
HAL Id: hal-00361045
https://hal.science/hal-00361045

Submitted on 13 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of Response Time in Ethernet-based
Automation Systems

Gaëlle Marsal, Bruno Denis, Jean-Marc Faure, Georg Frey

To cite this version:
Gaëlle Marsal, Bruno Denis, Jean-Marc Faure, Georg Frey. Evaluation of Response Time in Ethernet-
based Automation Systems. 11th IEEE International Conference on Emerging Technologies and
Factory Automation, ETFA’06, Prague (Czech Republic), 20-22 September 2006, Sep 2006, Czech
Republic. pp. 380-387. �hal-00361045�

https://hal.science/hal-00361045
https://hal.archives-ouvertes.fr

Evaluation of Response Time in Ethernet-based Automation Systems

Gaëlle Marsal, Bruno Denis, Jean-Marc Faure
ENS de Cachan

61, av. du Président Wilson
94235 Cachan Cedex, France

{marsal, denis, faure}@lurpa.ens-cachan.fr

Georg Frey
University of Kaiserslautern
Erwin-Schrödinger-Str. 12

67663 Kaiserslautern, Germany
frey@eit.uni-kl.de

Abstract

This paper presents a method to assess response time
of automation system architectures including industrial
switched Ethernet networks using client/server
protocols. The method relies upon modeling the behavior
of the components of these architectures in the form of
Hierarchical Timed Colored Petri Nets and upon
simulation of these models. A case study exemplifies the
method and shows how it can facilitate design of
automation systems including this kind of industrial
Ethernet networks.

1. Introduction

Many Ethernet-based solutions for distributed
automation systems are currently available or under
development [1, 2, 3, 4]. Each one of these solutions can
be ranked into one of the following two categories.
Either it is based on a specific proprietary protocol
developed by an automation solution supplier, using
master/slave or producer/consumer mechanisms [5], or it
relies on the generic TCP/IP client/server protocol [4].
Time performances of networks of the first class can be
assessed by using methods developed for former non-
Ethernet industrial networks which used the same
protocols, whereas time performances evaluation of
client/server-based solutions, in which resource sharing
is a new concern, requires new investigations. This paper
presents results of such investigations that focus on
automation systems distributed over Ethernet using the
standard TCP/IP client/server protocol.

A network can connect controllers either to a
continuous process, modeled as a set of differential
equations, or to a discrete process, modeled as a Discrete
Event System (DES), e.g. using state automata or Petri
nets. In these two cases, network performances impact
different features. If the network connects a continuous
process to controllers, the main feature that is impacted
is stability [6] of the closed loop system while if
focusing on control of DES it is the reactivity of the
automation system. That includes both controllers and
the network, which is modified when network
performances change. This feature, on which this paper

focuses, can be evaluated by the response time of the
automation system, defined as the delay between the
occurrence of an event from the controlled system and
the occurrence of the resulting event produced by a
controller back to this system.

This response time includes delays in all the
components of the automation system. Analysis of the
delay in each component of this system results – for the
architectures that are studied in this paper – in a
decomposition into three elementary delays: firstly
delays caused by data processing, secondly delays
caused by waiting for synchronization and thirdly delays
caused by waiting for resource availability.

Basically, there are to approaches to determine the
response time: analytically – using e.g. Network
Calculus [7] or Model Checking [8] – and simulation.
Given that all these delays are not independent, it is not
trivial to determine the response time analytically [9].
Furthermore, the analytical approaches only deliver
worst-case bounds for the response time. However, from
the application point of view in automation the
distribution of the response time is also of interest.
Hence, a simulation approach has been chosen. For this,
a generic model of Ethernet-based automation systems is
first designed in a high-level Petri Nets formalism. The
simulation of an instantiation of this generic model, that
models a particular Ethernet-based architecture, enables
to determine the whole distribution of its response time.
Given this distribution, it is possible to check whether
the control architecture fits requirements such as the
maximum response time or its range.

The rest of this paper is organized as follows: the next
section gives an overview on architectures of Ethernet-
based automation systems and details those on which
focus is put. Section 3 analyzes the problems in response
time determination. Then, in section 4 the proposed
modeling approach is explained. Thereafter, section 5
shows how the generic models introduced so far can be
instantiated for a given architecture. A case study in
section 6 demonstrates the benefits of the presented
approach. Finally a short summary and some prospects
are given in the concluding section.

2. Ethernet-based fieldbuses in automation

The introduction of Ethernet technology at field level
enables great prospects both for interoperability and
flexibility of automation systems. Indeed, as Ethernet is
a widely used standard [10] in enterprise networking, it
is possible to communicate over all enterprise levels, to
use Commercial Off The Shelf (COTS) devices for
automation and to take benefit of the “plug and play”
feature of Ethernet. However, the CSMA/CD [8] access
method implemented in Ethernet is not deterministic.
This implies that collisions are possible on the network,
and so that variable and potentially infinite delays may
be introduced.

A radical solution to this problem is to implement a
specific protocol reproducing the behavior of former
fieldbuses with master/slave or producer/consumer
mechanisms [11] on Ethernet. This solution often
requires the use of hub devices, more adapted to
broadcast messages needed in such protocols. This is the
case for ProfiNet protocol by Siemens or EtherNet/IP by
Rockwell Automation. These protocols are neither open
nor standard and so they do not enable to take full
advantage of the Ethernet standard. Another solution is
to use switches to avoid collisions and TCP/IP standard
protocols [12, 13]. This is the case when using soft
controllers with Modbus clients or commercial solutions
like Modbus TCP/IP by Schneider Electric [14]. This
solution really provides new possibilities concerning
flexibility and interoperability.

However, as TCP/IP implements a client/server
protocol, no global resource management is available.
With such a protocol, all devices can send a frame on the
network at the same time. As a consequence, each device
can receive several frames though it is not available to
treat them and in this case the order of their treatment is
decided locally. Ethernet frames that are not treated
immediately when they are received in a component are
waiting in a buffer. The consequent waiting time is
variable depending on the load of the component. In this
case, it is not trivial to assess the delay induced by
Ethernet and TCP/IP protocols.

This study is limited to controllers, as Programmable
Logic Controllers (PLCs) or industrial PCs, and
Distributed Input Output Devices (DIODs)
interconnected by a switched Ethernet network. Only
common commercial devices for automation purposes
are studied, such as modular controllers, DIODs and
“store and forward” switches. In the controller, one
board is dedicated to the cyclic execution of the user
program (inputs reading, user program execution, and
outputs updating), while another one is dedicated to the
cyclic scan of DIODs through Ethernet. These two
boards, which have their own processor, are not
synchronized and communicate via a shared memory
accessible through a backbone bus. In the following, the
term “device” is used for controllers, DIODs and

switches, while “components” is used for subparts of
devices, such as Ethernet boards and CPU boards in
controllers. Fig. 1 illustrates the type of studied
architecture, with an example composed of one
controller (PLC1; PLC stands for controller in the
models), three switches (Switch1 to Switch3) and seven
DIODs (DIOD1 to DIOD7).

The communication over Ethernet follows a
client/server protocol, where controllers are clients and
DIODs are servers. So the DIODs send data to the
controller only after being requested. Hence, the
controller has to request regularly the DIODs to update
its Input images and the Output values on DIODs. This
procedure is called IO scanning. Here only cyclic IO
scanning is considered, with a minimum cycle time set
up in each client which is, in the studied architectures,
the controller. The IO scanning cycle studied is the
following: Each Ethernet board of a controller sends
requests to every DIOD concerned by this cycle. Then it
waits until the minimum cycle time is finished. If all
answers arrived, then it begins a new cycle, else it waits
until all answers come back. In this study, frame losses
are not considered, so no time-out has to be taken into
account.

Figure. 1. Example of the studied Ethernet-
based automation architecture.

3. Response Time in Switched Ethernet-
based Automation Systems

The response time is defined as the delay between the
occurrence of an event on the process, and the
occurrence of the reaction event, issued from the
controller, on the process. It results in data traveling
between and data processing inside the different devices.
A better understanding of the response time is possible
by decomposing it into elementary delays in each
component depending on their causes. Every component
delay may be decomposed in the three following delays:

• delay caused by data processing,
• delay caused by waiting for synchronization,
• and delay caused by waiting for the availability

of a resource (for shared resources).

The first two types of delay are present whatever
fieldbus and protocol. Delays of the first type are
characteristics of the components and can be known
from technical documentation. There are two different
waiting delays for synchronization, one called “internal”
and the other one “external”. Internal synchronization
delay refers to synchronization between components
within a device, e.g. a controller, while external
synchronization delay refers to synchronization between
components. Both synchronization delays can be
evaluated thanks to techniques developed for former
fieldbuses [15, 16]. The third type of delay is specific to
the client/server communication mechanism. The aim of
the proposed simulation approach is to take into account
the three sources of delays.

Fig. 2 illustrates the response time between input I1
and output O1 occurring respectively on DIOD4 and
DIOD5 of the architecture given in Fig. 1. The
component delays are represented for each component
on its timing diagram by a grey rectangle for the
processing delay, by a white rectangle for the waiting for
synchronization and by a black rectangle for waiting for
resources availability. To understand the relationship
between the overall response time and elementary
components delays, let us follow the data along its route
in the automation system, from sensor to actuator. First,
the digital signal coming from a sensor (connected to
input I1) is filtered in DIOD4. This implies a processing
delay given in technical documentation. The information
on the state of I1 waits in a buffer for the request coming
from a controller (delay of waiting for external
synchronization). Then, it waits for availability of the
DIOD CPU resource (delay of waiting for resource).
When the resource is available, the information is
encapsulated in a Modbus TCP/IP Ethernet frame and
sent as a response (delay of processing data). This frame,
which is now on the network, has to be forwarded by
two switches, Switch2 and Switch1. When the frame
arrives in a switch, it first waits for the resource before to
be treated. Finally, the response enters the input buffer of
the controller’s Ethernet board. When the resource is
free, the board processes the frame and writes the new
data into the shared memory. However, the user program
takes it into account not before its next reading phase,
resulting in a waiting phase for internal synchronization.
There half of the route is done, the other half consists of
sending the result of the user programs calculation (O1:=
I1) back to the process issuing the corresponding
reaction at the actuator (noted O1). So from bottom to
top, firstly, the output O1 is written into the shared
memory, secondly, its value is brought into the Ethernet
board at the next IO scanning cycle, and finally, when
the CPU of the Ethernet board is available, the modbus
TCP/IP Ethernet frame is built and sent over the network
to DIOD5, via Switch1 and Switch3. After that, when
the DIOD’s resource is free, its treatment begins to send
a signal on the process to cause the desired reaction.

Several authors [17, 18, 5] have addressed the
problem of evaluation of time performances of Ethernet-
based networks by focusing on only delays caused by
switches, without taking into account the delays
provoked by controllers and DIODs. On Fig. 2, this
corresponds to the delay for crossing the cascade of
Switch2 and Switch1 and the cascade of Switch1 and
Switch3 but independently from the rest of the system.
However, even when this delay is determined and when
all the processing times are known, the overall response
time is not directly reachable because both the waiting
delays for synchronization and the waiting delays for
resources in DIODs and controllers are not known.
Indeed, this is the conjunction between the three delays
in all components of the route which has the major
influence on the response time. That is the reason why it
is necessary to study the whole automation system,
including controllers, network devices, and software as it
has been initiated in process control area [6].

Figure 2. Response time of the system in
Fig. 1 from input I1 to output O1.

However, if Fig. 2 illustrates clearly the different
delays in each component, it is very difficult to evaluate
all the delays of waiting for synchronization and
resource along a route, given the different periodic
processes running in parallel that induce complex
relationships. That is why, even if analytical
computation or formal methods can provide an upper-

bound of the worst-case or a lower-bound of the best
case of response time, it is really complex with these
approaches to obtain accurate and realistic values [9]. A
more appropriate method for such complex systems is
the simulation of a dynamic model of the whole
automation architecture. The network research
community has developed dedicated simulation tools as
OPNET, OMNET or NS-2. These tools provide very
detailed and complex models for switches and protocols.
However, at the best of our knowledge, nothing exists
concerning controllers or DIODs whose delays are also
to be taken into account. Moreover, potential users are
automation specialists who are not supposed to be
familiar with network simulation tools. Finally, the use
of given black-box models of network components
makes it hard to analyze the reasons for delays in
specific settings. This analysis however is of interest to
derive more abstracted models for formal verification.
These drawbacks lead to the necessity to develop new
models in a language that is adapted to DES modeling
with existing implementation in simulation tools, well-
known from automation community and with formal
semantics. Given the objective of designing a generic
model for time performance evaluation, the Hierarchical
Colored Timed Petri Nets (HCTPN) class totally
complies with modeling requirements [19]. In the
presented work CPNtools from the University of Aarhus
is used to design and simulate the HCTPN models.

4. Modeling with Hierarchical Timed
Colored Petri Nets

Based on knowledge of the isolated devices
behaviors, a knowledge-based component-oriented
modeling approach is chosen. Moreover, the model
presented is generic for the class of studied architecture.
Indeed, it enables to model any system composed of
modular controllers and DIODs distributed over a
switched Ethernet network, employing a client/server
protocol. The complete model is too large and complex
to be presented in detail in a paper. So this section
focuses first on its hierarchical structure and its
dynamics and then explains a part of the model, the IO
scanning performed by Ethernet boards of controllers.

4.1. Structure of the model
Hierarchical modeling enables to use refinement

design. On Fig. 3, the highest level Global contains the
model of the whole architecture class. It is refined in the
lower level in one sub-model per component type.
Indeed, in any given architecture there is one Process, a
set of DIODs, a set of Switches, a set of Ethernet boards
of PLC and a set of CPUs of PLC. The last two modules
constitute a controller (PLC). The last level of hierarchy
is devoted to communication stacks in components as
Ethernet TCP IP communication stacks.

Figure 3. Structure of the HTCPN model.

Fig. 4 shows the HTCPN representation of the highest
hierarchical level Global, each component is modeled as
a substitution transition (Process, DIODs, Switches,
Ethernet boards of PLC and CPUs of PLC). This
structure can remain the same for each architecture
thanks to colors. These enable to distinguish different
types of tokens, here, one color per component and two
colors for data exchange are used. For instance a token
colored as Ethboard can only represent an Ethernet
board of a controller, and if there are several tokens of
this type, they describe several components. Tokens for
data exchange are colored as “events” or “frames”,
depending if these represent events in the process and in
controllers or Ethernet frames on the network. To model
the information transport from one component to
another, tokens are moved from one component model to
another via the interface places Shared event data,
Process events and Ethernet frames. The tag I/O on these
places notifies the role of the interface among several
sub-models. Output tag means receiving tokens from
sub-models while input tag means sending tokens to sub-
models. The places I/O have the two roles of input and
output.

Figure 4. Global HTCPN model

4.2. Dynamics of the model
The elementary processing delays as well as the

durations of the scan cycles are given as parameters to
timed transitions in the HCTPN models. To give realistic
results, the time delays are built by adding a small jitter
to a constant delay. This jitter also avoids unwanted
synchronization effects in the model. As an example see
the transition encapsulate data into modbus frames in
Figure 5 (bottom left corner). The encapsulation is
assumed to take 10 µs and a jitter of 1 µs is added.
Another point to be considered in the simulation is the
initial state of the model. Different offsets between the
various cyclic processes will lead to different results. A
long simulation time is not sufficient to account for these
effects. Therefore, the elementary models contain a setup
process to set initial conditions. Based on this, a
simulation can be easily started from a set of different
initial condition. This set can be either given as fixed or
stochastically determined in the model itself.

The following subsection details the sub-model
underlying the transition Ethernet boards of PLC, and in
particular the IO scanning behavior model.

4.3. Example: Ethernet boards of PLC model
The Ethernet board of a controller has two functions.

The first one is the manipulation of network frame into a
communication stack, and the second one is the IO
scanning. Fig. 5 shows a simplified representation of the
model Ethernet board of PLC underlying the transition
of the same name in the Global model. The first function
is modeled by the transition Ethernet TCP IP
communication stacks, and is not detailed here. The
second is modeled by the set of places and transitions
that are not respectively of interface or of substitution.

The studied IO scanning cycle has two phases; the
first phase is to send Modbus requests to a DIOD
(server), on the left from bottom to top, and the second

to receive Modbus responses, on the right from top to
bottom. It also includes a set of places and transitions to
initiate IO scans at the right time, and a place modeling
one CPU resource per board, in the middle.

Sending of request is a two steps action. The first
corresponds to the bottom left transition, encapsulate
data into modbus frames, and performs the building of
Modbus frames containing data address and values and
instructions (read data or write data) for each DIOD
(server) scanned by each controller (client). The second
step – modeled by the transition send Modbus requests
consists – of sending the request at the right time. This
time is given by the transition start new scans which
produces tokens in the place servers to request only if
the former scan is completed (and if all responses from
scanned servers arrived, i.e. if the corresponding token is
present in the place completed scans) and also if the
default scanning period has elapsed (if the corresponding
token is available in the place enabled scans at time T).
On the right part of the Petri net, similar actions are done
for receiving Modbus frames and extracting data from
them. The received responses are stored in the place
servers having responded to check the completion of
scans and enable new scans only in this case. There is
one token of color Ethernet board in the place CPU
resources for each Ethernet board, and each action
(encapsulate data into frame, send requests, receive
responses, extract data) needs this resource. This
resource place enables to take into account the influence
of load on delay.

Before simulations could be performed, this generic
model has to be instantiated for a given architecture to be
evaluated as presented in the next section.

5. Instantiation of the generic model

The instantiation is carried out on the architecture
presented in Fig. 6. It is composed of one controller

Figure 5. HTCPN model of IO scanning cycle.

(PLC1), three switches (SW1 to SW3) and eleven
DIODs (DIOD1 to DIOD11). Each component has an
unique and absolute identifier (positive integer) in the
architecture. These identifiers are given on Fig. 6, as 0
for the CPU of controller and 60 its Ethernet board. The
response time to evaluate here is the delay between input
I1 and output O1 occurrences, PLC1 executing a
program including the instruction "O1 equals I1". The
image of I1 value in the controller as well as the value of
O1 in the process is updated cyclically every 5 ms.

To instantiate the model for this architecture, the
initial marking of some places and tokens have to be set
up. For instance, on the model presented Fig. 5, it
concerns the places CPU resources, enabled scans at
time T and completed scans. The initial marking of these
three places is the same and it is one token per Ethernet
board on the architecture, colored as Ethernet boards
identifier. In this example, there is only one Ethernet
board identified by 60, and so the initial marking of the
three places is for each one token 60. At this point, the
Ethernet board of the studied architecture is set up,
identical customization must be carried out for each
other component present in this architecture.

Figure 6. Example of an Architecture.

When they are all correctly set up, connections among
all components in devices and among devices in the
network must be modeled. In order to get a generic
model structure, these connections are modeled by the
tokens representing events or frames. A color has been
defined for event token which is a set of:

• an event identifier,
• a source component identifier,
• a destination component identifier, and
• an “event route” which is a list of component

identifiers.
The event identifier is incremented for each occurring

event (input) that enables to follow it until its
consequence on the process. The route in event token,
called “event route”, concerns only automation
components. One event route [89, 60, 0, 60, 90] is used
in this example as shown Fig. 7 b. For instance, the first
event token, which have the identifier (id) 1, is (1, 89,
90, [89, 60, 0, 60, 90]).

Tokens representing frames have not exactly the same
structure:

• a source component identifier,
• a destination component identifier,
• a “frame route” which is a list of component

identifiers, and
• a list of events encapsulated in the Ethernet

frame.
The “frame route” concerns only Ethernet

components. Figures 7 c and 7 d show the two used
frame routes ([89, 482, 480, 60] and [60, 480, 482, 90])
in this example. The first one is for the first network
crossing, from DIOD 89 to the Ethernet board of the
controller, and the second one is for the second network
crossing, when data is sent from controller to DIOD.
One event token in the model corresponds to one input
or one output while one DIOD groups several inputs and
outputs. For that reason, a frame token addressing a
DIOD encapsulates the list of all related events. The
“route” term of the two colors describes the remaining
route in the network. So, a frame between DIOD 89 and
switch 482 which should arrive at the Ethernet board 60
is modeled by the frame token containing the previous
event token, (89, 60, [482, 480, 60], [(1, 89, 90, [60, 0,
60, 90])]), where the first item of each route is the next
component to cross.

Figure 7. Routes for events and frames.

6. Case Study

6.1. Controlled sub-process
The previously presented control architecture (Fig. 6)

has a part of its function dedicated to control of a linear
transfer system. The sub-process considered is composed
of a trolley, a motor and a position sensor (Fig. 8) and
the particular function studied is to stop the trolley at the
position set point (to stop motor by acting on O1) when
it is detected by the sensor (change of value of I1). In
this stop position, the part transferred by the trolley must
be picked by a rotary gripper. This operation allows a
deviation of 0.8 mm around the stop position. As the
trolley has a constant velocity of 100mm/s, the effective
stop position relative to the sensor position is directly
related to the response time of the control architecture,
and so this position is variable. The sensor position can
be adjusted to have the position set point corresponding
to the average value of all stop positions, so the average
value of response time is not constrained. However, the
range of response time must enable the trolley to stop in
the acceptable range of 1.6 mm. The next subsection
details the evaluation of the response time to check the
adequacy of the architecture to the process requirements.

Figure 8. Application example.

6.2. Response time assessment using simulation
Simulation of the instantiated model has been carried

out during 2 hours on a Pentium IV 2.4GHz PC for
10,000 delays representing about 100 seconds of the
automation systems operation. The result obtained for
the response time is presented on the topmost histogram
in Fig. 10 with time in milliseconds sampled in 30
intervals of 0.5 ms on abscissa and percentage of
response time measured in each interval on ordinate.

The histogram shows that the range of response time
is 15 ms, and so the range of stop position of the trolley
is 1.5 mm. Hence, the control architecture complies with
the requirement for stop position of the trolley.

6.3. Adding new automation devices
A major feature of Ethernet with client/server

protocol is to enable a high flexibility, and in particular
to permit easy adding of devices and functions to an
existing network. This feature enables to automate a new
part of the process or to add a new sub-process with its
control architecture without changing the existing parts.
It is therefore of considerable practical interest to study

the impact of such upgrades on the response time. In the
following to upgrades to the of the previous architecture
called “reference configuration” are analyzed.

In “Configuration 1”, an additional sub-process of the
transfer system is automated. For this, another controller
and seven DIODs are added to the reference architecture
(Fig. 9a). To synchronize the controllers four DIODs
(87, 88, 89, 90) are now shared, i.e. these DIODs are
scanned by both controllers. The parameters for the
second controller are the same as for the first one (CPU
cycle of 2 ms and IO scanning cycle of 5 ms).

A major feature of using TCP/IP protocol is to
increase interoperability. In “Configuration 2”, a PC is
added as supervisor. It scans all the DIODs every 300 ms
to have images of inputs and outputs values (Fig. 9b).

Figure 9. Two upgraded configurations.

The simulation results for the three configurations are
given in Fig. 10. As expected, the response time
increases when adding devices. In configuration 1, only
a small increase is observed compared to the reference
configuration. Indeed, the switches are far from
overload, and the four shared DIODs can cope with two
requests from the controllers in about 5 ms if necessary.
On the contrary, in Configuration 2, the range increased
to 20 ms. In this case, the supervisor scans all DIODs, so
four DIODs are shared by three resources and from time
to time they should reply to three requests which is not

possible within one controller scan cycle of 5 ms.
Configuration 2 therefore does no longer fulfill the
requirements of the controlled process.

Figure 10. Histograms for response time in
the three configurations.

7. Conclusion

Ethernet-based automation architectures using the
generic TCP/IP client/server protocol increase flexibility
and interoperability. However, these solutions do not
offer guaranteed time performances. For the control of
processes modeled as Discrete Event Systems, the major
time characteristic of an automation system is its
response time, defined as the delay between the
occurrence of an event on the process and the occurrence
of the corresponding reaction on the process.

To evaluate this delay, a simulation model designed
in Hierarchical Timed Colored Petri Net is proposed.
This model is generic for a class of automation
architecture distributed on switched Ethernet networks.
This enables to assess response time of such
architectures, and from this to determine whether the
system fulfils the application requirements.

The obtained results will lead to extensions of the
generic model in various aspects and to the derivation of
simplified – more abstract – models.

References

[1] The Online Industrial Ethernet Book (Jan. 2006),
[Online]. Available:
http://ethernet.industrialnetworking.com/ieb/fieldbus.asp

[2] Beckhoff, (Jan. 2006), EtherCAT - Ethernet for Control
Automation Technology [Online]. Available:
http://www.ethercat.org/

[3] Siemens, (Jan. 2006), Industrial Ethernet [Online].
Available: http://www.automation.siemens.com/net/html

[4] Schneider Electric, (Jan. 2006), Transparent Ready
[Online]. Available:
http://www.transparentfactory.com/en/index.htm

[5] P. Ferrari, A. Flammini, D.Marioli, and A.Taroni,
“Experimental evaluation of PROFINET performance”,
in Proc. WFCS 2004, Sept. 2004.

[6] G. Juanole, “Quality of service of communication
networks and distributed automation: models and
performances”, in Proc. of 15th Triennial IFAC World
Congress, July 2002.

[7] J.-Y. Le Boudec and P. Thiran. “Network calculus: a
theory of deterministic queuing systems for the Internet”,
In Lecture Notes in computer science, volume 2050,
Springer Verlag, 2001.

[8] B. Ben Hédia, F. Jumel and J-P. Babau, “Formal
Evaluation of Quality of Service for Data Acquisition
Systems”, In Proc. of FDL'05, 2005.

[9] N. Pereira, E. Tovar, and L. M. Pinho, “Timeliness in
COTS Factory-floor distributed systems: what role for
simulation?”, in Proc. WFCS 2004, Sept. 2004.

[10] “Carrier sense multiple access with collision detection
(CSMA/CD) access method and physical layer
specifications”, IEEE standards 802.3, IEEE computer
society, Mar. 2002.

[11] J. Jasperneite and P. Neumann, “How to guarantee real-
time behavior using Ethernet”, in Proc. 11th IFAC
Symposium on Information Control Problems in
Manufacturing, Apr. 2004.

[12] “Transmission Control Protocol”, RFC 793, Information
Science Institute, University of Southern California,
Marina del Rey, CA, USA, Sept. 1981.

[13] “Internet Protocol”, RFC 791, Information Science
Institute, University of Southern California, Marina del
Rey, CA, USA, Sept. 1981.

[14] Modbus application protocol specification v1.1a, (June
2004), [Online]. Available: http://www.modbus.org/docs/
Modbus_Application_Protocol_V1_1a.pdf

[15] S. Vitturi, “Some features of two fieldbuses of the IEC
61158 standard”, Computer Standards & Interfaces, vol.
22, no. 3, pp. 203–215, Aug. 2000.

[16] S. Vitturi, “On the use of Ethernet at low level of factory
communication systems”, Computer Standards &
Interfaces, vol. 23, no. 4, pp. 267–277, Sept. 2001.

[17] J.-P. Georges, E. Rondeau, and T. Divoux, “How to be
sure that Ethernet networks will satisfy the real-time
requirements ?”, in Proc. ISIE’2002, IEEE International
Symposium on Industrial Electronics, July 2002.

[18] K.C. Lee and S. Lee, “Performance evaluation of switched
Ethernet for real-time industrial communications”,
Computer Standards & Interfaces, vol. 24, no. 5, pp. 411–
423, Nov. 2002.

[19] D.A. Zaitsev, “Switched LAN simulation by colored Petri
nets”, Mathematics and Computers in Simulation, vol. 65,
pp. 245–249, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for export to IEEE PDF eXpress. May 2005. PaperCept.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

