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Abstract

Concentrated cell suspensions exhibit different mechanical behavior depending on the me-
chanical stress or deformation they undergo. They have a mixed rheological nature: cells
behave elastically or viscoelastically, they can adhere to each other whereas the carrying fluid
is usually Newtonian. We report here on a new elasto–visco–plastic model which is able to
describe the mechanical properties of a concentrated cell suspension or aggregate. It is based
on the idea that the rearrangement of adhesion bonds during the deformation of the aggre-
gate is related to the existence of a yield stress in the macroscopic constitutive equation. We
compare the predictions of this new model with five experimental tests: steady shear rate,
oscillatory shearing tests, stress relaxation, elastic recovery after steady prescribed deforma-
tion, and uniaxial compression tests. All of the predictions of the model are shown to agree
with these experiments.

1 Introduction

Cell aggregates or multicellular systems appear in several biological systems: embryo development
[29, 28, 26, 39, 24], blood flow, hydra aggregates motion, dictyostelium slugs crawling [34, 33] and
they are of considerable interest in tumor growth [1, 2, 15, 16, 42]. Their mechanical behavior
is often assimilated to soft biological tissues, usually corresponding to viscoelastic materials or to
non–Newtonian fluids [17].

On the other hand, it is known that the intrinsic properties of the base components - cells and
collagen - as well as their concentration can influence the rheological properties of such aggregates
[41]. The best example in this respect is provided by the early works of Chien on blood cell sus-
pensions [8, 9]. He found that the mechanical properties of such suspensions are affected not only
by the deformation of individual cells but also by the possible aggregation among cells. Macro-
scopically, cell aggregation gives rise to a yield stress, i.e. a characteristic tension that separates
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the flow and solid regimes. Relationships between yield stress and individual cell properties, such
as cell interfacial energy or their elastic moduli, has been provided relating the micro- and macro-
properties by Snabre [37, 38]. Using this approach, Iordan et al. [20] were able to determine
typical intrinsic properties for concentrated suspensions of Chinese Hamster Ovary cells (CHO).

Other works deal with different types of cell aggregates [13, 11, 12, 14, 42], and similar be-
haviors are observed. Their interpretation of the experimental data is usually given in terms of a
macroscopic mechanism, i.e. the surface tension of the multicellular spheroid. Different values of
the relevant parameter can be provided from studies dealing with heart, limb bud, liver, neural
retina embryos. They show that cell aggregates can reorganize themselves like liquids with surface
tension, as long as specific criteria are met for cell ordering [27, 5]. On the other hand, a yield
stress might play a crucial role. In the typical compression experiment of Forgacs et al. [11], a fixed
deformation is applied to the cell aggregate. The internal stress then relaxes until an asymptotic
value is reached. This phenomenon could be explained using relaxation combined with a yield
stress, as observed with other types of yield stress fluids of rheological interest [20, 32]. Therefore,
models of viscoelastic behaviors coupled with a yield stress, although not yet much investigated,
could be helpful in such cases [2, 35, 36]. Such models are called elasto-visco-plastic and have been
applied in the past to various complex materials [19].

The purpose of this work is to compare the predictions of a visco-elasto-plastic model [2] with
simple rheological experiments such as shear or compression tests. The model is illustrated in
Section 2 and a linearized version is then discussed in Section 3. Steady shear is considered in
Section 4.1 where the results are compared with relevant data [20], stress relaxation and oscillatory
shear tests are discussed in Sections 4.2 and 4.3, elastic recovery after shear is illustrated in Section
4.4. In the last section, compression experiments similar to those performed in [11, 13, 14, 42] are
re-considered in the framework of this new model.

2 Evolving Natural Configuration and Constitutive Model
for Cell Aggregates

The present paper develops according to the arguments illustrated in [2], with one assumption
that simplifies the algebraic aspects of the theory: as the time scale for cell mitosis and apoptosis
is much larger then the typical time scale of mechanical experiments, here macroscopic growth is
neglected; the focus is then on the plastic and elastic deformation and on the comparison with
experiments known in the literature.

We will model cell suspensions and aggregates as continuum media. In fact, the cellular
aggregates used in [11, 13, 14, 42] have a diameter ranging between 200 and 600 µm, which means
a number of cells between ten and two hundred thousand. For the experiments by Iordan et al
[20], the distance between the plates is 400 µm and the radius of the rheometer is 10 mm, so for
a 40% suspension there are more than ten million cells. We also consider the ensemble of cells as
a deformable porous material filled of physiological liquid. The volume ratio of the solid phase
is denoted by φ. We assume that at equilibrium the inter–cellular fluid pressure is hydrostatic
so that it plays no role in the dynamics. We therefore restrict to consider the dependence of the
cellular volume fraction in the aggregate tension field.

A useful paradigm for elastoplastic deformations is the multiplicative decomposition of the
deformation gradient F [22, 23]. This is a mapping from the tangent space related to the initial
(reference) configuration K0 onto the tangent space related to the current configuration K and
indicates how the body is deforming locally going from K0 to K. A virtual intermediate configu-
ration is then introduced, imagining that each point of the body is allowed to relieve its state of
stress while relaxing the continuity requirement, i.e. the integrity of the body. It then relaxes to a
stress-free configuration. The atlas of these pointwise configurations forms what we define natural
configuration with respect to K and denote by Kn.

The relaxed state Kn can differ from K0 because, during the deformation, cells in the configu-
ration Kn can undergo internal re-organization, which implies re-arranging of the adhesion links
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among the cells. We identify the deformation without cell re-organization with the tensor Fn,
describing how the body is deforming locally while going from the natural configuration Kn to K.
In this particular case, we will assume that for any given point the volume ratio in the natural
configuration Kn and in the original reference configuration K0 are the same.

According to the two-step process outlined above, the deformation gradient is then split as

F = FnFp. (2.1)

In the following we will also use the following tensors

Bn = FnFTn , L = ḞF−1 , Lp = ḞpF−1
p , and Dp =

1
2

(Lp + LTp ) . (2.2)

where Bn is the left Cauchy-Green tensor related to the recoverable part of the deformation, while
giving Lp, or Dp will mean giving through the evolution of Fp information on the evolution of the
natural configuration due to the internal re-organization of the cell and therefore on the irreversible
part of the deformation.

Our aim is to include elasto-visco-plastic effects in the mechanics of cell aggregates detailing
the constitutive equation for the stress tensor. The starting point of the theory is the following
experimental evidence, that holds when a cell aggregate undergoes compression

1. for a moderate amount of stress, the cell aggregate deforms elastically;

2. above a yield value the cell aggregate undergoes internal re-organization which is modelled
at a macroscopic level as a visco-plastic deformation.

The work needed to break a single cell-to-cell bond is measurable; the threshold of the onset
of cell re-organization is proportional to the number of adhesion bonds or, in terms of surface
density, it is proportional to the area of the cell membranes in contact times the bond energy [4],
so that it depends on the number of cells per unit volume. Figure 1 is a photograph of a CHO cell
suspension (Chinese Hamster Ovary, epithelial cell line, 52% concentration in culture medium).
It illustrates the typical configuration of a cell aggregate: cells are packed, they touch each other
and deform elastically, but they may shear and re-organize when a large enough stress is applied.
We denote by τ(φ) the minimum tension that induces the above shearing behavior and we call it
the yield stress. In the following we will compare it with a frame invariant measure of the stress
(φT) of the cellular constituent, where T is the Cauchy stress tensor. It is worth to remark that
the volume ratio is a macroscopic measure originated from an average and a small volume ratio
can correspond to dispersed single cells as well as clusterized ensembles. In the former case, the
yield stress is expected to be very low or null. In the second case, according to the theory of the
dynamics of colloidal particles and flocculated suspensions, the yield stress should increase with
the second or the third power of the volume ratio [7, 38, 8]. Iordan et al. [20] measured τ(φ) to
be proportional to φ8.4. They also find the dependence of the shear elastic modulus to vary like
φ11.6, not very far from other recent results for weakly aggregated suspensions [32]. We expect
that for cell aggregates like those used in [11, 13, 14, 42] the same mechanism holds, but of course
the yield stress is much higher both because adhesion bonds have the necessary time to strengthen
and because concentrations are higher in these works, giving rise to larger contact areas between
cells.

On this basis, the following elastic-type constitutive equation can be suggested in the elastic
regime

T = T̂(Bn) , if f(φT) ≤ τ(φ) , (2.3)

where f is a suitable measure of the stress. Basov and Shelukhin [3] suggest to use

t(n) = φ[Tn− (n · Tn)n] , (2.4)

that represents the tangential stress vector relative to the surface identified by the normal n. In
particular, we will use

f(φT) = max
|n|=1

|t(n)| , (2.5)
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Figure 1: Photograph of a CHO cell suspension (epithelial cell type) at concentration φ = 0.52.

representing the maximum shear stress magnitude occurring in the plane identified by the eigen-
vector corresponding to the maximum of |t(n)|. It can be proved (see, for instance, [25]) that f
is given by half of the difference between the maximum and the minimum eigenvalue of φT. Also
observe that f(T) = f(T′) where T′ = T− 1

3 (trT)I.
Now we assume that when the tension overcomes the yield stress in terms of the stipulated

measure (2.11), the energy is no longer elastically stored. The extra energy is spent in cell un-
binding at the microscopic scale, i.e. material rearrangement at the macroscopic scale. Cells flow
in mutual direction, dissipating energy, and determining an evolution of the natural configuration.
Such a pictorial description is put into formal terms by the following constitutive equation[

1−
(

τ(φ)
f(φT′)

)α]
(φT′) = 2η(φ)FnDpF−1

n , if f(φT′) > τ(φ) , (2.6)

where T′ operates on the current configuration and, for the sake of compatibility, Dp is pulled back
using Fn. As we shall see in Section 4, the exponent α ∈ [0, 1] determines the viscous behavior at
high shear rates. It may be considered as an extra adjustable parameter necessary for obtaining
better predictions like it is done in other constitutive equations for viscoelasticity. Here this is
equivalent to having a new relaxation time which depends on α. This idea is already present
in previous models (e.g., White-Metzner [6]). The idea is useful for predicting a shear-thinning
behavior, which is not always the case (Oldroyd-B). This is precisely what we obtain here when α
is varied: the shear thinning behavior (at large or moderate shear rates) is obtained and depends
on α. Therefore α is similar to the index obtained for power law fluids, an index known to be
related to the morphology of sub-structures formed by basic units (polymers, particules, fibers,
cells, etc.) under flow. Unfortunately, we do not have any other data using different cell types like
red blood cells with controlled mechanical properties. This is of course an interesting idea which
deserves further work.

We can merge the above equation to the condition that there is no evolution of the natural
configuration when and where the shear stress is smaller than the yield stress by writing

FnDpF−1
n =

1
2η̃

[
1− 1

f̃(T′)

]
+

T′ , (2.7)

where [·]+ stands for the positive part of the argument, η̃ = η(φ)/φ, and f̃(T′) = [f(φT′)/τ(φ)]α.
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Rewriting the right hand side of Equation (2.7) in terms of Fp using the relation (2.2), it should
clearly be understood that it is an evolution equation for the relaxed configuration. The switching
of the positive part governed by the yield stress τ distinguishes between the elastic reversible
behavior and the viscous irreversible behavior of cell aggregates.

In the following, we we assume that the elastic response of the cellular phase obeys a neo-
Hookean law,

T = µBn. (2.8)

A neo-Hookean material is incompressible in bulk and therefore a scalar unknown field (the
pressure) is needed the accomodate the constraint det Bn = 1 should appear in (2.8) in a one–
component framework. However, a suspension or a cell aggregate are actually a mixture of in-
compressible components (cells and liquid) that can have different volumetric ratios the constrain
being the saturation of the mixture. This constrain calls for an unknown scalar to be determined,
the pressure of the mixture, (see Section 4.5).

In this case, Fp evolves according to

Ḟp =
µ

η̃

[
1− 1

µf̃
(
Bn − 1

3 (trBn)I
)]

+

F−1
n

(
Bn −

1
3

(trBn)I
)

F . (2.9)

Eq. (2.9) can be phenomenologically explained in the following way: if the body undergoes a
deformation corresponding to a stress below the yield stress, then the square parenthesis vanishes
and Fp does not change, i.e., the natural configuration does not evolve and all the energy is stored
elastically. If the measure of tension f takes a value larger than the yield stress, then the reference
configuration changes to release the stress in excess, until the yield condition defined by f is
reached again. The ratio η̃/µ gives an indication of the characteristic time needed to relax the
internal stress through the re-organization of cells and to return the yield condition.

In order to merge Eq.(2.7) and Eq.(2.8) we derive

T′ = µ

(
Bn −

1
3

trBnI
)
, (2.10)

with respect to time. As shown in the Appendix, in a finite strain context one admissible time
derivative is

Ḃn = LBn + BnLT − 2FnDpFTn , (2.11)

and threfore

Ṫ′ = µ

(
LBn + BnLT − 2FnDpFTn −

1
3

tr(LBn + BnLT − 2FnDpFTn )I
)
. (2.12)

Using (2.7) to eliminate Dp, one then has

Ṫ′ +
µ

η̃

[
1− 1

f̃(T′)

]
+

(
T′Bn −

1
3

tr(T′Bn)I
)

= µ

[
LBn + BnLT − 1

3
tr(LBn + BnLT )I

]
, (2.13)

which can be written in terms of upper convected derivative

DM
Dt

= Ṁ− LM−MLT , (2.14)

as
DT′

Dt
+

1
λ

[
1− 1

f̃(T′)

]
+

(
T′Bn −

1
3

tr(T′Bn)I
)

=
2
3
µ [tr(Bn)D− tr(BnD)I] , (2.15)

where λ = η̃
µ will be called here the plastic rearrangement time. Notice that (2.13) and (2.15)

do not depend on Fp, but only on quantities related to the deformation of the body and to the
recoverable part of the deformation.
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3 Small Deformations from the Evolving Natural Configu-
ration

In what follows we assume that the deformation from the natural configuration is small. This
assumption applies depending on the value of the yield stress: it has to be small enough so that
the condition |Bn · I − 3| � 1 is always satisfied during the motion. The experiments by Iordan
et al. [20] give an indication of the order of magnitude of the yield stress. In this regime of
small strain linear elasticity applies. Notice that there is no smallness assumption on F, that can
actually be large. The introduction of this approximation yields a simplified constitutive equation
that, however, will no longer be objective and will only be valid when the deformation from the
evolving natural configuration is small.

In the limit of small elastic deformations

LBn + BnLT ≈ 2D , and T′Bn ≈ T′ , (3.1)

and therefore (2.13) simplifies to

Ṫ′ +
1
λ

[
1− 1

f̃(T′)

]
+

T′ = 2µ
(

D− 1
3

(trD) I
)
. (3.2)

We observe that in equation (3.2), the term containing the yield stress plays the role of a stress
relaxation term but it switches on just when the stress is above the yield value. Otherwise, for
f̃(T′) < 1, equation (3.2) can be integrated in time to give back the elastic relation (2.10).

Similarly to classical viscoelasticity [18, 21], here the plastic rearrangement time λ identifies
the characteristic time needed to relax the stress to the yield value (not the null one, as in Maxwell
fluids).

Following the same argument proposed in [30, 31] one can state that in transient phenomena for
times much larger than the plastic rearrangement time the natural configuration evolves relaxing
the stress and dissipation stops when the state of stress of the material reaches the surface identified
by the yield condition.

4 Applications

We now want to analyze the behavior of the constitutive model introduced in the previous sections
under different shear and compression tests.

For pure shear tests (3.2) rewrites

Ṫ +
1
λ

[
1−

(
τ̂

|T |

)α]
+

T = µγ̇ , (4.1)

where γ̇ is the shear rate, f(T) = |Txy| = |T | and τ̂ = τ(φ)/φ. The case α = 1 corresponds
to a Bingham fluid while the limit case α = 0 corresponds to an elastic fluid. In the following,
sometimes the particular case α = 1 will be considered in more detail, because it allows to write
analytical solutions in an easy way and to easily understand the main feature of the constitutive
model.

4.1 Steady shear

According to the model illustrated in the previous section, when a cell aggregate undergoes a
standard shear test with smooth loading, initially the body deforms elastically and the stress
grows until the yield value τ̂ is reached. In this initial regime the cell bonds are simply stretched,
no internal re-organization occurs, the natural configuration does not evolve, and the body would
be able to return to the initial stress-free configuration. When locally the stress overcomes the
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yield value, some adhesion bonds break, new ones form and the natural configuration evolves. The
body is then not able to return to the original configuration any longer.

As an example, consider the case of shear increasing linearly in time, i.e., γ = γ̇0t and α = 1.
Integration in time of (4.1) gives

T (t) =


µγ̇0t , for t ≤ tτ = τ̂

µγ̇0
;

τ̂ + µγ̇0λ
[
1− e(−t+tτ )/λ

]
, for t > tτ .

(4.2)

If t→∞ then T (t)→ τ̂ + η̃γ̇0. This means that plotting the apparent viscosity η(γ̇0) = T/γ̇0 as
a function of the shear rate γ̇0, the plot should depend on γ̇−1

0 for small γ̇0. This is the case of
experiments shown in [20].

In general, for 0 ≤ α ≤ 1, the relation between γ̇0 and the apparent viscosity η(γ̇0) is given by

γ̇0 =
τ̂

η(γ̇0)

(
1− η̃

η(γ̇0)

)− 1/α

. (4.3)

If η →∞ then γ̇0 goes to zero as τ̂ /η(γ̇0) that implies that for small γ̇0, the apparent viscosity
η(γ̇0) behaves like γ̇−1

0 . On the other hand, if η → η̃ then γ̇0 goes to infinity, that means that at
high shear rates, the apparent viscosity η(γ̇0) = T/γ̇0 goes towards its limiting value η̃. This limit
is concentration dependent and has been obtained experimentally [10, 20]. A plot of the viscosity
dependence against shear rate is presented in Fig.2a. One can note the limiting behaviors at small
shear rates (slope −1 on this log–log figure). At high γ̇0, the viscosity reaches its limit η̃.

In order to observe the behavior close to the limit η̃, a plot of the reduced viscosity η(γ̇0)−η̃
η̃

is shown in Fig.2b and the limiting behavior for high shear rates can be explained. Noting that
(4.3) can be partly inverted, it is obtained that

η(γ̇0)− η̃
η̃

=
η(γ̇0)
η̃

(
η(γ̇0)γ̇0

τ̂
)−α.

Therefore, as η(γ̇0) approaches η̃ in the high shear rate domain,

η(γ̇0)− η̃
η̃

∼ (
η̃γ̇0

τ̂
)−α .

This means that in a log-log plot a slope of −α should be obtained as the apparent viscosity
approaches η̃ for large shear rates γ̇0, as shown in Fig.2b. So, a crucial role in the constitutive
model is played by the term f̃(T′) that compares the scalar invariant measure of the stress with
the yield stress τ̂ and determines the Bingham-like behavior at low shear rates, where the curves
collapse. The role of the coefficient α becomes evident at high shear rates where it has an effect on
the values of the viscosity. In fact, α is the slope of η(γ̇0)−η̃

η̃ vs. γ̇ in log–scale. So, its role becomes
important in catching the high flow rate behavior of the suspension of cells, when, probably, the
suspension of cells may spatially re-arrange giving rise to aligned structures.

In order to validate the model with a true biological aggregate, parameter adjustements are
made using the data of Iordan et al. [20] in Fig.3b. The only adjustable parameters are found
to be τ̂

η̃ and α, by simple scaling arguments. In our case, we fixed η̃ = 0.0013Pa.s (the culture
medium viscosity) and let τ̂ and α vary. A first attempt is made on the 42% concentration and
values of the fitting parameters give τ̂ = 0.05Pa and α = 0.01. This is shown in Fig.3b.

Again, we carry on the same type of analysis and this gives rise to the following features in
Fig.3a. We obtained that, in most cases, 0.001 ≤ α ≤ 0.01, using the same η̃ = 0.0013Pa · s. The
values of the yield stress are found to be close to the ones obtained previously [20] and show a
typical dependence of the type τ̂ ∼ 962.2φ11, at large concentrations 0.4 ≤ φ ≤ 0.6. The small
values found for α indicate that the system has some elastic properties, which will be discussed in
Section 4.2.
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(a)

(b)

Figure 2: Apparent viscosity η(γ̇0) = T/γ̇0 and reduced viscosity η(γ̇0)−η̃
η̃ for different values of

the parameter α.
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(a)

(b)

Figure 3: Comparison of the model vs. the experiments by Iordan et al. [20]. (a) Viscosity vs.
shear rate at different volume ratios. (b) focuses on the case φ = 0.42. Fitting parameters are
τ̂ = 0.05Pa, η̃ = 0.0013Pa · s, α = 0.01.
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Figure 4: Stress relaxation response (Time is normalized with respect to λ.) (a) T/τ̂ for different
values of µγ0/τ̂ and α = 1. For γ0 ≤ τ̂ /µ the response is elastic. (b) Evolution of T/τ̂ for
µγ0/τ̂ = 3 and for increasing values of α (from upper to lower curves).

Finally, we observe that if α = 1/2 then the steady response would satisfy
√
T =

√
τ̂ +

η√
T
γ̇0 ,

that can be solved to give
√
T =

√
τ̂

4
+

√
τ̂

4
+ ηγ̇0 ,

that is close to the classical Casson’s relation
√
T =

√
τ̂ +
√
ηγ̇0.

We conclude that, despite its simplicity, the model agrees quite well with the data obtained in
[20].

4.2 Stress relaxation

A standard relaxation test is obtained applying a sudden constant deformation γ0. If γ0 ≤ τ̂ /µ,
then the stress in the body is T = µγ0(< τ̂) at any time corresponding to the straight line in
Fig.4a, an elastic response. If, on the other hand, γ0 > τ̂/µ the solution of Eq.(4.1) is

T (t) = τ̂
{

1 +
[(µγ0

τ̂

)α
− 1
]
e−αt/λ

}1/α

, (4.4)

and is plotted in Fig.4a for increasing values of γ0 and in Fig.4b for different α’s. In particular,
for α = 1

T (t) = τ̂ + (µγ0 − τ̂)e−t/λ . (4.5)

Hence for small strains the body behaves elastically, while for large strains part of the stress
relaxes to the yield value τ̂ , regardless of the magnitude of the applied strain. Notice that the
decrease toward the asymptotic state is faster for larger exponents.

4.3 Oscillatory shear

Oscillatory shear experiments are a common technique to characterize viscoelastic materials with-
out much deforming the samples. Experiments of this type have been carried out using red blood
cell suspensions [40] or recently with CHO cell suspensions [20].

The usual protocol way to do this is to apply a sinusoidal deformation γ = γ0 sin(ωt) and
plot the stress response T = T0 sin(ωt + ψ). Here ω is the angular frequency, ψ the phase
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angle, γ0 the applied deformation and T0 the stress amplitude. Typically, small deformations are
used in order to remain in the linear regime. Therefore, one can define the elastic and viscous
moduli (G′, G′′) which correspond respectively to the in–phase part of the stress (G′) and out of
phase part (G′′). Typical moduli responses [20] vs. frequency in the case of concentrated cell
suspensions usually show a plateau for the G′ modulus whereas G′′ usually increases slowly with
frequency. Similarly, using red blood cell suspensions, Thurston [40] observed the appearance of a
high elasticity (increasing values of G′ vs. frequency) for higher concentrations of cells (typically
70%).

Researchers have used this method also for large deformations [19] thus obtaining a variety of
results that are understood as the signature of complex fluids. Note that the stress response now
includes other frequency modes such as ω, 3ω... In such a case, the values of moduli G′ and G′′

are plotted against the amplitude of the applied deformation γ0, and usually show a decreasing
behavior as in polymeric systems. Recently [19, 35], it has been found that other behaviors like
strain hardening possibly followed by a decrease in G′ or G′′ could be observed with complex
materials and this could be an interesting way to classify such a complexity.

Considering first small deformations and using (4.1) with the above applied sinusoidal defor-
mation, we obtain an elastic behavior, when stresses are smaller than the yield stress τ̂ :

Ṫ = µγ̇ = µω cos(ωt) (4.6)

Therefore, the complex moduli G∗ = G′ + iG′′ is simply G∗ = µ. Note that normal stresses
are neglected here, but could be included leading to slight changes in the moduli evolution [35].
This result is therefore not good enough to describe the behavior of aggregates as observed in our
earlier work [20], although the behavior for G′ is characteristic of such aggregates.

We next consider the resolution of (4.1) using a periodic sine wave for a large amplitude
deformation. Results are shown in Fig.5a. The shear stress follows the oscillatory motion imposed
by the deformation as long as it is below the yield stress τ̂ but as it becomes higher, it follows a
more complex time dependence. G′ and G′′ can be deduced from the stress amplitude by Fourier
transform providing the first modes sin(ωt) and cos(ωt). They are plotted in Fig.5b. G′ is a
constant equal to µ then decreases with deformation, at a critical deformation γc ∼ 0.01. This
critical value corresponds to the fact that the shear stress reaches the critical value τ̂ = µγc = 1Pa
in this case. On the other hand, G′′ increases from 0 to reach a maximum then decreases again
with deformation or shows a plateau. This is usually the behavior called ”weak strain overshoot”
as obtained previously for Xanthan gum solutions [19, 35, 36].

The value of γc is found to be close to 1% (deformation of 0.01), even when the frequency
is changed. As shown in Fig.5b, as ω increases, G′ decreases in a less pronounced manner, and
the loss modulus G′′ decreases more slowly, except for the last case corresponding to an angular
frequency ω = 500 rad/s, when it always increases.

4.4 Elastic recovery

To compare the predictions of the mathematical model illustrated above and the experimental
results obtained by Foty et al. [12], we now consider a modification of the stress relaxation
experiment consisting in releasing the imposed stress after some time from the beginning of the
experiment. As already stated, if the imposed deformation is small as compared to the yield
condition, then the body will go back to the original configuration. Otherwise, it induces an
internal re-organization of the cells and the body will not recover its initial configuration, because
in the meantime the natural configuration has changed. In fact, denoting by T2 the value of stress
before the sudden stress release (that is much faster than the cell re-organization time λ) the yield
stress is reached for

γ = γ2 −
T2 − τ̂
µ

, (4.7)
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(a)

(b)

Figure 5: Stress response when applying a sinusoidal deformation. Parameters: η = 0.17Pa · s,
µ = 100Pa, τ̂ = 1Pa, α = 0.5, λ = 0.001 s. (a) Different stress responses for different
γ0 = 0.001, 0.0022, 0.0046, 0.01, 0.022, 0.046, 0.1. The response becomes nonlinear above 1% de-
formation. (b) Moduli G′ (Gp) and G′′ (Gpp) vs. deformation at different angular frequencies
ω = 10− 100− 500 rad/s.
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independently of α. After that, the body will relax the stress, reaching the stress-free configuration
when

γfin = γ2 −
T2

µ
. (4.8)

To be more specific, in the stress relaxation experiment described by Eq.(4.4), at time tcompr
the compressing plate is removed so that the specimen is stress-free and

γfin = γ0 −
τ̂

µ

{
1 +

[(µγ0

τ̂

)α
− 1
]
e−αtcompr/λ

}1/α

. (4.9)

In particular, if tcompr � λ, the exponential and the power in (4.9) can be approximated to
give

γfin ≈ γ0

[
1−

(
τ̂

µγ0

)α]
tcompr
λ

. (4.10)

This means that if the compression is kept for such a small time that the body does not have
enough time to re-organize, then the body will recover almost everything and return close to the
original configuration mainly showing an elastic-like behavior. If, on the other hand, tcompr � λ,
then

γfin = γ0 −
τ̂

µ
, (4.11)

meaning that the body will still recover the amount τ̂ /µ corresponding to the elastic component.
In other words, it will not keep the value γ = γ0 imposed, even if this is done for a very long time.

The above description is consistent with the observations in [12] (their figures 3 and 5) where
they see that if the spheroid is compressed for few seconds then it will bounce back almost to the
original configuration. If it is compressed for a longer time (few hours in their experiments) this
does not occur though a minor shape recovery is observed. This can not be explained using the
concept of surface tension, but is compatible with our model.

On the other hand, we have to point out that in this model the process is instantaneous,
while it seems that in the experiment in [12] it takes some times for the spheroid to return to the
natural configuration as in standard indentation tests. This might be due to the fact that here we
completely neglected the fact that the spheroid is a porous material filled with the liquid in which
the experiment is done. Such an effect can be included for instance taking into account that T is
only one of the components of the stress and a further viscous component needs to be added to
obtain the stress for the mixture as a whole Tm, i.e.,

Tm = T + η`γ̇ . (4.12)

In this case the process will take a characteristic time of the order of λ/(1 + η̃
η`

).

4.5 Uniaxial compression

In this section we study the response of a material satisfying (3.2) subjected to a uniaxial com-
pression test in order to qualitatively compare our model with the experimental results described
in [11, 12, 42].

We will assume that the deformation is homogeneous and is given by

x =
X√
ψ(t)

, y =
Y√
ψ(t)

, z = ψ(t)Z , (4.13)

with Fp given by

Fp = diag

{
1√
Ψ(t)

,
1√
Ψ(t)

, Ψ(t)

}
. (4.14)
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The difference between Ψ(t) and 1 is a measure of aggregate re-organization. Hence F and Fn are
respectively given by

F = diag

{
1√
ψ(t)

,
1√
ψ(t)

, ψ(t)

}
, (4.15)

and

Fn = diag

{√
Ψ(t)
ψ(t)

,

√
Ψ(t)
ψ(t)

,
ψ(t)
Ψ(t)

}
. (4.16)

Therefore, dropping t for sake of simplicity,

Bn = diag
{

Ψ
ψ
,

Ψ
ψ
,
ψ2

Ψ2

}
, (4.17)

and

T = µdiag
{
−Σ +

Ψ
ψ
, −Σ +

Ψ
ψ
, −Σ +

ψ2

Ψ2

}
= diag{0, 0, Pappl} , (4.18)

where Σ is the pressure of the mixture and Pappl is the time–dependent applied stress in the
z-direction.

In conclusion,

Σ =
Ψ
ψ
, and Pappl = µ

ψ3 −Ψ3

ψΨ2
. (4.19)

On the other hand,

Dp = ḞpF−1
p = diag

{
− 1

2
, − 1

2
, 1
}

Ψ̇
Ψ
, (4.20)

and therefore from (2.7)

Ψ̇
Ψ

=
1
3η̃

[
1− 1

f̃(T′)

]
+

Pappl =
1
3η̃

[
1−

(
2τ̂
|Pappl|

)α]
+

Pappl . (4.21)

Substituting (4.19) in the equation above, one has the evolution equation for Ψ, i.e., for the natural
configuration

Ψ̇
Ψ

=
µ

3η̃

[
1−

(
2τ̂
µ

ψΨ2

|ψ3 −Ψ3|

)α]
+

ψ3 −Ψ3

ψΨ2
. (4.22)

This result applies to a parallelepiped sample homogeneously deformed in uniaxial traction. In
the following we compare its predictions with the stress-strain behavior of a loaded multicellu-
lar spheroid. The latter problem clearly involves a non–homogeneous deformation and a purely
qualitative comparison can be carried out at most.

When a sufficiently large strain ψ0 < 1 is imposed on the cell aggregate, the square parenthesis
above is positive, i.e.,

1
ψ0
− ψ2

0 >
2τ̂
µ
, (4.23)

Ψ will decrease from Ψ = 1 according to

Ψ̇ = − µ

3η̃

[
1−

(
2τ̂
µ

ψ0Ψ2

Ψ3 − ψ3
0

)α] Ψ3 − ψ3
0

ψ0Ψ
. (4.24)

A plot of Ψ(t) is shown in Fig. 6.
If the compression applies for a long enough time, then Ψ will tend towards that value Ψ∞ > ψ0

corresponding to the vanishing of the square parenthesis in (4.24), i.e.,

Ψ3
∞ − ψ3

0

ψ0Ψ2
∞

=
2τ̂
µ
, (4.25)
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(a) (b)

(c) (d)

Figure 6: Uniaxial compression for τ̂ /µ = 0.25. Time is normalized with respect to η̃/µ and the ap-
plied stress is reported normalized with respect to µ. In (a,b) ψ0 = 0.75 and α = 0.1, 0.3, 0.5, 0.7, 1.
In all cases the asymptotic value of Ψ is Ψ∞ = 0.8981 and Pappl/µ tends to 2τ̂ /µ = −0.5. In
(c,d) α is fixed to 1 while ψ0 changes. If ψ0 > 0.8351 the compression is not strong enough to
trigger cell re-organization and therefore Ψ(t) = 1 does not evolve and Pappl/µ is constantly equal
to ψ2

0 − 1/ψ0 > −0.5.
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that is independent of α, as also evident from Figures 6a.
In particular, Pappl will tend to

Pappl,∞ = µ
ψ3

0 −Ψ3
∞

ψ0Ψ2
∞

= −2τ̂ , (4.26)

(see Fig. 6b,d) that in addition of being independent of α is also independent of ψ0 as in the
experiments in [11].

In Fig. 6c,d instead the value of α is fixed to 1 and different compressions are applied. If
ψ0 > 0.8351 the compression is not strong enough to trigger cell re-organization and therefore
Ψ(t) = 1 does not evolve and |Pappl| is constantly below the yielding value that in this case is
2τ̂ = 0.5. For larger ψ0 the natural configuration evolves and Pappl again tends to the constant
value given in (4.26).

The behavior of the solution is then similar to the shear tests discussed in Section 4.4. Finally,
if at time t2 (when Ψ = Ψ2 > Ψ∞), the compression is suddenly released, then ψ will readily
adjust to the value ψ = Ψ2.

Although this solution strictly applies to a parallelepiped sample, we qualitatively compare it
with the stress relaxation tests performed by Forgacs et al. [11] for a spheroid. The main remark is
that the measured stress decreases asymptotically to a non-null value that depends on the tissue.

They interpret this long time behavior as the effect of surface tension that can be obtained
multiplying the measured stress by a coefficient that depends on the geometry of the barrel shape
of the deformed aggregate. In Winters et al. [42] it is observed that doubling the deformation will
give rise to the similar surface tension coefficient, while a constitutive model for a linear elastic
solid whould give rise to a doubling of the stress.

In our view the same result can be interpreted using the constitutive model above and relating
the asymptotic behavior to a measure of the yield stress. In fact, similarly to the experiments
above, in the present virtual experiment (that does not present a free boundary) doubling the
deformation will give rise to the same asymptotic value measuring the yield stress.

The relation between the two interpretations is given by τ̂ = Hσ where σ is the surface
tension and H is the mean curvature of the compressed spheroids. Though it is difficult to get
the geometrical parameters from the paper, using the values in Forgacs et al. [11] it seems that
the yield stress for the different tissues tested ranges between 1 to 100 Pa. Our results for a
60% concentration (the maximum one that we used) give a yield stress around 2Pa, and higher
concentrations will probably lead to data in the same range, especially since the yield stress is
concentrated dependent like τ̂ ∼ φ11, as observed previously.

Furthermore, Foty and Steinberg [14] correlate the surface tension coefficient with the density of
surface cadherin per cell. The same proportionality obviously holds for the yield stress τ̂ because
this coefficient is clearly related to the number of adhesion bonds. In our opinion the relation
between yield stress and surface tension also explains the observation by Winters et al [42] that
cell invasiveness is related to the inverse of surface tension: the smaller the adhesion between cells,
the smaller the yield stress, the more invasive the cell clone.

We finally mention that Forgacs et al. [11] point out the existence of two relaxation times in
the cellular matter (one of the order of few seconds the other of the order of tens of seconds),
that in our approach would be related to two re-organization mechanisms or to the detachment
of different types of adhesion proteins. Of course, our model can be generalized to include more
relaxation times.

5 Conclusions and Developments

In this paper we have derived a constitutive model that is able to describe the twin characteristics
of cell aggregates: solid-like when and where the stresses are not large enough and liquid-like
when and where the stress overcomes a sustainable threshold inducing internal cell re-organization.
Though the constitutive model is kept as simple as possible, we have shown how it can reproduce
the outcome of both shear tests performed by [20] and compression tests performed by [11, 13,
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12, 14, 42]. The model also enabled us to predict the nonlinear dynamic shear behavior as often
encountered with complex fluids. In addition, a comparison between the surface tension concept
and the yield stress concept allowed to explain the relationship between cell invasiveness and yield
stress (or surface tension) described in [42], i.e., the smaller the adhesion between cells, the smaller
the yield stress the more invasive is the cell clone.

The theoretical basis of this work are the yield stress exhibited by cell suspensions (at a
continuum level) and the energy needed to break the adhesion bonds of a cell on an aggregate
(at a cell level). On the basis of this experimental evidence, in this paper we have conjectured
that also cell aggregates can exhibit a yield adhesion reflecting itself, at a continuum level, in
a threshold tension separating an elastic and a viscous regime. The comparison with the very
few experiments on cell aggregates present in the literature suggests that this volumetric theory
could provide an explanation to the ability of cell aggregates to carry loadsi, alternative to surface
tension. Even more important, the re-organization process could explain the permanent strain
exhibited by spheroid samples after load.

Of course, the model can and need to be improved in several directions in order to reproduce
more closely the behavior of cell aggregates. For instance, one should take into account the fact
that the cell aggregate is a porous material filled with the liquid in which the experiment is done.
Such an effect can be easily included by adding a further viscous component to the mechanical
behavior of the cellular constituent. This is particularly important to explain creeping phenomena
occurring when external stresses applied on the cellular aggregate are suddenly applied or released.

Another extension can be represented by the inclusion of more cell re-arrangement times, that
can be related to different adhesion mechanisms. These can be due not only to different types of
adhesion molecules at the cell membranes but also to the response occurring inside the cell itself
with the rearrangement of the adhesion bonds connected to the actin cytoskeleton. In this case
also the active role of myosin should be taken into account as well. In addition, more experiments
need to be done to understand the origin of the exponent α either using different types of cells,
or interphering with the adhesion mechanisms, and to find its dependence on cell concentration.

Deducing a model with more relaxation times would probably lead to a better fit of the ex-
periments by [11, 13, 12, 14]. Nevertheless, the model provided here is a three-dimensional one,
different from previous studies [11] suggesting to use simple one–dimensional Maxwell assemblies,
coupled with the presence of an arbitrary surface tension. Here we provide a complete description
of this visco-elasto-plastic model, and possible parameters have been chosen based on experimental
data [20], this leading to relaxation constants in the range of the ones obtained previously [11].

Appendix

In this appendix we will briefly discuss some aspects of kinematics that are useful to deduce
the constitutive equation proposed in Section 2. In doing that, one needs to compute the time
derivative of the elastic constitutive model

T′ = µ

(
Bn −

1
3

trBnI
)
, (5.1)

which implies to compute the time derivative of Bn = FnFTn . This gives

Ḃn = LnBn + BnLTn , (5.2)

where
Ln = ḞnF−1

n . (5.3)

In the following we will also use the following tensors

L = ḞF−1 and Lp = ḞpF−1
p . (5.4)

Deriving F in time, one has

Ḟ = ḞnFp + FnḞp = LnFnFp + FnḞpF−1
p F−1

n FnFp = (Ln + FnLpF−1
n )F , (5.5)
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that, using the definition (5.4) can be rewritten as

Ln = L− FnLpF−1
n . (5.6)

Back substitution of (5.6) into (5.2) gives

Ḃn = LBn + BnLT − 2FnDpFTn , (5.7)

where
Dp =

1
2

(Lp + LTp ) , (5.8)

or
DBn
Dt

= −2FnDpFTn , (5.9)

where DM/Dt is the Maxwell upper convected derivative (2.14).
In this way, we related the evolution of T′ to the evolution of Bn and through Dp to the

evolution of the natural configuration. On the other hand, in Section 2 we also introduced the
equation governing the evolution of the natural configuration

FnDpF−1
n =

1
2η̃

[
1− 1

f̃(T′)

]
+

T′ , (5.10)

where [·]+ stands for the positive part of the argument.
Notice that, coherently with the fact that the l.h.s. of (5.10) is traceless as T′

tr(FnDpF−1
n ) = tr Dp = 0 . (5.11)

In fact, the assumption that the volume ratios in the natural and in the original reference con-
figuration are the same implies Jp ≡ det Fp = 1. Therefore, from standard tensor calculus, one
has

J̇p = Jptr Dp = 0 , (5.12)

which means that Dp is traceless.
We conclude this appendix by observing that one can re-write (5.10) as1− 1

f̃
(

S′
nCn
Jn

)


+

S′nCn
Jn

= 2η̃Dp , (5.13)

where S′n = JnF−1
n T′F−Tn is the (excess) second Piola-Kirchhoff stress tensor and Cn = FTnFn. It

can be noticed that since

tr(S′nCn) = tr(JnF−1
n T′Fn) = JntrT′ = 0 (5.14)

S′nCn is traceless as Dp.
In addition, if we assume that the cellular spheroid obeys a neo-Hookean law,

T = µ(φ)(−ΣI + Bn) (5.15)

where Σ = Σ(φ/φn), with Σ(1) = 1, then S′
nCn
Jn

has the same eigenvalues as T′ so that f
(

S′
nCn
Jn

)
=

f(T′), and µ(φ) is the shear elastic modulus.
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