single point in the p-dimensional
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space <p; see, e.g., Jolliffe (1986). The goal of this paper is to describe principal component
methodology for interval-valued symbolic data.

Interval-valued data can result from aggregation of a typically large dataset into one of
more manageable size or one whose focus is on some specific aspect. For example, consider
a health insurance dataset of millions of observations relating to individuals covered by an
insurer. Each entry may record name, dates visited, age, weight, ... (other demographic and
geographic information) ..., pulse rate, blood pressure, ... (other basic medical diagnostics)
..., lists of ailments, lists of diagnoses, lists of treatments prescribed, ..., and so on. Rather
than the details of a particular individual on a specific hospital visit, the insurer may be
more interested in the medical patterns of 20-year old females (say), or more generally in
age × gender classifications. Aggregating the entire dataset over age × gender will produce
values for weight (say) such as: 107, 98, 149, ...; that is, now the variable weight for the
“observation” corresponding to 20-year old females takes values in the interval [98, 149], say.
There are as many ways of aggregating the data as there are questions of interest. Thus,
instead of age × gender, the question could be ”Lung cancer patients × City of residence”,
age alone, heart patients × product treatment, and so on. The resulting database would
now contain symbolic interval-valued data. [Some aggregations produce other types of
symbolic data, such as lists or modal-valued observations, e.g., histograms or probability
distributions; these are not considered herein.]

Interval-valued data can arise in their own right, as in, e.g., the oils dataset of Ichino
(1988) used as an example in Chouakria et al. (2000). Another example relates to (say)
characteristics of a species; e.g., the bat species Pipistrelle Commune (Pipistrellus pipistrel-
lus) has height from 4 to 7 mm (i.e., the interval [4,7]) but a particular bat may have a
height of 4.3mm. The list of naturally arising interval data is endless. In a different direc-
tion, some measurements carry an inherent degree of uncertainty and/or imprecision. For
example, your assessment of the merits of some entity (wine quality, e.g.) can be along the
lines of 90± δ with δ = 5 when reasonably sure and δ = 10 when the uncertainty increases.
Rather than uncertainty, in order to protect confidentialities, an actual observation of 24
say may be recorded as (24− δ1, 24 + δ2) for arbitrary δ1, δ2 values.

Also, we use such notions on a regular basis when we say, e.g., that our pulse rate is
64±1, i.e., [63, 65], or that our weight fluctuates between 60 and 62 kilos, i.e., [60, 62]. Note
however that weights of 60± 1 and 60± 3 whilst having the same midpoint have different
internal variations, and so are differently valued observations. Any analysis therefore must
take into account these internal variations inherent to symbolic data along with the usual
external variations familiar to us as between (classical) observations, i.e., variance. A review
of symbolic data can be found in Bock and Diday (2000) and Billard and Diday (2003, 2006).

The problem of reducing a large number of random variables p to a smaller number of
principal components s << p remains regardless of how the intervals were formed. There-
fore, in Section 3 and 4, two methods for performing a principal component analysis on
interval-valued data are presented, the vertices method and the centers method, respec-
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tively; practical considerations and computational complexity along with a discussion of
the relative merits of these methods are presented in Section 5. These methods are based
on extending the methodology for classical data, and we show how the basic classical theory
carries through to interval-valued data. We also in Section 6 extend classical concepts relat-
ing to the interpretation of the principal components, such as inertia and contributions from
an observation to a principal component. Unlike classical data which consist of single points
in p-dimensional space, symbolic interval data consist of hypercubes and in particular each
observation, i.e., each hypercube, consists of a cloud of vertices. Therefore, the contribution
of an observation to the principal component can be broken down into contributions of each
vertex. The visualization and hence interpretation of the symbolic principal components
can therefore be further enhanced by focusing on those vertices whose contributions exceed
pre-assigned bounds; see Section 6. Section 7 considers constrained hypercubes. These
constraints could arise naturally as part of an aggregation process behind the formation
of some symbolic datasets. We start with some basic principles including structuring the
symbolic data so as to retain the fundamental internal variations inherent to such data,
along with some generalized weighting schemes for interval data, in Section 2.

In Section 8, we apply these methods, with p = 6 variables, to a set of m = 27 faces
dataset from Leroy et al. (1996) investigating facial characteristics for detection purposes
in a surveillance study. Facial recognition has taken on an added urgency in the last decade
or so. The recent extensive review by Zhao et al. (2003) highlights the relative paucity of
statistical methodology to add to the largely computer-based methods and draws special
attention to the need for techniques when databases are large. In this sense our analysis
contributes to the knowledge base for this field in that it provides a new exploratory method
to aid in the process of detecting which variables are important. More importantly however
is the wider applicability of the new methodology to many fields (including the image
processing field) when faced with interval-valued databases in general. We also demonstrate,
through this dataset, how attempts to analyse interval-valued data with classically valued
surrogates lose information contained in the data; i.e., the symbolic analysis gives more
informative results than does a classical analysis, lending more importance to the usefulness
of the symbolic approach.

The faces dataset considered in Section 8 arose after aggregation of a much larger
dataset. In contrast, in Section 9, we analyse a dataset with p = 4 physical character-
istics (e.g., height) of m = 21 species of bats, data that are naturally interval-valued. The
symbolic principal component analysis proposed herein reveals features of this dataset not
possible to highlight from (surrogate) classical analyses. These datasets are new, providing
additional insights from symbolic analyses beyond those of previous works that focussed on
the much smaller (m = 8) oils dataset of Ichino(1988).

A preliminary version of the proposed methods was reported in conference proceedings
by Chouakria et al. (1995, 1998). More complete details are in the doctoral dissertation
Chouakria (1998, Ch. 1), a summary of which is in Cazes et al. (1997). Later, in an
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attempt to improve the factorial visualization of symbolic observations, Lauro and Palumbo
(2000) considered three variants, each based on the interval midpoints (a special case of our
proposed centers method). In a different direction, Palumbo and Lauro (2003) and Lauro
and Palumbo (2005) use interval arithmetic ideas (of Moore, 1966) to calculate the variance-
covariance matrix based on interval means and distances. Gioia and Lauro (2006) and
Lauro and Gioia (2006) propose an extension of classical principal components to intervals
based on interval algebra properties and main results on interval eigenvalues and interval
eigenvectors obtained by Deif (1991) and Rhon(1993). There is also a series of papers (see,
e.g., D’Urso and Giordani, 2004, Denoeux and Masson, 2004, Giordani and Kiers, 2004,
2006, Coppi et al., 2006, and Yabuuchi et al., 2007) which consider principal component
analysis of interval fuzzy data. However, while fuzzy data can be viewed as a special case
of interval data, they are in general a different domain from symbolic data; see Billard and
Diday (2006) for examples showing the distinctions between these two types of data.

2 Preliminary Results

2.1 Data Interval Coding

Suppose the data consist of m observations ξi = (ξi1, . . . , ξip) where

ξij = [aij , bij ], i = 1, . . . ,m, j = 1, . . . , p,

with aij ≤ bij , as realizations of the random variableX = (X1, . . . , Xp). An interval [aij , bij ]
is defined to be trivial if it reduces to a single value aij = bij . Notice that ξi is a classical
observation if ξij for all j = 1, . . . , p, are trivial intervals.

Let the number of nontrivial intervals in ξi be qi. Then, the number of vertices associated
with the observation ξi in <p is

ni = 2qi . (2.1)

Thus, a classical observation which equates to a point in <p has qi = 0 and hence has 20 = 1
vertex in <p; a line segment has qi = 1 and so has 2 vertices, a rectangle has qi = 2 with
22 = 4 vertices in <p, and so on. We refer to all observations as being hypercubes H in <p.
The total number of vertices for the dataset (ξ1, . . . , ξm) is

n =
m∑
i=1

ni =
m∑
i=1

2qi . (2.2)

We construct the data matrix Xξi with elements

Xξi =



xi11 · · · xi1p
...

...
xik1 · · · xikp

...
...

xini1 · · · xinip


(2.3)
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where xik = (xik1, . . . , x
i
kp) is the point value of the vertex k, k = 1, . . . , ni, associated

with the hypercube Hi representing the observation ξi, i = 1, . . . ,m. For example, if an
observation

ξi = ([ai1, bi1], [ai2, bi2], [ai3, bi3])

with ai3 = bi3, then qi = 2, ni = 4, and hence

Xξi =


ai1 ai2 ai3

ai1 bi2 ai3

bi1 ai2 ai3

bi1 bi2 ai3

 .

The data matrix whose elements represent the vertices of the complete dataset is the
n× p matrix, from (2.3),

X =


Xξ1

...
Xξm

 =




x1

11 · · · x1
1p

...
...

x1
n11 · · · x1

n1p


...

xm11 · · · xm1p
...

...
xmnm1 · · · xmnmp




. (2.4)

Figure 1 displays the hypercube describing each of seven interval-valued observations
measured on p = 3 random variables along with the corresponding clusters of vertices.

An alternative coding is one which replaces the interval values ξi for each observation
by the center-values xci = (xci1, . . . , x

c
ip) where, e.g.,

xcij = (aij + bij)/2. (2.5)

Then, the associated data matrix is

Xc =


xc11 . . . xc1p

...
...

xcm1 . . . xcmp

 . (2.6)

Therefore, instead of the m clusters of n total vertices as in Figure 1, we now have m

centroids xci , i = 1, . . . ,m, points in <p.
In the sequel, we develop two methods, one based on the data matrix X of (2.4) called

the vertices method, and one based on the data matrix Xc of (2.6) called the centers
method.
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2.2 Weights

As for classical analyses, there are many possible weighting schemes, generally dictated by
the nature of the application at hand. We present three main symbolic weighting schemes,
where without loss of generality, we assume observations have been normalized. First, let
us denote the weight of observation ξi by wi. A symbolic observation ξi has ni vertices each
of which can have a weight factor; let the weight of the vertex k (of ξi) be wik, k = 1, . . . , ni,
i = 1, . . . ,m. Further, it follows that we require

wi =
ni∑
k=1

wik,

m∑
i=1

wi = 1. (2.7)

A frequent choice of weight for wi gives equal weight to all observations, i.e.,

wi = 1/m, i = 1, . . . ,m. (2.8)

This choice for wi gives equal weight to observations even when they have different internal
variations. For example, for p = 1, the observations ξ1 = [59, 61] and ξ2 = [57, 63] would be
equally weighted under (2.8).

One weighting scheme which gives importance to differing internal variations of hyper-
cubes is given by

wi = Vi/

m∑
i=1

Vi, (2.9)

where Vi is the volume of the hypercube Hi associated with ξi given by

Vi =
∏

aij 6=bij

(bij − aij). (2.10)

Note that ”volume” is a generic nondimensional term, and could be a ”surface” (or ”length”)
in 2 (or 1) dimensions; it is simply a measure of information contained in the observation Hi.
Under this scheme, observations that form larger hypercubes (and so have larger internal
variability) receive larger weights. An observation that is a single point receives a weight
of zero. For example, this weighting scheme might be useful when hypercubes emerge from
aggregation of very large datasets, with larger hypercubes representing an aggregation of
a larger number of individual observations, or more information, than smaller hypercubes.
In this sense, a hypercube that is a single point in <p is but one distinct observation, and
so its zero weight under this scheme is akin to the notion that the probability of a point is
zero. Along similar but different lines, the weights wi can be proportional to the number
of observations aggregated to produce each ξi. Another notion of ”volume” is the linear
description potential equal to the sum of the hypercube edges of ξi (DeCarvalho,1998, and
Lauro and Palumbo, 2000).

A third scheme is one for which the weights are inversely proportional to volume, viz.,

wi =
1− Vi/

∑m
i=1 Vi∑m

i=1[1− Vi/
∑m

i=1 Vi]
. (2.11)
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In this case, observations with large volumes receive lower weight. This type of weighting
scheme might be more appropriate for observations if the intervals are measures of impre-
cision (x ± δ), with lower weights for more uncertainty (i.e., larger δ) expressed through
the observation’s interval range. When all observations are classical, the inverse weights of
(2.12) reduce to wi = 1/m, i = 1, . . . ,m, of (2.8) so recapturing the traditional analysis as
a special case.

Consider now the weights for each vertex k. When the weights for the ni vertices of the
observation ξi (or, hypercube Hi) are assumed to be equal,

wik = wi/ni, k = 1, . . . , ni, i = 1, . . . ,m. (2.12)

Clearly, (2.7) is satisfied, since

ni∑
k=1

wik =
ni∑
k=1

wi
ni

= wi.

For example, for ξ1 = ([3, 5], [10, 16], [7, 9]), ξ2 = ([3, 5], [13, 13], [8, 8]), these become
wi = 1/2 with w1

k = 1/16, w2
k = 1/4, k = 1, . . . , ni, since from (2.1) n1 = 8 and n2 = 2.

When nothing is known about the internal distribution across an interval, these weights
could be determined with regard to the means xcij located at the midpoint values, as given
in (2.5), which in effect is assuming a uniform distribution within the intervals.

More generally for any distribution, rather then the centroid value xcij , some suitably
defined reference point x0

ij with aij < x0
ij < bij can be used. For example, x0

ij can be
the mode, it can be the observed mean across [aij , bij ] for the distribution underlying the
corresponding Xj , or so on. We then set weights waij and wbij on the end-points aij and bij ,
respectively, such that

waij + wbij = 1 (2.13)

and
waijaij + wbijbij = x0

ij . (2.14)

Then, the weights wik for the vertex k of ξi can be given by

wik = wi

 qi∏
j=1

w(xikj)

 (2.15)

where the weight associated with the jth component of the k vertex is

w(xikj) = wtij , when xkj = tij , t = a, b. (2.16)

It is easily verified, from (2.14), that (2.7) is satisfied.
To illustrate, consider a p = 2 observation ξi = ([ai1, bi1], [ai2, bi2]) which forms a

rectangle hypercube Hi with ni = 4 vertices. Then for the k = 1, . . . , 4 vertices, we have

wi1 = wiw
a
i1w

a
i2, wi2 = wiw

a
i1w

b
i2, wi3 = wiw

b
i1w

a
i2, wi4 = wiw

b
i1w

b
i2.
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Then, after applying (2.13) for each of j = 1, 2, we have

4∑
k=1

wik = wi{wai1(wai2 + wbi2) + wbi1(wai2 + wbi2)} = wi.

For the case that x0
ij is the midpoint of (2.5), the weights waij = wbij = 1/2, and so the

particular weights of (2.12) pertain.
It follows that the weight matrix D associated with the observation vertices matrix X

is the n× n diagonal matrix

D = diag(w1
1, . . . , w

1
n1
, . . . , wm1 , . . . , w

m
nm). (2.17)

Classical Data:
When all the observations are classical data with aij = bij for all i = 1, . . . ,m, j =

1, . . . , p, it follows that the number of nontrivial intervals qi = 0 and hence ni = 1 for all
i = 1, . . . ,m. Hence, the vertex weights wik ≡ wi. All the results herein carry through as a
special case.

2.3 Variance-Covariance Matrix

Principal component analysis includes finding the eigenvalues and eigenvectors of the variance-
covariance matrix of the data. Let us define the variance-covariance matrix associated with
the vertices by V ∗ = (v∗j1,j2), j1, j2 = 1, . . . , p,

V ∗ = XTDX (2.18)

where X and D are as defined in (2.4) and (2.17), respectively. Recalling that the structure
of the matrix X is that it represents the n vertex points in the complete symbolic dataset
and can be viewed as n classical observations, we can obtain the weighted sample means as

X̄∗j =
m∑
i=1

ni∑
k=1

wikx
i
kj . (2.19)

We can write (2.19) as

X̄∗j =
m∑
i=1

(αaijaij + αbijbij) (2.20)

where αaij and αbij are the weights for the observation ξi when the value of xikj is aij and
bij , respectively. Therefore, for t = a, b,

αtij =
ni∑
k=1

wik = wtijwi whenever xikj = tij (2.21)

It follows from (2.13) that
αaij + αbij = wi. (2.22)
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Then, the variance v∗jj of Xj can be written as

v∗jj =
m∑
i=1

ni∑
k=1

wik(x
i
kj − X̄∗j )2; (2.23)

hence,

v∗jj =
m∑
i=1

[αaij(aij − X̄∗j )2 + αbij(bij − X̄∗j )2]. (2.24)

Likewise, the covariance v∗j1j2 between Xj1 and Xj2 can be written as

v∗j1j2 =
m∑
i=1

ni∑
k=1

wik(x
i
kj1 − X̄

∗
j1)(xikj2 − X̄

∗
j2). (2.25)

We can show that

v∗j1j2 =
m∑
i=1

wi(waij1w
a
ij2aij1aij2 + waij1w

b
ij2aij1bij2 + wbij1w

a
ij2bij1aij2 + wbij1w

b
ij2bij1bij2)

=
m∑
i=1

wix
0
ij1x

0
ij2 , (2.26)

from (2.14). Hence, the variance-covariance matrix V ∗ based on the vertices is calculated.
Consider now the variance-covariance matrix based on the centers used in theXc matrix,

defined by
V c = (Xc)TDcXc (2.27)

with elements (vcj1j2), j1, j2 = 1, . . . , p, and weight matrix Dc. Then, the sample variance
vcjj of the random variable Xj is

vcjj =
m∑
i=1

wi(x0
ij − X̄c

j )
2 (2.28)

where the sample mean of the centers for Xj is

X̄c
j =

m∑
i=1

wix
0
ij . (2.29)

For example, if uniformity within each interval holds and each observation is equally
weighted, x0

ij = (aij + bij)/2, wi = 1/m; and so (2.29) becomes X̄c
j =

∑
i(aij + bij)/(2m) as

derived for intervals in Bertrand and Goupil (2000).
We can show that (2.28) becomes

vcjj =
m∑
i=1

wi(waijaij + wbijbij)
2. (2.30)

Likewise, the covariance vcj1j2 between the variables Xj1 and Xj2 is

vcj1j2 =
m∑
i=1

wi(x0
ij1 − X̄

c
j1)(x0

ij2 − X̄
c
j2),
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i.e.,

vcj1j2 =
m∑
i=1

wi(waij1aij1 + wbij1bij1)(waij2aij2 + wbij2bij2). (2.31)

Hence, the variance-covariance matrix V c based on the centers is obtained.

3 Vertices Principal Component Analysis

3.1 The Method

The data matrix X of (2.4) is considered to be the data matrix of n classical point observa-
tions on the random variables (X1, . . . , Xp), with its associated weighted variance-covariance
matrix being V ∗ of (2.18). Therefore, we can perform a classical principal component anal-
ysis on this X. A detailed description of how to conduct such an analysis can be found from
any of the numerous texts on multivariate analysis; see, e.g., Jolliffe (1986), Johnson and
Wichern (2002) for an applied presentation, and Anderson (1984) for a theoretical approach.
Briefly, let (eν , λν), with eν = (eν1, . . . , eνp), ν = 1, . . . , p, and with λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0,
be the eigenvectors and eigenvalues of the matrix V ∗ suitably diagonalized. Then, the νth
principal component PCν, ν = 1, . . . , p, satisfies

PCν = eν1X1 + · · ·+ eνpXp. (3.1)

The total variance is σ2
n =

∑p
i=1 λi and the proportion of the total variance explained by

PCν is λν/
∑p

ν=1 λν . Therefore, rather than focusing on the variations across all principal
components, it becomes convenient to focus on the first s� p principal components which
typically together explain a large proportion of the total variation.

For the symbolic observation ξi represented by the ni vertices in Xξi , the νth symbolic
vertices principal component is obtained from

Y ∗iν = [yaiν , y
b
iν ], ν = 1, . . . , s ≤ p, (3.2)

where
yaiν = min

k∈Li
{yiνk}, ybiν = max

k∈Li
{yiνk} (3.3)

where Li = {1, . . . , ni} is the set of rows in Xξi which describe the vertices of the symbolic
hypercube Hi and hence the observation ξi, and where yiνk is the value of the νth principal
component for the row k in Li. We can show that

yaiν =
p∑

j∈J+

eνj(aij − X̄∗j ) +
p∑

j∈J−
eνj(bij − X̄∗j ) (3.4)

ybiν =
p∑

j∈J−
eνj(aij − X̄∗j ) +

p∑
j∈J+

eνj(bij − X̄∗j ) (3.5)

where J+ = {j|eνj > 0} and J− = {j|eνj < 0}.
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A graphical representation of a set of s (= 3) principal components obtained from a
p = 3 dimensional observation is displayed in Figure 2. We observe the projection of the
hypercube Hi onto the PC1 and PC2 plane (and also onto the PC2 and PC3 plane). The
rectangle formed by the two interval-valued principal components constitutes a maximal
envelope of the projection points from Hi. Thus, every point in the hypercube Hi when
projected to the plane lies inside this envelope. However, depending on the actual value of
Hi, there can be some (exterior) points within the envelope that may not be projections of
points in Hi. In this sense, the envelope overestimates the principal component hypercube.
This can be improved by looking at the quality of each vertex, as introduced in Section 6
below.

The result of (3.2) and (3.3) can be verified as follows. Take any point x̃i with x̃ij ∈
[aij , bij ]. Then, the νth principal component associated with this x̃i is

P̃Cν =
p∑
j=1

eνj(x̃ij − X̄∗j ).

It follows that
p∑
j=1

eνj(x̃ij − X̄∗j ) ≥
p∑

j∈J+

eνj(aij − X̄∗j ) +
p∑

j∈J−
eνj(bij − X̄∗j ) (3.6)

and
p∑
j=1

eνj(x̃ij − X̄∗j ) ≤
p∑

j∈J−
eνj(aij − X̄∗j ) +

p∑
j∈J+

eνj(bij − X̄∗j ) (3.7)

However, by definition (3.3) and from (3.4), the right-hand side of (3.6) is

min
k∈Li
{yiνk} = yaiν

and from (3.5), the right-hand side of (3.7) is

max
k∈Li
{yiνk} = ybiν .

Hence, for all ν = 1, . . . , p,
˜PCν ∈ [yaiν , y

b
iν ];

and so Y ∗iν as in (3.2) and (3.3) holds for all xij ∈ [aij , bij ].
As for classical analyses, we can obtain a correlation measure between the νth principal

component PCν and the random variable Xj as

Cjν = Cor(Xj , PCν) = eνj

√
λν/σ2

j (3.8)

where eνj is the component of the νth eigenvector eν associated with Xj (see (3.1)) and
where

λν = V ar(PCν) (3.9)

is the νth eigenvalue; and σ2
j is the variance of Xj . Note that when the variance-covariance

matrix is standardized these σ2
j reduce to σ2

j = 1.
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4 Centers Principal Component Analysis

4.1 The Method

An alternative method is one in which the values for each observation ξi are replaced by
the barycenters x0

i = (x0
i1, . . . , x

0
ip) where

x0
ij =

ni∑
k=1

(
wik
wi

)xikj (4.1)

where as before the observation ξi forms the hypercube Hi with vertices k = 1, . . . , ni, with
weights wik on the vertex xik = (xik1, . . . , x

i
kp). It follows that, from (2.14),

x0
ij = waijaij + wbijbij , i = 1, . . . ,m, j = 1, . . . , p. (4.2)

Then, we construct the data matrix

Xc =


x0

11 · · · x0
1p

...
...

x0
m1 · · · x0

mp

 . (4.3)

A special case is when x0
ij ≡ xcij of (2.5) and (2.6).

An advantage of the use of this Xc over the X used in the vertices method is that if the
dimension p is particularly large, then use of the n×n X matrix is cumbersome. However,
except for its entry in establishing the weights wik used in (4.1) and the wi in (4.2), much of
the internal variation in the observations is lost. Thus, the total variation of the principal
components is not observed and needs to be estimated from other descriptive measures. We
compare the two methods more formally in Section 5.

The weight matrix is the m×m diagonal matrix

Dc = diag(w1, . . . , wm) (4.4)

where the wi take values which may incorporate the internal variations of the observations
such as those of (2.7)-(2.11); see Section 2.2.

The centers principal components analysis is conducted by doing a classical analysis on
the centered point observations ofXc after standardizing the variance-covariance matrix V c

of (2.28). Let uν = (uν1, . . . , uνp), ν = 1, . . . , p, be the resulting νth centered eigenvector.
Then, the νth centers principal component can be written as

PCνc =
p∑
j=1

(x0
j − X̄c

j )uνj . (4.5)

In particular, let x̃i = (x̃i1, . . . , x̃ip) be any point contained in the hypercube Hi de-
scribed by ξi. Thus, we can calculate the νth centers principal component for this x̃i from
(4.5) as

PCνc(x̃i) =
p∑
j=1

(x̃ij − X̄c
j )uνj .

12



Therefore, we can define the νth centers principal component as

Ziν = [zaiν , z
b
iν ], ν = 1, . . . , s ≤ p,

where

zaiν =
p∑
j=1

min
aij<x̃ij<bij

{(x̃ij − X̄c
j )uνj} (4.6)

and

zbiν =
p∑
j=1

max
aij<x̃ij<bij

{(x̃ij − X̄c
j )uνj}. (4.7)

It can be shown that these reduce to

zaiν =
p∑

j∈J−c

(bij − X̄j)uνj +
p∑

j∈J+
c

(aij − X̄j)uνj (4.8)

and

zbiν =
∑
j∈J−c

(aij − X̄j)uνj +
p∑

j∈J+
c

(bij − X̄j)uνj (4.9)

where J−c = {j|uνj < 0} and J+
c = {j|uνj > 0}.

The graphical representation and the parameter interpretations for the centers principal
components are analogous to their counterparts for the vertices principal components; see
Section 3, and Figure 2.

5 Practical Considerations

5.1 Complexity and Information

Let us consider the computational complexity of the proposed approaches as it pertains
to the efficiency of the calculation of the variance-covariance matrices, where we define
complexity as the number of elementary operations needed to do this calculation. We recall
that for the vertices method, each observation is represented by its ni vertices; thus, when
calculating the variance-covariance matrix V , the order of complexity is O(m2p) when there
are no trivial intervals. If p is large, this can be considerable. In contrast, since the centers
method uses only the centroid (xc, or x0) for each observation, its order of complexity in
calculating V c is only O(m). Once the V , or V c, matrix is calculated, the computational
effort is the same as for a classical principal component analysis based on p variables.

However, the centers method loses information in the data. For example, for p = 1
the two intervals [12, 16] and [2, 26] are quite different, but have the same central value
xc = 14 (if assume uniformity). The centers method uses the xc = 14 value in both cases,
whereas the vertices method by using the vertices captures the between and relative internal
variations.
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The key issue then is how we can retain the greater information inherent to the vertices
method yet use the reduced computational complexity of the centers method. The answer
is found in the mathematical results of the next subsection 5.2.

5.2 Comparison of the Vertices and Centers Methods Statistics

We can show that, from (2.14) and (2.19)-(2.21),

X̄c
j =

m∑
i=1

wix
0
ij =

m∑
i=1

(αaijaij + αbijbij)

i.e.,
X̄c
j = X̄∗j ; (5.1)

that is, the weighted means are the same for both methods, for all j = 1, . . . , p.
However, the variance-covariance matrices differ for the two methods. From (2.23) and

(2.28), the difference between the two variances is

v∗jj − vcjj =
m∑
i=1

[αaij(aij − X̄∗j )2 + αbij(bij − X̄∗j )2]−
m∑
i=1

wi(waijaij + wbijbij)
2. (5.2)

We can show that (5.2) becomes, for j = 1, . . . , p,

v∗jj − vcjj =
m∑
i=1

wiw
a
ijw

b
ij(bij − aij)2 = ejj , say; (5.3)

i.e.,
v∗jj = vcjj + ejj , j = 1, . . . , p. (5.4)

The factor ejj represents the loss of precision or variation that pertains when the interval
[aj , bj ] is replaced by its centroid x0

j . When the differences (bj − aj) are small, the two
methods would clearly give similar results.

Consider now the covariances between Xj1 and Xj2 for the two methods. Expanding
(2.31), we have

vcj1j2 =
m∑
i=1

wi(waij1w
a
ij2aij1aij2 + waij1w

b
ij2aij1bij2

+wbij1w
a
ij2bij1aij2 + wbij1w

b
ij2bij1bij2)

= v∗j1j2 (5.5)

from (2.25). That is, for j1 6= j2, the covariances are the same for both methods.
Hence, from (5.1)-(5.5), we have that the vertices variance-covariance matrix V ∗ and

the centers variance-covariance matrix V c satisfy the relationship

V ∗ = V c +E (5.6)
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where E is a p × p diagonal matrix with diagonal elements ejj given by (5.3). Thus,
we see that the variance of the vertices data has two components, one representing the
interval variation within each observation (i.e., the interval of length (b-a)) and the other
representing variation between (the centroids of the) observations.

Classical Data:
When the data are all classical observations, we have from (5.3), ejj = 0, for all j. In

this case, the two methods are equivalent throughout and the classical principal component
analysis becomes a special case.

5.3 A Refinement

The relationship (5.6) allows for the calculation of the vertices variance-covariance matrix
V ∗ by calculating the centers covariance matrix V c and the difference matrix E, with
complexity O(m), instead of the complexity O(m2p) that pertains when calculating V ∗

directly through the vertices as in (2.18).
A vertices principal component analysis is then performed with a variance-covariance

matrix V ∗ obtained with a complexity of O(m). Interval-valued principal components are
also given by (3.4) and (3.5) with a complexity of O(m) instead of obtaining them from (3.3)
directly ( with its complexity O(m2p)). Therefore, the degree of complexity for the vertices
method is reduced to the order O(m), the same as for a classical principal component
analysis.

6 Interpretation and Visualization

In classical principal component analysis, two different quantities are usually calculated to
help in the visualization and interpretation of the projections of the principal component
values for each observation onto the principal component axes. One is the cosine of each
(classical) observation Xi onto the νth principal component axis, viz.,

cos(Xi, PCν) = wiy
2
iν /[d(Xi, G)]2

where d(Xi, G) is the Euclidean distance between the observation Xi and G is the centroid
of all data Xi, i = 1, · · · , n values. Large values of cos(Xi, PCν) mean that the position
of Xi is near to its projected value on the PCν axis and hence we are confident about
the position of this Xi observation’s role in the interpretation of the principal component
analysis results; low values of cos(Xi, PCν) suggest care is necessary when interpreting
results relative to that Xi and PCν.

A second quantity useful for interpretation purposes in a classical analysis is the contri-
bution of each observation Xi to the inertia, viz.,

Ctr(Xi, PCν) = wiy
2
iν/λν .
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For our symbolic principal component analyses; instead of a single point observation Xi, we
have the hypercube Hi. We extend these classical quantities to hypercubes as follows. The
relative contribution to a given principal component PCν by an observation ξi represented
here by its observed hypercube Hi can be measured by

C1
iν = Ctr(Hi, PCν) = wi

ni∑
k=1

wik(y
i
νk)

2

[d(xik,G)]2
. (6.1)

where yiνk is the νth principal component for the vertex k of Hi (see (3.3)), wik is the weight
of that vertex (see Section 2.2), and where d(xik,G) is the Euclidean distance between the
vertex xik identified in the row k of Xξi and G defined as the centroid of all n rows of X.
An alternative measure is the contribution

C2
iν = Ctr(Hi, PCν) =

∑ni
k=1w

i
k(y

i
νk)

2∑ni
k=1w

i
k[d(xik,G)]2

(6.2)

The first function C1
iν identifies the average squared cosines of the angles between these

vertices and the axis of the νth principal component. The second function C2
iν identifies

the ratio between the contribution of all the vertices of Hi to the variance λν of the νth
principal component and their contribution to the total inertia (or total variance).

Also, since for all positive real numbers a, b, c, d, the relationship (a + c)/(b + d) ≤
[a/b+c/d) holds, then it follows that the relative contributions C2

iν of (6.2) are smaller than
the C1

iν of (6.1).
The absolute contribution of a single observation through the vertices of Hi to this

variance λν is measured by the inertia

Iiν = Inertia(Hi, PCν) = [
ni∑
k=1

wik(y
i
νk)

2]/λν (6.3)

and the contribution of this observation to the total variance is

Ii = Inertia(Hi) = {
ni∑
k=1

wik[d(xik,G)]2}/IT , (6.4)

where IT =
∑p

ν=1 λν is the total variance of all the vertices in <p. It is easily verified that

m∑
i=1

Iiν = λν ,

m∑
i=1

Ii = IT . (6.5)

In a different direction, an alternative visual aid in interpreting the results is that
whereby only those vertices whose contribution to the principal component PCν exceed
some prespecified value α, be used in the equations (3.3). That is, we set

Y ∗iν(α) = [yaiν(α), ybiν(α)]

where

yaiν(α) = min
k∈Li
{yiνk|Ctr(xik, PCν) ≥ α}, ybiν(α) = max

k∈Li
{yiνk|Ctr(xik, PCν) ≥ α}, (6.6)
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where

Ctr(xik, PCν) =
(yiνk)

2

[d(xik,G)]2
(6.7)

is the contribution of a single vertex xik to the νth principal component.
Consider the vertices method (similar arguments hold for the centers method). When

α = 0, the symbolic principal component interval obtained from (3.3) has an underlying
assumption that all n vertices are equally important in determining that interval regardless
of the respective contributions of individual vertices calculated from (6.7). Thus, to take
an extreme case, one vertex k = k′ may have a value of yiυk′ = 1.0 (say) while all the other
vertices k 6= k′ in Li may take values in the range 10.0, ... 11.0, (say) for a given value of
ν. Direct use of (3.3) gives PCν = [1.0, 11.0]. Suppose however the relative contribution,
from (6.7), for that vertex k′ is 0.05 while those for the other vertices k 6= k′ in Li are such
that they exceed α = 0.6 (say). Then, a more meaningful symbolic principal component
interval in this case is PCν = [10.0, 11.0]. On the other hand, if the k = k′ vertex has
a contribution of 0.65 (say), then now all vertices should be included, and so from (6.6),
we have PCν = [1.0, 11.0]. That is, if a particular vertex contributes relatively little
information to a specific principal component calculation, it is omitted from (3.3) allowing
only those vertices which are meaningful to be retained. For classical data, there is only
one vertex (n = 1) and so this argument does not hold.

An alternative to the criterion of (6.6) is to replace Ctr(xik, PCν) by

Ctr(xik, PCν1, PCν2) = Ctr(xik, PCν1) + Ctr(xik, PCν2). (6.8)

In this case, vertices that make larger contributions in either of the two principal components
PCν1 and PCν2 are retained, rather than only those vertices that contribute to just one
principal component.

To illustrate, consider the projections of the two hypercubes H1 and H2 onto the first
and second principal component plane as shown in Figure 3. The principal component
envelope (obtained from applying (3.4)-(3.5)) is also displayed. The numerical values at
each of the projected vertices are the contributions of the respective vertices to the first
(ν = 1) principal component, calculated from (6.7). For example, the five vertices of H1,
respectively, contribute 0.8, 0.05, 0.55, 0.35, 0.75, to PC1. When α = 0.2 (say) in (6.6), the
vertex contributing 0.05, is omitted, with the resulting principal component envelope being
that shown in Figure 4. The observation represented by the hypercube H2 has six vertices
(see Figure 3) including a vertex whose contribution is 0.01. Application of (6.6) when
α = 0.2 results in the two vertices whose contributions are 0.01 and 0.15 being dropped.
However, the resulting principal component envelope in this case still includes the vertex
with contribution 0.01.

When for a given ν = ν1 (say) all Ctr(xik, PCν1) < α, then to keep track of the
position of the hypercube Hi on the principal component plane (ν1, ν2) say, we project the
center of the hypercube onto that axis. In this case there is no variability on that principal
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component ν1; whereas if there is variability for the other principal component ν2, there is
a line segment on its (ν2) plane.

ȳiν1 =
1
ni

ni∑
k=1

yiν1k. (6.9)

7 Constrained Observations

It can be that certain constraints are imposed on observational values. Some constraints,
e.g., age ≥ 50, are common to both classical and symbolic data. However, depending on
the nature of (any) aggregation of an original dataset that produced a symbolic dataset,
we may need to impose rules or constraints to maintain the integrity of the original values
themselves. For example, suppose a dataset contains values for age and number of children
for individuals living in various cities, and suppose that no person under the age of 12 (say)
had any children. Suppose now the data are aggregated by city. Since clearly there can be
individuals over 12 with no children, any such aggregation can produce a symbolic value
of, e.g, age = [5, 70] and number of children = [0, 1, 2, . . . ]. In this case, the associated
hypercube includes the point, age = 5 and number of children = 2; and so on. A logical
dependency rule that ”If age <12, then number of children = 0” preserves the integrity of
the original values. These constraints in effect produce ”holes” in the hypercubes; see Figure
5. For another example, suppose two variables X1= number of at-bats and X2= number
of hits, over a season of baseball. Suppose the aggregation over all players in a given
team produced the p = 2 dimensional hypercube H=([80, 400], [30, 180]), a rectangle.
However, since for any one player x2 ≤ x1, observations within the triangle with vertices
(80, 80), (80, 180), and (180, 180) are not possible. Thus, this triangle represents a ”hole”
in the hypercube H, leaving a 5-sided hypercube in <2 as the valid dataset or ”constrained
hypercube”; see Billard and Diday (2006).

The foregoing construction of the data matrix X and Xc and their weights of Section
2.1 and 2.2 are adjusted for constraints as follows. Suppose the effect of a constraint on the
validity of the hypercube Hi associated with an observation ξi is such that a subhypercube
(or constrained hypercube) Ci is not valid (i.e., Ci is a ”hole” in Hi), and suppose Ci can
be expressed by

Ci : ([caij1 , cbij1 ]∧, . . . ,∧[caijr , cbijr ], [caijk , cbijk ] ⊆ [aijk , bijk ] jk ∈ {1, . . . , p}), (7.1)

where [caij , cbij ] are the constrained interval values for the variable Xj on observation ξi,
and where clearly for all jk ∈ {1, . . . , p}, (xij1 , . . . , xijr) ∈ Ci if and only if

xijk ∈ [caijk , cbijk ]. (7.2)

Note that there can be more than one constrained interval for any one variable j. These
constrained hypercubes necessarily reside inside Hi. There can be several constrained re-
gions within Hi, viz., Ci1, . . . , C

i
ri . The example in Figure 5 has ri = 2. Here, n1

i = 8
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and n2
i = 4 vertices, respectively, in Ci1 and Ci2. For clarity of presentation, we assume

these constrained hypercubes are disjoint. As for the hypercube Hi itself, these constrained
hypercubes can be points, lines, and so on, with nri vertices in the constrained hypercube
Cir, r = 1, . . . , ri.

One impact of these constraints is on the values for the weights wi of the observation
ξi and for weights wik of the k vertex of Hi. One proposed set of new weights is found by
extending the approach used in Section 2.2 as follows.

The volume of the constrained hypercube Cir is, for r = 1, . . . , ri, i = 1, . . . ,m,

V (Cir) =
∏
j∈Eir

carij 6=cbrij

(cbrij − cbrij), (7.3)

where Eir is the set jk ∈ {1, . . . , p} of variables in the constrained hypercube Cir, and where
[carij , cb

r
ij ] are as defined in (7.1) for Cir with the r superscript added.

Then, the new weight for ξi is

w∗i = wi[1− V −1
i

ri∑
r=1

V (Cir)], i = 1, . . . ,m, (7.4)

where the volume Vi was defined in (2.10). When, for a given i, there are no holes in the
corresponding Hi, i.e., when the observation ξi is unconstrained, then from (7.4), w∗i = wi.

Finally, new weights for the vertices are given as

(wik)
∗ = w∗i d(xik)/

ni∑
k=1

d(xik) (7.5)

where

d(xik) =
1
ri

ri∑
r=1

D(xik, C
i
r) (7.6)

with

D(xik, C
i
r) =

1
nri

nri∑
l=1

d(xik,x
Cir
l ). (7.7)

The distance d(xik,x
Cir
l ) in (7.7) is the Euclidean distance measured from the kth vertex

in Hi (denoted by xik) and the collection of vertices in Cir (denoted by xC
i
r

l ). Thus, D(xik, C
i
r)

is the (collective) average such distance averaged over all vertices in Cir. Therefore, the
distance d(xik) in (7.6) is the average of the collective average distances for each constrained
hypercube Cir averaged over all the constrained Cir’s for the observation ξi.

It can be verified that, as required,
ni∑
k=1

(wik)
∗ = w∗i ,

m∑
i=1

w∗i = 1. (7.8)

The vertices and/or centers methods then proceed as in Section 3 and/or Section 4 but
with these weights being used instead of those obtained when no constraints exist.
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8 Face Recognition Application

8.1 The Data

The problem of automatic face recognition has gained added impetus recently especially
in the context of security such as in access to buildings and the like, and in the context
of monitoring and continued surveillance questions. Mechanisms for identifying human
facial patterns started receiving attention with the Fischler and Eschlager (1973) study of
matching pictorial structures, followed by Baron (1981), among others. Following a brief
review by Samal and Iyengar (1992), in an excellent and extensive review, Chellappa et al.
(1995) looks at face recognition in the law enforcement and commercial sectors as well as
the psychophysics community. The last ten years has witnessed considerable activity on this
vexing issue. Zhao et al. (2003) provides an in-depth review of the recent literature. Much
of this work falls under the broad rubric of image analysis; while some deal with computer
architectural graph matching methods. There are a few studies involving direct statistical
methods, such as principal component analysis of eigenfaces used by Turk and Pentland
(1991), Craw and Cameron (1996) and Moon and Phillips (2001), discriminant analysis
by Eternad and Chellappa (1997), probabilistic eigenfaces developed by Moghaddam and
Pentland (1997), and nearest line features considered by Li and Chellappa (2002) and Li
and Lu (1999). Studies such as those by Kass et al. (1987), Turk (1991), Craw et al. (1992)
and Staib and Duncan (1992) helped identify those facial features that should be included
in any discrimination research. Zhao et al. (2003) conclude that while progress has been
valuable, much more remains to be done especially when databases are large.

Our analysis will focus on a dataset from an investigation by Leroy et al. (1996) which
uses face recognition features identified from these earlier studies. The process of face recog-
nition entails first describing the faces, then classifying and lastly identifying them. One
technique for describing faces consists of taking a number of measurements, which identify
principal facial features (width of eyes, nose, ...). The classification stage is achieved through
a principal component analysis to identify groupings of faces with the associated interpre-
tations providing input as to the identification of distinguishing features. Our methodology
provides a new exploratory technique when the data are intervals instead of the points of
classical data.

The dataset consists of measurements of six random variables designed to identify each
face; specifically, the length spanned by the eyes X1 (the distance AD in Figure 6), the
length between the eyes X2 (the distance BC), the length from the outer right eye to the
upper middle lip at the point H between the nose and mouth X3 (AH), the corresponding
length for the left eye X4 (DH), the length from this point H to the outside of the mouth
on the right side X5 (EH) and the corresponding distance to the left side of the mouth
X6 (GH). For each face image, the localization of the salient features such as nose, mouth,
and eyes is obtained by using morphological operators. In order to extract the boundary
of these localized elements, a specific active contour method based on Fourier descriptors
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able to incorporate information about the global shape of each object is used. Finally,
specific points delimiting each extracted boundaries are localized, and then a distance is
measured between a specific pair of points as represented by these random variables, in
Figure 6. This distance measure is expressed as the number of pixels on an image of
the face. There is a sequence of such images; so therefore the actual distances measured
are interval-valued. Thus, for example, the eye-span distance X1 for the subject FRA1 is
X1 = [155.00, 157.00] over this series of images. Note that due to the different conditions
of alignment, illumination, pose and occlusion, the extracted distances will vary across the
different images of the same person. The study involved nine men with three sequences for
each giving a total of m = 27 observations. The complete dataset is provided in Table 1.

Table 1 - Faces Dataset (Distances AD,. . . ,GH as in Figure 6, see text)

Subject X1 = AD X2 = BC X3 = AH X4 = DH X5 = EH X6 = GH

FRA1 [155.00, 157.00] [58.00, 61.01] [100.45, 103.28] [105.00, 107.30] [61.40, 65.73] [64.20, 67.80]

FRA2 [154.00, 160.01] [57.00, 64.00] [101.98, 105.55] [104.35, 107.30] [60.88, 63.03] [62.94, 66.47]

FRA3 [154.01, 161.00] [57.00, 63.00] [99.36, 105.65] [101.04, 109.04] [60.95, 65.60] [60.42, 66.40]

HUS1 [168.86, 172.84] [58.55, 63.39] [102.83, 106.53] [122.38, 124.52] [56.73, 61.07] [60.44, 64.54]

HUS2 [169.85, 175.03] [60.21, 64.38] [102.94, 108.71] [120.24, 124.52] [56.73, 62.37] [60.44, 66.84]

HUS3 [168.76, 175.15] [61.40, 63.51] [104.35, 107.45] [120.93, 125.18] [57.20, 61.72] [58.14, 67.08]

INC1 [155.26, 160.45] [53.15, 60.21] [95.88, 98.49] [91.68, 94.37] [62.48, 66.22] [58.90, 63.13]

INC2 [156.26, 161.31] [51.09, 60.07] [95.77, 99.36] [91.21, 96.83] [54.92, 64.20] [54.41, 61.55]

INC3 [154.47, 160.31] [55.08, 59.03] [93.54, 98.98] [90.43, 96.43] [59.03, 65.86] [55.97, 65.80]

ISA1 [164.00, 168.00] [55.01, 60.03] [120.28, 123.04] [117.52, 121.02] [54.38, 57.45] [50.80, 53.25]

ISA2 [163.00, 170.00] [54.04, 59.00] [118.80, 123.04] [116.67, 120.24] [55.47, 58.67] [52.43, 55.23]

ISA3 [164.01, 169.01] [55.00, 59.01] [117.38, 123.11] [116.67, 122.43] [52.80, 58.31] [52.20, 55.47]

JPL1 [167.11, 171.19] [61.03, 65.01] [118.23, 121.82] [108.30, 111.20] [63.89, 67.88] [57.28, 60.83]

JPL2 [169.14, 173.18] [60.07, 65.07] [118.85, 120.88] [108.98, 113.17] [62.63, 69.07] [57.38, 61.62]

JPL3 [169.03, 170.11] [59.01, 65.01] [115.88, 121.38] [110.34, 112.49] [61.72, 68.25] [59.46, 62.94]

KHA1 [149.34, 155.54] [54.15, 59.14] [111.95, 115.75] [105.36, 111.07] [54.20, 58.14] [48.27, 50.61]

KHA2 [149.34, 155.32] [52.04, 58.22] [111.20, 113.22] [105.36, 111.07] [53.71, 58.14] [49.41, 52.80]

KHA3 [150.33, 157.26] [52.09, 60.21] [109.04, 112.70] [104.74, 111.07] [55.47, 60.03] [49.20, 53.41]

LOT1 [152.64, 157.62] [51.35, 56.22] [116.73, 119.67] [114.62, 117.41] [55.44, 59.55] [53.01, 56.60]

LOT2 [154.64, 157.62] [52.24, 56.32] [117.52, 119.67] [114.28, 117.41] [57.63, 60.61] [54.41, 57.98]

LOT3 [154.83, 157.81] [50.36, 55.23] [117.59, 119.75] [114.04, 116.83] [56.64, 61.07] [55.23, 57.80]

PHI1 [163.08, 167.07] [66.03, 68.07] [115.26, 119.60] [116.10, 121.02] [60.96, 65.30] [57.01, 59.82]

PHI2 [164.00, 168.03] [65.03, 68.12] [114.55, 119.60] [115.26, 120.97] [60.96, 67.27] [55.32, 61.52]

PHI3 [161.01, 167.00] [64.07, 69.01] [116.67, 118.79] [114.59, 118.83] [61.52, 68.68] [56.57, 60.11]

ROM1 [167.15, 171.24] [64.07, 68.07] [123.75, 126.59] [122.92, 126.37] [51.22, 54.64] [49.65, 53.71]

ROM2 [168.15, 172.14] [63.13, 68.07] [122.33, 127.29] [124.08, 127.14] [50.22, 57.14] [49.93, 56.94]

ROM3 [167.11, 171.19] [63.13, 68.03] [121.62, 126.57] [122.58, 127.78] [49.41, 57.28] [50.99, 60.46]

Before carrying out the analysis, let us first make the following comment that pertains
for aggregated data such as in the faces data. As described, there are 27 interval-valued
observations. Suppose each observation drew from a sequence of 1000 images. This gives a
total of 27000 classical point observations in <6. An underlying assumption of the standard
classical analysis is that all 27000 observations are independent. However, this is not what
we have here. The data values for each face form a set of 1000 dependent observations.
Therefore, if we use each image as the statistical unit by performing a classical analysis,
we lose the information on dependency contained in the 27000 observations. The resulting
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principal component analysis will look for axes which maximize the variability across all
27000 images regardless of whether some images belong to the same sequence. In contrast,
by using the interval-valued observations obtained from each sequence, the vertices method
will extract principal component axes which maximize the variability of each interval (i.e.,
maximizes the internal variability) and hence retains the information on dependency be-
tween the 1000 images of each sequence.

8.2 Vertices Principal Components Analysis

We first apply the vertices principal component method to the data of Table 1. Obser-
vations and their vertices were given equal weights ((2.8) and (2.12)). Values of the first
three vertices principal components obtained through the application of (3.4)-(3.5) for each
observation are displayed in Table 2.

Table 2 - Vertices Principal Components, ν = 1, 2, 3: Faces

Subject PC1 PC2 PC3

FRA1 [-2.66, -1.61] [0.27, 1.57] [-0.29, 1.00]

FRA2 [-2.49, -1.03] [-0.11, 1.61] [-0.25, 1.01]

FRA3 [-2.99, -0.81] [-0.40, 1.88] [-0.88, 1.20]

HUS1 [-0.24, 1.10] [0.39, 2.05] [0.64, 2.13]

HUS2 [-0.40, 1.41] [0.56, 2.65] [0.29, 2.32]

HUS3 [-0.24, 1.42] [0.43, 2.52] [0.27, 2.17]

INC1 [-3.77, -2.29] [-0.67, 1.23] [-0.80, 0.69]

INC2 [-3.66, -1.35] [-2.05, 0.92] [-0.88, 1.83]

INC3 [-4.02, -1.86] [-1.20, 1.41] [-1.01, 1.50]

ISA1 [0.80, 2.00] [-1.83, -0.46] [-0.58, 0.58]

ISA2 [0.37, 1.86] [-1.71, -0.08] [-0.64, 0.73]

ISA3 [0.41, 2.11] [-1.84, -0.12] [-0.58, 1.20]

JPL1 [-0.36, 0.92] [0.54, 2.03] [-1.81, -0.43]

JPL2 [-0.34, 1.17] [0.48, 2.37] [-1.85, -0.07]

JPL3 [-0.52, 0.93] [0.50, 2.28] [-1.56, 0.25]

KHA1 [-1.18, 0.39] [-3.07, -1.46] [-1.19, 0.26]

KHA2 [-1.46, 0.15] [-3.17, -1.32] [-0.93, 0.61]

KHA3 [-1.71, 0.25] [-2.95, -0.72] [-1.25, 0.57]

LOT1 [-0.74, 0.61] [-2.51, -0.87] [-0.81, 0.61]

LOT2 [-0.69, 0.40] [-1.94, -0.62] [-0.80, 0.33]

LOT3 [-0.82, 0.34] [-2.12, -0.70] [-0.77, 0.52]

PHI1 [0.22, 1.51] [0.56, 1.84] [-1.40, -0.08]

PHI2 [-0.09, 1.66] [0.33, 2.29] [-1.81, 0.22]

PHI3 [-0.25, 1.38] [0.25, 2.25] [-2.01, -0.12]

ROM1 [2.19, 3.45] [-1.20, 0.29] [-0.51, 0.81]

ROM2 [1.85, 3.63] [-1.30, 0.97] [-0.83, 1.36]

ROM3 [1.48, 3.57] [-1.33, 1.31] [-0.79, 1.79]

The plots of these along the first principal component (PC1) and second principal com-
ponent (PC2) axes are shown in Figure 7. An immediate observation is the proximity of the
three sequences for the three faces for each individual thus validating their within-subject
coherence. Furthermore, we can distinguish four, or possibly five, classes of faces. The faces
{INC, FRA} might be one class; the faces {HUS, PHI, JPL} suggest themselves as another
class, as do the faces {ISA, ROM}; and the faces {LOT, KHA} would be a fourth class.
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By restricting the calculation of the principal components to those vertices which have
a contribution α or more, i.e., by using (6.6), we can obtain a clearer picture of the class
groupings. The relative contribution Ctr(xik, PCν), ν = 1, 2, k = 1, . . . , ni are calculated
from (6.7) for each hypercube Hi, i = 1, . . . , 27. Take the face INC2 (i = 8) hypercube. For
ν = 1, all the vertices have a relative contribution Ctr(xik, PC1) > 0.2. Therefore, all (of
the 26 = 64 total) vertices enter into the application of (6.6) to give us

PC1(α = 0.2) = [−3.662,−1.354].

However, for ν = 2, only 8 of the 64 vertices satisfy the relation Ctr(xik, PC2) > 0.2. Those
relative contributions which satisfy this relation for the vertices of the face INC2, are given
in Table 3. Therefore, only these vertices are considered in the application of (6.6). Hence,
we obtain the second vertices principal component as

PC2(α = 0.2) = [−2.051,−1.644].

Table 3 - Vertices Contributions to PCν = 1, 2 (i = 8 ≡ INC2): Faces

X1 X2 X3 X4 X5 X6 PC1 PC2 Cor1 Cor2

156.26 51.09 95.77 91.21 54.92 54.41 -2.717 -1.993 0.514 0.277

156.26 51.09 95.77 96.83 54.92 54.41 -2.390 -1.955 0.476 0.318

156.26 51.09 99.36 91.21 54.92 54.41 -2.511 -2.051 0.485 0.323

156.26 51.09 99.36 96.83 54.92 54.41 -2.184 -2.012 0.448 0.380

161.31 51.09 95.77 91.21 54.92 54.41 -2.432 -1.683 0.437 0.209

161.31 51.09 95.77 96.83 54.92 54.41 -2.105 -1.644 0.396 0.242

161.31 51.09 99.36 91.21 54.92 54.41 -2.226 -1.740 0.406 0.248

161.31 51.09 99.36 96.83 54.92 54.41 -1.899 -1.702 0.366 0.294

Table 4 provides the complete set of vertices principal components obtained from (6.6)
when α = 0.2; these are plotted in Figure 8. Also, given are the numbers of vertices for
which the contribution to the respective principal components (ν = 1, 2) exceeds α = 0.2.
Under this criterion, seven of the observations now have a principal component for which
all (here 64) vertices contribute less than α = 0.2. In these cases, to anchor the (other)
principal component, we take the average over the vertices. For example, for the face INC1
(i = 7) no vertex contributes more than 0.2 to the second principal component. In this
case, ȳ7,2 = 0.28 from (6.9). This is reflected as a line (instead of a rectangle) parallel to the
first principal component axis in Figure 8. Notice that the face JPL1 also assumes a linear
form (parallel to the second principal component axis). In this case, however, this arises
from (6.6) where now only one vertex contributes more than α = 0.2 to the first principal
component.

By comparing the principal components of Figure 7 (which corresponds to α = 0.0) and
of Figure 8 (where α = 0.2), the greater clarity of the classes that emerges is immediately
apparent. Similar enhancements emerged as αmoved from 0 to 0.6 (not shown). Specifically,
four groups are evident, those containing the faces of {PHI, JPL,HUS}, {ROM, ISA},
{FRA, INC} and {LOT,KHA}, respectively. An equivalent analysis using the second and
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three principal components PC2 and PC3 suggests this first group be divided into two,
{PHI, JPL} and {HUS}.

Table 4 - Vertices Principal Components, ν = 1, 2, α = 0.2: Faces

Principal Component # Vertices Retained

Subject PC1 PC2 ν = 1 ν = 2

FRA1 [-2.66, -1.61] [1.12, 1.57] 64 12

FRA2 [-2.49, -1.03] [0.94, 1.61] 64 18

FRA3 [-2.99, -0.81] [0.67, 1.87] 64 17

HUS1 [0.87, 1.10] [0.81, 2.05] 3 49

HUS2 [0.86, 1.41] [0.97, 2.65] 6 56

HUS3 [0.68, 1.42] [0.88, 2.52] 11 50

INC1 [-3.77, -2.29] 0.28 64 0

INC2 [-3.66, -1.35] [-2.05, -1.64] 64 8

INC3 [-4.02, -1.85] 0.11 64 0

ISA1 [0.80, 2.00] [-1.83, -0.70] 64 51

ISA2 [0.67, 1.86] [-1.71, -0.51] 52 38

ISA3 [0.66, 2.11] [-1.84, -0.46] 60 41

JPL1 [0.92, 0.92] [0.60, 2.03] 1 60

JPL2 [0.64, 1.17] [0.79, 2.37] 7 57

JPL3 [0.81, 0.93] [0.59, 2.28] 3 60

KHA1 -0.39 [-3.07, -1.46] 0 64

KHA2 [-1.46, -1.09] [-3.17, -1.32] 4 64

KHA3 [-1.71, -0.83] [-2.95, -0.72] 12 64

LOT1 -0.07 [-2.61, -0.87] 0 64

LOT2 -0.14 [-1.94, -0.62] 0 64

LOT3 -0.24 [-2.12, -0.70] 0 64

PHI1 [0.63, 1.51] [0.63, 1.84] 36 59

PHI2 [0.62, 1.66] [0.66, 2.29] 26 51

PHI3 [0.62, 1.38] [0.62, 2.25] 18 54

ROM1 [2.19, 3.45] -0.46 64 0

ROM2 [1.85, 3.63] -0.17 64 0

ROM3 [1.48, 3.57] [1.28, 1.31] 64 2

Table 5 gives all the eigenvalues λν , ν = 1, . . . , 6 (from (3.9), along with the percentage
and the cumulative percentage of the total variation explained by each principal component.
Thus, we see that PC1 explains 42.7% of the total variation and the first two principal
components (PC1 and PC2) together account for 72.7% of the total variation.

Table 5 - Vertices PC Inertia: Faces

PCν Eigenvalue λν % Inertia Cumulative Inertia

PC1 2.560 42.7 42.7

PC2 1.798 30.0 72.7

PC3 0.642 10.7 83.4

PC4 0.476 7.9 91.3

PC5 0.335 5.6 96.9

PC6 0.188 3.1 100

The correlations Cjν between the variable Xj and the νth principal component PCν
were calculated from (3.8) and are shown in Table 6, for ν = 1, 2, 3. These suggest there
is a strong relationship between the right and left distances and the upper middle lip
(X3 = AH and X4 = DH) and the first principal component PC1 with correlations of
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0.84 and 0.89, respectively, followed by the eye-span distance (X1 = AD) with a correlation
of 0.64. These variables relate to the overall size of a face. The correlations of the variables
with the second principal component PC2 reveal the relative importance of the interior
facial detail, viz., the distance between the eyes X2 = BC has a correlation equal to 0.67;
likewise X5 = EH and X6 = GH relating to the mouth with correlations of 0.62 and 0.76,
respectively. Not surprisingly, it is the same set of variables which single out the faces
{ROM,FRA, INC, ISA} relative to the axis of PC1 from the other faces, and likewise
those of {HUS,KHA,LOT} relative to the axis of PC2 from the other faces; the details
are omitted.

Table 6 - Vertices Method, Correlations Cjν between Xj and PCν: Faces

Xj PC1 PC2 PC3

AD 0.6444 0.5889 0.1717

BC 0.4903 0.6663 -0.1403

AH 0.8374 -0.1968 -0.3707

DH 0.8913 0.0885 0.1649

EH -0.4749 0.6248 -0.5607

GH -0.4283 0.7554 0.3377

Based on these results, we conclude that long faces (as in relatively long values of AH
and DH) or oval shaped faces are projected into the positive plane of the first principal
component, while the relatively rounder or broad faces are projected into the positive plane
of the second principal component.

Further insights are obtained by studying the relative contributions Ctr(Hi, PCν) be-
tween the full observation ξi and the νth principal component. These values, calculated
from (6.2), are given in Table 7 for ν = 1, 2, 3. Thus, we observe that the faces of
{FRA, INC, ISA,ROM} are highly identified with the first principal component PC1,
while those of {KHA,LOT} have their highest contributions with the second principal com-
ponent PC2. It becomes clear from the preceding discussion that {FRA, INC, ISA,ROM}
distinguish themselves through the importance of the (AH, DH and AD) variables, that is,
they have long and/or oval faces. The characteristics of the other groupings can likewise be
identified.

These conclusions are based on using all the vertices for a given hypercube as a collective
whole. If we return to the contributions of individual vertices and in particular those that
exceed α (= 0.2, in Table 4), our conclusions are further corroborated and strengthened.
For example, take the faces of LOT (as an extreme case). From Table 7, we observe that
the contributions to the second principal component are the largest over all faces at 0.68,
0.54, 0.53, respectively, while those to the first principal component are the smallest of
all faces at 0.02, 0.02, 0.03, respectively. When we considered individual vertices, all 64
vertices were retained for the second principal component whereas none were retained for
the first principal component. At the other extreme, we have the faces of ROM with strong
contributions to the first principal component both collectively as a complete hypercube and
individually as vertices; in this case, the contributions to the second principal component
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are weak. Likewise, enhanced interpretations apply to the other faces, with the faces of
ISA being a ”central” face balanced over both principal components. Notice, from Figure
7, that the ISA faces essentially form their own cluster.

Table 7 - Vertices Method, Relative Contributions to Vertices PCν, ν = 1, 2, 3 : Faces

Subject PC1 PC2 PC3 Subject PC1 PC2 PC3

FRA1 0.70 0.14 0.04 KHA1 0.04 0.78 0.05

FRA2 0.62 0.15 0.04 KHA2 0.07 0.77 0.03

FRA3 0.64 0.14 0.05 KHA3 0.12 0.60 0.06

HUS1 0.06 0.33 0.41 LOT1 0.02 0.68 0.04

HUS2 0.07 0.45 0.32 LOT2 0.02 0.54 0.05

HUS3 0.10 0.40 0.29 LOT3 0.03 0.53 0.05

INC1 0.86 0.03 0.01 PHI1 0.24 0.41 0.16

INC2 0.61 0.08 0.08 PHI2 0.21 0.43 0.19

INC3 0.77 0.04 0.05 PHI3 0.14 0.37 0.29

ISA1 0.51 0.33 0.02 ROM1 0.86 0.04 0.01

ISA2 0.42 0.28 0.03 ROM2 0.83 0.04 0.05

ISA3 0.44 0.27 0.07 ROM3 0.73 0.06 0.08

JPL1 0.04 0.42 0.33

JPL2 0.08 0.43 0.21

JPL3 0.05 0.50 0.14

Finally, in Table 8, in the first three columns, we provide the contribution Iiν of the
variance λν of the principal component PCν, ν = 1, 2, 3, for each observation, obtained from
(6.3). Then, in the right-hand column, we give this contribution Ii of each observation to
the total variance, calculated from (6.4). Thus, e.g., we observe that the faces INC(Ii1 =
0.13, 0.09, 0.13) and ROM(Ii1 = 0.12, 0.11, 0.09) contribute the most variation to λ1. The
same faces INC(Ii = 0.07, 0.06, 0.07) closely followed by ROM(Ii = 0.06, 0.06, 0.06) con-
tribute most to the overall variation.

Table 8 - Vertices Method, Absolute Contributions of Subject to PCν and Inertia: Faces

Subject PC1 PC2 PC3 Inertia Subject PC1 PC2 PC3 Inertia

FRA1 0.07 0.02 0.01 0.04 KHA1 0.00 0.11 0.02 0.04

FRA2 0.05 0.02 0.01 0.03 KHA2 0.01 0.11 0.01 0.04

FRA3 0.06 0.02 0.01 0.04 KHA3 0.01 0.08 0.02 0.04

HUS1 0.00 0.03 0.12 0.03 LOT1 0.00 0.06 0.01 0.03

HUS2 0.01 0.06 0.11 0.04 LOT2 0.00 0.04 0.01 0.02

HUS3 0.01 0.05 0.10 0.04 LOT3 0.00 0.04 0.01 0.02

INC1 0.13 0.01 0.01 0.07 PHI1 0.01 0.03 0.04 0.02

INC2 0.09 0.02 0.05 0.06 PHI2 0.01 0.04 0.05 0.03

INC3 0.13 0.01 0.03 0.07 PHI3 0.01 0.04 0.08 0.03

ISA1 0.03 0.03 0.00 0.03 ROM1 0.12 0.01 0.01 0.06

ISA2 0.02 0.02 0.01 0.02 ROM2 0.11 0.01 0.03 0.06

ISA3 0.02 0.02 0.02 0.02 ROM3 0.09 0.01 0.04 0.06

JPL1 0.00 0.04 0.08 0.03

JPL2 0.00 0.05 0.07 0.03

JPL3 0.00 0.04 0.04 0.03

8.3 Centers Principal Components Analysis

The centers method of Section 4 when applied to the data of Table 1 produced the principal
components shown in Table 9 for ν = 1, 2, 3, obtained from (4.6)-(4.7), or (4.8)-(4.9). The
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plots against the axes PC1 and PC2 are shown in Figure 9. Again, it is immediately
apparent that a coherence between the three sequences for each person exists. The same
initial groups obtained by the vertices method emerge. However, this time when looking
at the plots on the PC2 and PC3 axes, it is the group {ROM, ISA} which splits into two
groups {ROM} and {ISA}.

Table 9 - Centers Principal Components, ν = 1, 2, 3: Faces

PC1 PC2 PC3

FRA1 [-2.969, -1.747] [0.236, 1.722] [-0.376, 1.033]

FRA2 [-2.729, -1.111] [-0.197, 1.789] [-0.372, 1.067]

FRA3 [-3.286, -0.856] [-0.532, 2.077] [-1.032, 1.301]

HUS1 [-0.374, 1.162] [0.376, 2.284] [0.772, 2.419]

HUS2 [-0.583, 1.482] [0.592, 2.975] [0.355, 2.592]

HUS3 [-0.403, 1.506] [0.461, 2.822] [0.384, 2.418]

INC1 [-4.065, -2.381] [-0.902, 1.289] [-0.905, 0.744]

INC2 [-3.909, -1.213] [-2.509, 0.933] [-0.954, 2.022]

INC3 [-4.332, -1.837] [-1.495, 1.469] [-1.115, 1.615]

ISA1 [0.881, 2.239] [-2.063, -0.477] [-0.603, 0.708]

ISA2 [0.388, 2.038] [-1.933, -0.073] [-0.688, 0.868]

ISA3 [0.444, 2.355] [-2.088, -0.112] [-0.618, 1.388]

JPL1 [-0.567, 0.888] [0.667, 2.379] [-2.068, -0.536]

JPL2 [-0.593, 1.167] [0.575, 2.764] [-2.101, -0.145]

JPL3 [-0.782, 0.916] [0.593, 2.645] [-1.805, 0.206]

KHA1 [-1.097, 0.641] [-3.507, -1.653] [-1.280, 0.368]

KHA2 [-1.429, 0.386] [-3.645, -1.505] [-0.993, 0.743]

KHA3 [-1.730, 0.468] [-3.393, -0.817] [-1.346, 0.714]

LOT1 [-0.794, 0.742] [-2.864, -0.977] [-0.874, 0.707]

LOT2 [-0.773, 0.472] [-2.205, -0.687] [-0.879, 0.376]

LOT3 [-0.928, 0.408] [-2.435, -0.778] [-0.848, 0.586]

PHI1 [0.114, 1.574] [0.722, 2.178] [-1.582, -0.030]

PHI2 [-0.270, 1.740] [0.454, 2.689] [-2.017, 0.220]

PHI3 [-0.450, 1.440] [0.356, 2.671] [-2.258, -0.168]

ROM1 [2.407, 3.838] [-1.270, 0.436] [-0.549, 0.902]

ROM2 [1.961, 4.041] [-1.394, 1.200] [-0.899, 1.491]

ROM3 [1.529, 3.978] [-1.436, 1.585] [-0.874, 1.918]

Table 10 - Relative Contributions to Centers PCν = 1, 2, 3: Faces

Subject PC1 PC2 PC3 Subject PC1 PC2 PC3

FRA1 0.74 0.13 0.01 KHA1 0.01 0.89 0.03

FRA2 0.71 0.12 0.02 KHA2 0.04 0.93 0.00

FRA3 0.83 0.12 0.00 KHA3 0.08 0.84 0.02

HUS1 0.03 0.37 0.54 LOT1 0.00 0.81 0.00

HUS2 0.04 0.56 0.38 LOT2 0.01 0.62 0.02

HUS3 0.06 0.53 0.38 LOT3 0.02 0.60 0.00

INC1 0.95 0.00 0.00 PHI1 0.18 0.52 0.16

INC2 0.75 0.07 0.03 PHI2 0.13 0.59 0.19

INC3 0.94 0.00 0.01 PHI3 0.06 0.51 0.33

ISA1 0.55 0.37 0.00 ROM1 0.89 0.02 0.00

ISA2 0.46 0.31 0.00 ROM2 0.94 0.00 0.01

ISA3 0.52 0.32 0.04 ROM3 0.88 0.00 0.03

JPL1 0.01 0.52 0.38

JPL2 0.02 0.56 0.26

JPL3 0.01 0.67 0.16
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We can calculate the relative contribution of each hypercube to each principal component
through (6.2). The resulting values are given in Table 10. From these we observe that the
three INC faces along with those of FRA and ROM all contribute strongly to the first
principal component PC1, while those for KHA contribute most to the second principal
component, followed by the faces of LOT and PHI and then HUS. These contributions and
their conclusions are comparable to those obtained using the vertices principal component
method.

The eigenvalues, percents of total variation and cumulative variation percents, for each
principal component, are displayed in Table 11. The first two principal components account
for 81% of the total variation (and can be contrasted with the 73% for the vertices method).

Table 11 - Centers PC Inertia: Faces

PC Eigenvalue % Inertia Cumulative Inertia

PC1 2.788 46.5 46.5

PC2 2.044 34.1 80.6

PC3 0.547 9.1 89.7

PC4 0.324 5.4 95.1

PC5 0.234 3.9 99.9

PC6 0.062 1.0 100

Table 12 - Centers Method, Correlations Cjν between Xj and PCν : Faces

Xj PC1 PC2 PC3

AD 0.640 0.648 0.174

BC 0.496 0.736 -0.140

AH 0.862 -0.164 -0.418

DH 0.910 0.130 0.205

EH -0.559 0.655 -0.464

GH -0.500 0.780 0.255

Table 12 shows the correlations between the principal components for ν = 1, 2, 3 and each
of the Xj , j = 1, . . . , 6, variables. Again, we identify the overall size variables X4 = DH and
X3 = AH as the two main characterizing variables relative to the first principal component
with correlations 0.910 and 0.862, respectively, plus that of the eye-span X1 = AD with a
correlation of 0.640 as a contributing identifier. Relative to the second principal component,
we again have the other three variables X6 and X2 (in that order) as the major identifying
variables, with X5 = EH also part of the descriptor. However, unlike the vertices analysis,
this time it is not unreasonable to add X1 = AD along with X5 as additional descriptors.

Further analyses such as those conducted for the vertices method can also be performed.
There are some internal differences; e.g., the relative contributions Ctr(Hi, PCν) of the sub-
jects to the principal components are higher for the face INC(Ii1 = 0.91, 0.75, 0.94) than
those obtained by the vertices method and some are lower such as JPL(Ii1 = 0.01, 0.02, 0.00).
See Chouakria (1998) for details.

However, as before, the analyses’ results allow the investigator to isolate those charac-
teristics (variables) which help identify classes of faces.
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8.4 Classical Surrogates

In the absence of any methodology for interval-valued data, it would be necessary to adopt
a classical surrogate for the symbolic data; three are considered. The results are then
compared with the symbolic analysis, from which it becomes evident that the classical
analysis is unable to capture all the information contained in the original symbolic data.

One surrogate is the midpoint value obtained by replacing the symbolic interval x = [a, b]
by its classical midpoint z = (a+ b)/2. A standard principal component analysis can then
be conducted on the resulting m × p (= 27 × 6) classical dataset. A plot of the first and
second principal components for these data is shown in Figure 10. One limiting factor of
this surrogate is that it is impossible to retain any measure of the internal variation; e.g., the
two intervals x1 = [155, 157] and x∗1 = [150, 163] both give the same surrogate z1 = 156. It is
not possible for this classical analysis to capture the difference between these two intervals.

Therefore, a possible way to overcome this limitation is to introduce two surrogate
variables for each interval variable, viz., the interval endpoints. That is, the symbolic
interval variable x = [a, b] is replaced by z1 = a and z2 = b. Then, a standard principal
component analysis can be performed on the resulting m × 2p (= 27 × 12 here) classical
dataset. Figure 11 shows the plot of the first and second principal component analysis that
ensues.

Except for the scale of the principal components, these two surrogates produce remark-
ably similar results. As for the symbolic analysis, the coherency of the three observations
relating to each of the nine faces is evident. Four groups emerge, viz., those containing the
faces of {PHI, JPL, HUS}, {FRA, INC}, {ISA, HA, LOT}, and {ROM}, though it can be
argued that the second group should be broken into the individual faces {FRA} and {INC},
and the third group into {KHA, LOT} and {ISA}.

Rather than the endpoints, another possible way to accommodate intervals of differing
lengths is to replace the interval variable by two variables, viz., the midpoint and range
variables, such as used by Giordani and Kiers (2006) in their analysis of fuzzy data. Thus,
the symbolic interval x = [a, b] is replaced by z1 = (a + b)/2 and z2 = (b − a). Then, as
for the previous two surrogates, a standard classical analysis is conducted on the resulting
m× 2p (= 27× 12) classical dataset. The plot of the first and second principal components
is shown in Figure 12.

These three surrogate analyses are compared through Figures 10-12. While both Figure
10 and Figure 11 retain the coherences for the sets of the same three faces already observed
for the symbolic analysis, the range surrogate in general loses that coherence (though it
can be observed in some cases, e.g., faces LOT, and KHA albeit to a lesser extent, i.e., the
coherence is not as strong). This is particularly evident when comparing Figure 10 for the
midpoints with Figure 12 when ranges are also used along with the midpoint variable. It
is also clear from Figure 12 that clusters are mixtures of faces, e.g., faces {INC1, INC3,
FRA3} could be one cluster.
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8.5 Comparison of Symbolic and Surrogate Analyses

For comparison purposes, consider the vertices symbolic principal component analysis and
the midpoint surrogate analysis; similar conclusions pertain when the centers symbolic
and endpoints surrogate analyses are included. However, given the fact that the ranges
surrogates are inconclusive and inconsistent, no further comparison of those surrogates will
be made.

The major difference between these analyses is that the symbolic results reflect all the
variations between the observations including the internal variations, whereas the classical
results do not. The classical values plotted in Figures 10 are points in space, while the
symbolic values are hypercubes, here rectangles for the s = 2 principal components plotted
in Figure 7. These rectangles have smaller (or larger) dimensions whenever the original
data are smaller (or larger) intervals. [This point will be discussed further in Section 9.]
Superimposing rectangles express a similarity between the corresponding face prototypes,
and the size of the rectangle conveys the amount of variability through the corresponding
27 acquired face images. That is, the principal components themselves reflect a measure
of the internal variations along with a measure of the variation between observations. The
classical analysis can only detect measures of the between observation variations, and as
such do not reflect all the variations in the data. Notice that even the endpoint surrogate
analysis fails to identify these internal variations in the final principal components (compare
Figure 10 and Figure 11).

For these data, the two analyses produce slightly different groups of faces (though argu-
ments can be made for the same groupings - but see the bats analysis below where differences
are more pronounced). In particular, the classical analysis suggests the ISA face belongs in
the same group as the KHA and LOT faces, whereas the symbolic analysis suggests the ISA
face is grouped with the ROM face. Certainly, in Figure 7, this ISA face has its principal
component region overlapping those of ROM and largely disjoint from the LOT and KHA
regions. This distinction becomes more pronounced when α = 0.2 (see Figure 8), where it
is more obvious that the ISA and ROM faces belong to the same group. Notice too that,
from Figure 8, the ROM3 face is in closer proximity to the {HUS, JPL, PHI} group (at least
relative to the second principal component) than to its namesake group {ROM1, ROM2,
ISA}. It also follows from Figure 8 and Tables 6 and 7 that the faces LOT express their
internal variation almost entirely through the variables AD, BC, GH, and EH (i.e., on the
eyes and the mouth) and not at all on AH and DH (i.e., the distances from the eyes to
the mouth); while in contrast the faces INC (and also ROM) are such that their internal
variations are characterized by the eyes to mouth distances AH and DH and not at all by
the eyes and mouth variables (AD, BC, GH, and EH). Such insight and information can
not be educed from the classical analysis. The types of clarifications that can emerge for
α > 0 in a symbolic analysis are not possible in a classical approach. These differences
in conclusions are a direct result of the fact that symbolic analyses are able to incorporate
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internal variations in the data into the methodology, thus enhancing the interpretations and
expanding the knowledge gained.

9 Bats Dataset

9.1 The Data

The bats dataset displayed in Table 13 is an example of naturally occurring interval-valued
data. There are four random variables, X1 = head size, X2 = tail length, X3 = height,
X4 = forearm length; and there are m = 21 species (PIPC, ... , MGES, as shown; the
species identifier is an abbreviation of the longer biological latin descriptor, e.g., ’BARB’ is
the species Barbastella barbastellus). A scientific question relates to whether or not certain
species are alike. Since the data are naturally intervals, a symbolic principal component is
required. We limit our symbolic analysis to the vertices method, with equal weights ((2.8)
and 2.12)). Taking the interval midpoints as classical surrogates in a standard analysis will
also be implemented, and shown to be quite inadequate in explaining the inherent variations
in the data.

Table 13 - Bats Species Dataset

i Species Head Tail Height Forearm

1 PIPC [33, 52] [26, 33] [4, 7] [27, 32]

2 PRH [35, 43] [24, 30] [8, 11] [34, 41]

3 MOUS [38, 50] [30, 40] [7, 8] [32, 37]

4 PIPS [43, 48] [34, 39] [6, 7] [31, 38]

5 PIPN [44, 48] [34, 44] [7, 8] [31, 36]

6 MDAUB [41, 51] [30, 39] [8, 11] [33, 41]

7 MNAT [42, 50] [32, 43] [8, 9] [36, 42]

8 MDEC [40, 45] [39, 44] [9, 9] [36, 42]

9 MGP [45, 53] [35, 38] [10, 12] [39, 44]

10 OCOM [41, 51] [34, 50] [9, 10] [34, 50]

11 MBEC [46, 53] [34, 44] [9, 11] [39, 44]

12 SBOR [48, 54] [38, 47] [9, 11] [37, 42]

13 BARB [44, 58] [41, 54] [6, 8] [35, 41]

14 OGRIS [47, 53] [43, 53] [7, 9] [37, 41]

15 SBIC [50, 63] [40, 45] [8, 10] [40, 47]

16 FCHEV [50, 69] [30, 43] [11, 13] [51, 61]

17 MSCH [52, 60] [50, 60] [10, 11] [42, 48]

18 SCOM [62, 80] [46, 57] [9, 12] [48, 56]

19 NOCT [69, 82] [41, 59] [10, 12] [45, 55]

20 GMUR [65, 80] [48, 60] [12, 16] [55, 68]

21 MGES [82, 87] [46, 57] [11, 12] [58, 63]

9.2 Vertices Principal Components

By applying the vertices principal component analysis of Section 3, we obtain the first and
second principal components from (3.4) - (3.5), as shown in Table 14 for each observation.
These are plotted in Figure 13. Also shown in Table 14 are the principal components
obtained from (6.6), for α = 0.4, and from (3.4) - (3.5), as well as the number of vertices
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(from a possible 24 = 16 vertices) which contributed a level of α or more to the principal
components. These latter principal components are plotted in Figure 14. Seven groups
emerge. The first group G1 = {NOCT, MGES, GMUR} is characterized by its large head
and forearm measurements. The species in group G2 = {MSCH, SCOM} are characterized
by their large tail; their opposite is group G3 = {MDAUB, PRH} with small tails. The
set G4 = {PIPC, MOUS, PIPS} has a small head size and small forearm lengths. These
contrast with G5 = {BARB, OGRIS} who are characterized by having small heights (as
do the species in G4) but whose other variables have larger measurements (than do those
in G4). The species G6 = {FCHEV} clearly separates itself out (by virtue of its being the
largest species on height). Finally, group G7 = {PIPN, MNAT, MDEC, MGP, OCOM,
MBEC, SBOR, SBIC} is clustered in the middle of these plots and is characterized by
medium sized heads, forearms, tail, and height. When α = 0.4, it becomes clear that G1

and G2 are really two distinct groups, rather than perhaps one as suggested from the plots
with α = 0, and also that these two groups together are quite distinct from the core middle
grouping represented by the groups G3, G4 and G7. The separation is even more apparent
when α = 0.5 (see Figure 15). Also, from Figure 15, it is more evident that the group G3 is
a separate group from the central core of species. It also suggests that the species {MGP}
is a separate group characterized by there being less variability on sizes within the species
itself. Thus, by exploiting the strength of the alpha term, greater clarity can be attained
as to the most appropriate clusters.

Table 14 - Vertices Principal Components, ν = 1, 2, α = 0, 0.4: Bats

α = 0 α = 0.4

Species PC1 PC2 PC1 PC2 # of Vertices

1 PIPC [-3.637, -1.612] [-0.635, 1.032] [-3.637, -1.612] 0.032 16 0

2 PRH [-2.371, -0.711] [-2.037, -0.511] [-2.371, -1.362] [-2.037, -1.284] 10 7

3 MOUS [-2.307, -0.855] [-0.633, 0.701] [-2.307, -0.855] 0.077 16 0

4 PIPS [-2.199, -1.139] [-0.017, 0.881] [-2.199, -1.139] 0.075 16 0

5 PIPN [-1.942, -0.807] [-0.216, 1.041] [-1.942, -0.807] [0.917, 0.917] 16 1

6 MDAUB [-1.912, 0.025] [-1.477, 0.344] [-1.912, -0.626] [-1.477, -0.627] 8 5

7 MNAT [-1.603, -0.204] [-0.809, 0.595] [-1.603, -0.557] [-0.731, -.447] 13 2

8 MDEC [-1.140, -0.356] [-0.243, 0.373] [-1.140, -0.589] 0.057 12 0

9 MGP [-0.734, 0.451] [-1.352, -0.384] [-0.734, -0.595] [-1.352, -0.508] 2 14

10 OCOM [-1.451, 0.848] [-1.107, 0.982] [-1.451, 0.848] [-1.107, 0.982] 5 4

11 MBEC [-0.958, 0.513] [-1.168, 0.376] [-0.958, 0.513] [-1.168, 0.376] 5 7

12 SBOR [-0.810, 0.575] [-0.764, 0.686] [-0.810, -0.516] [-0.764, 0.686] 3 6

13 BARB [-1.599, 0.349] [0.246, 2.133] [-1.599, -0.811] [1.334, 2.133] 4 8

14 OGRIS [-1.052, 0.321] [0.185, 1.694] [-1.052, -0.382] [0.243, 1.694] 5 11

15 SBIC [-0.678, 0.916] [-0.444, 0.789] [-0.678, 0.916] [-0.444, 0.789] 3 3

16 FCHEV [0.155, 2.536] [-2.400, -0.366] [0.759, 2.536] [-2.400, -1.453] 8 7

17 MSCH [0.418, 1.770] [0.130, 1.450] [0.735, 1.770] [1.373, 1.450] 10 2

18 SCOM [0.765, 3.112] [-0.564, 1.502] [0.764, 3.112] [1.323, 1.323] 16 1

19 NOCT [0.851, 3.226] [-0.890, 1.505] [0.851, 3.226] 0.115 15 0

20 GMUR [2.040, 4.826] [-1.696, 0.806] [2.040, 4.826] 0.052 16 0

21 MGES [2.581, 3.802] [-0.544, 0.806] [2.581, 3.802] 0.021 16 0

Again, the vertices principal components reflect the relative sizes of the original interval-
valued data. Figure 16 isolates the first two principal components for the four species
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BARB, OGRIS, GMUR, and MGES, for α = 0. Clearly, the species OGRIS has a principal
component hypercube that is smaller in size than is that for the species BARB. This reflects
the shorter interval lengths for observed values for OGRIS over those for BARB. Indeed,
these data are such that the actual data hypercube for OGRIS is almost (but not entirely)
contained within that for BARB. The same reflections hold for the MGES and GMUR
species.

Table 15 - Vertices PC Inertia: Bats

PCν Eigenvalue λν % Inertia Cumulative Inertia

PC1 2.708 67.7 67.7

PC2 0.687 17.2 84.9

PC3 0.392 9.8 94.7

PC4 0.213 5.3 100

The variation explained by each principal component along with the cummulative per-
centage of the total variation and the respective eigenvalues λν , ν = 1, ..., 4, are shown in
Table 15. We see that 67.7% of the total variation is explained by the first vertices principal
component and 84.9% is explained by the first and second principal components. Table 16
provides the correlations Cυ between the first three vertices principal components PCν,
ν = 1, 2, 3, and the random variables X,  = 1, ..., 4, obtained from (3.8). These results
reveal that the head and forearm variables are strongly correlated with the first principal
component. For the second principal component, the tail (at 0.643) has the highest corre-
lation value, and the height variable is moderately negatively correlated (with a value of
-0.474), while the head and tail variables are weakly correlated. Combining this result with
the visualizations of Figure 14 (and Figure 15), we observe, e.g., that the species NOCT,
MGES, and GMUR of group G1 which are identified primarily by their first principal com-
ponent are equivalently identified by variations in their head and forearm measurements,
but not on their tail or height; while in contrast the group G5 species BARB and OGRIS are
distinguished more by their second principal component, i.e., by their tail and moderately
by their height measurements with the contribution of their head and forearm low.

Table 16 - Vertices Method, Correlations Cjν between Xj and PCν : Bats

Xj PC1 PC2 PC3

Head 0.8699 0.1067 -0.4234

Tail 0.7097 0.6433 0.2869

Height 0.7926 -0.4739 0.3415

Forearm 0.9053 -0.1919 -0.1170

9.3 Classical Midpoint Surrogates

When the interval midpoints are used as a classical surrogate value for the symbolic in-
terval values, a plot of the resulting first and second principal components produces that
given in Figure 17. There are five or six distinct groups, viz., G′1 = {SCOM, NOCT,
MGES, GMUR}, G′2 = {MNAT, MDEC, SBOR, SBIC, OCOM}, G′3 = {MBEC, PRH,
MDAUB, MGP}, G′4 = {PIPC, MOUS, PIPS, PIPN}, G′5 = {BARB, OGRIS, MSCH}, G′6
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= {FCHEV}. Comparable results hold when the interval endpoints are used as classical
surrogates. Possibly the groups G′2 and G′4 can be re-combined to give a single core group,
except for the species PIPC which forms a group on its own.

9.4 Comparison of Symbolic and Classical Analyses

An immediate observation is that the groupings identified by the two methods are different
in some aspects. An obvious difference relates to the species SCOM. The classical analysis
has this species well contained in group G′1. On the other hand, the vertices symbolic
analysis identifies this species as quite distinct from the other species of G′1 and instead
identifies it as part of the symbolic group G2. The species MSCH is clearly identified as
part of the symbolic grouping G2, especially when α = 0.4. This contrasts with the classical
analysis which suggests this species belongs possibly to the group with the species BARB
and OGRIS, but is otherwise ambivalent as to whether it belongs here in G′5 or as its own
unique group. Further, both the species SBIC and MGP are firmly embedded in the classical
groupings (G′2 and G′3, repectively), whereas the symbolic analysis shows these species to
be somewhat distinct from the other species in those groupings; see, especially Figure 14
when α = 0.5.

These differences occur because the classical analysis is based on a single point, the
interval midpoint, and not the entire interval as in the symbolic analysis. That is, the
rest of the data values other than the midpoint (or the two endpoints for that classical
surrogate) are ignored in the classical analysis; or, equivalently, the interval variations used
in the symbolic analysis are ignored.

This utilization of the data information from the interval lengths also reveals itself fur-
ther in the following observation. Figure 16, for the four bats BARB, OGRIS, GMUR,
and MGES, also display the plot of the classical principal components (indicated by the
asterisk ∗). As noted for the faces dataset, these classical values, as points in s (=2 here)
dimensional principal component space cannot reflect the relative sizes of the p (=4 here)
dimensional observation hypercube. Another observation is that the classical principal com-
ponent point is not at the centroid of the symbolic principal component hypercube. This
feature is because the observed values for different species have different interval lengths.
The symbolic analysis utilizes all the variations collectively. If all observations had equal in-
terval lengths, then the classical principal component point would coincide with the centroid
of the symbolic principal component hypercube.

10 Conclusion

Symbolic data emerge in numerous ways in contemporary datasets. This work has focused
on expanding the principal component methodology for classical data to the important
new class of interval-valued data. The centers method is essentially an analysis between
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the observations while the vertices method is an analysis using both between and within
observations variations. As illustrated herein, analyses of classical surrogates produce results
that fail to capture all the variation inherent to the data.

Further, in contrast to previous contributions, the present work develops the concept
of vertex contributions to the principal components, a concept not possible in a classical
analysis. In addition, the present paper permits hypercubes to be of q < p dimension,
as can happen when a given variable assumes a classical rather than an interval value.
Furthermore, we introduce general weight functions not considered elsewhere.

An expanded discussion of the present material can be found in Billard et al. (2007).
That technical report also includes a third dataset which deals with a panel of m = 4 judges
who rate the quality of p = 6 wines. A judge’s rating represents a measure of uncertainty
with shorter (longer) interval ratings reflecting a higher (lower) level of surety of a wine’s
quality. Also, through this example, it is shown that, while dimensionality problems persist
for classical and centers principal component analyses when m < p, for the vertices method
these dimensionality problems only occur when the number of vertices n < p. If there are
no trivial intervals in the dataset, this becomes n = m2p < p. A pedagogical treatment of
some of the basics in Billard and Diday (2006) contains additional examples.

Given the inevitable continued growth in the size of datasets, it is important to develop
methodologies for other classes of symbolic data such as multi-valued and histogram-valued
data. There is also a need to develop theoretical underpinings to all these methods. These
remain as outstanding problems for future researchers.

Finally, algorithms for executing the symbolic analyses for interval data are available on
the SODAS1.4 webpage (http://www.ceremade.dauphine.fr/touati/sodaspagegarde.htm).
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Figure 1 – Types of Hypercubes: Clouds of Vertices 
Figure 1 - Types of Hypercubes: Clouds of Vertices
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Figure 2 – Projection Hypercube Hu to Principal Component (ν = 1, 2, 3) Axes 

 

Figure 2 - Projection Hypercube Hu to Principal Component (ν = 1, 2, 3) Axes
(pciν ≡ yaiν, pciν ≡ ybiν)
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Figure 3 - Principal Component Envelope, α = 0, based on Relative
Contributions of Vertices to PCν, ν = 1, 2
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Figure 4 - Principal Component Envelope, α = 0.2, based on Relative
Contributions of Vertices to PCν, ν = 1, 2
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Figure 5 - Constrained Hypercubes: ”Holes” Ci inside Data H i
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Figure 7 − Vertices Principal Components

Figure 7 - Faces: Vertices Principal Components PCν, ν = 1, 2
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Figure 8 − Vertices Principal Components: alpha = 0.2

Figure 8 - Faces: Vertices Principal Components PCν, ν = 1, 2: α = 0.2
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Figure 9 − Centers Principal Components

Figure 9 - Faces: Centers Principal Components PCν, ν = 1, 2
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Figure 10 - Faces: Classical Principal Components PCν, ν = 1, 2 - Midpoints
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Figure 11 - Faces: Classical Principal Components PCν, ν = 1, 2 - Endpoints
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Figure 12 - Faces: Classical Principal Components PCν, ν = 1, 2 - Ranges and
Midpoints

49



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 2 4

−
2

−
1

0
1

2

First Principal Component

S
ec

on
d 

P
rin

ci
pa

l C
om

po
ne

nt

PIPC

PRH

MOUS

PIPS

PIPN

MDAUB

MNAT

MDEC

MGP

OCOM

MBEC

SBOR

BARB

OGRIS

SBIC

FCHEV

MSCH
SCOM

NOCT

GMUR

MGES

Figure 12 − Bats: Vertices Principal Components

Figure 13 - Bats: Vertices Principal Components PCν, ν = 1, 2
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Figure 13 − Bats: Vertices Principal Components, alpha=0.4

Figure 14 - Bats: Vertices Principal Components PCν, ν = 1, 2 - α = 0.4
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Figure 13 − Bats: Vertices Principal Components, alpha=0.5Figure 15 - Bats: Vertices Principal Components PCν, ν = 1, 2 - α = 0.5

52



−1 0 1 2 3 4 5

−
1

0
1

2

First Principal Component

S
ec

on
d 

P
rin

ci
pa

l C
om

po
ne

nt

Figure 15 − Bats BARB,OGRIS,GMUR,MGES: Principal Components

BARB

OGRIS

GMUR

MGES

Figure 16 - Bats BARB, OGRIS, GMUR, MGES: Principal Components PCν,
ν = 1, 2
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Figure 17 - Bats: Classical Principal Component PCν, ν = 1, 2 - Midpoints
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