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Abstract: Ethernet networks are promising for the harmonization of the communication 
technologies in manufacturing automation but they have not been specifically intended for 
industrial control applications. Investigations have thus become necessary to evaluate their 
performance. Most analysis approaches use probabilistic models to validate the system’s 
behavior. However, if the deterministic behavior of a system needs to be ensured 
exhaustively, formal verification techniques, like model-checking are more appropriate. 
Unfortunately the state-space explosion problem constitutes a serious obstacle. Considering 
a real-time Ethernet network as a case-study, this paper describes sophisticated modeling-
techniques, which help to alleviate the state-space explosion, for the timed model-checker 
Uppaal.  
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1. INTRODUCTION 
 
Ethernet networks are promising for the 
harmonization of the communication technologies in 
manufacturing automation. Indeed, heterogeneity 
between the various levels of the communication 
hierarchy causes problems of incompatibility, which 
complicate the exchange of information throughout 
the automation pyramid. The use of a single network 
could overcome the limits of current systems (Lo 
Bello and Mirabella, 2001).  
 
Common approaches towards the implementation of 
a real-time Ethernet solution can be classified in 
three different categories (Jasperneite, 2005). The 
Ethernet solutions belonging to class one make use 
of the common TCP/IP protocol-stack. Only an 
automation specific application protocol is added. 
But passing the TCP/IP stack introduces drastic 
delays to messages. Therefore, this solution is only 
used for soft real-time data with time frames larger 

than 100ms. This solution is implemented for 
example in Profinet Non-RT (Profinet V1), 
ModBus/IDA, Ethernet/IP. The second class is 
formed by those solutions, which do not use the 
standard TCP/IP stack for the exchange of real-time 
data. Through the reduction of the protocol stack, 
real-time messages can be exchanged within a time-
frame of about 10ms. In order to guarantee that non-
real-time traffic does not disturb the real-time traffic, 
the priority mechanisms described in IEEE 802.1Q/D 
are applied. This idea is realized (among others) by 
Profinet SRT (Profinet V2) and the Modbus I/O-
scanning mechanism. Class three of the real-time 
Ethernet concepts introduces proprietary scheduling 
mechanisms and hardware in order to reach high 
performance. Ethernet concepts like Profinet IRT 
(Profinet V3), Powerlink, EtherCAT can exchange 
real-time messages with delays smaller than one 
millisecond. As a drawback, these implementations 
require special, proprietary Ethernet devices. So it 
can be stated that high performance and determinism 



can be obtained for the price of proprietary solutions. 
Therefore, if the harmonization of heterogeneous 
communication structures with a convenient 
performance is an aim Ethernet implementations 
belonging to the second class are promising. 
 
However, the roots of these Ethernet solutions still 
lay in office communication. As a consequence they 
have not been specifically intended for industrial 
control applications. The physical architecture and 
the behavior of the networks obtained are quite 
different of those of specific fieldbusses. The use of 
IP protocols and Ethernet implies to add active 
components in the network such as switches. 
Moreover, IP-based communication is based on 
client-server relationships in contrast to specific 
fieldbusses where often master-slave structures are 
used. A number of studies and investigations have 
thus become necessary to evaluate the performance 
of the control system in order to check if it meets the 
requirements of industrial control applications such 
as manufacturing automation systems.  
 
Such automation systems can be roughly structured 
in three parts: a control level, a process level and the 
network connecting these levels. Within this paper 
the network includes Ethernet-switches, I/O-modules 
and PLC Ethernet couplers. This communication 
system forms the scope of the performance analysis 
within this paper (Fig. 1, dashed rectangle). Within 
this network, two PLCs communicate with five I/O-
modules each, whereby two I/O-modules 
communicate with both PLCs (Fig. 1 middle). Data-
exchange between the PLCs and the I/O-modules is 
initiated by the PLCs. They demand process-data 
periodically from the I/O-modules. One I/O-module 
can be polled from different PLCs, simultaneously. 
This occurs for example in a manufacturing process 
when workpieces are passed by means of a pick-and-
place unit between two parts of a plant, which are 
controlled by their own PLC (Fig. 1, process). For 
communication, the Modbus I/O-scanning service, as 
a member of the second class of industrial Ethernet 
solutions, is used and analyzed. 
 
Most analysis approaches dealing with Ethernet 
networks use simulation techniques to analyze the 
system’s behavior. However, a simulation is not 
exhaustive, i.e. it does not cover all possible cases. 
Therefore, if the deterministic behavior of a system 
needs to be ensured, simulation is not sufficient. 
However, model-checking - as an exhaustive model-

analysis technique - can provide unambiguous 
results. This technique implies to define both, the 
specification of the system and the properties to be 
checked. The Model-checker returns whether the 
system fulfills those properties in all possible cases 
or not. If the system violates the properties defined, 
the model-checker returns an error trace. Due to the 
so-called state space-explosion problem model-
checking is strongly restricted regarding the model’s 
complexity. The term state-space explosion describes 
the circumstance that the state space of transition 
systems grows exponentially with the size of the 
model. Therefore raising the system’s complexity 
leads to an enormous amount of states. This behavior 
turns into a problem if the size of the state space 
cannot be handled anymore by the computing system 
available or calculated within an appropriate time 
frame. Alleviating this obstacle and by this enabling 
the application of model-checking for analysis 
purposes in an industrial context, constitutes the main 
challenge regarding model-checking.  
 
 

2. UPPAAL MODELING TECHNIQUES 
 
Uppaal is an integrated toolset for the modeling, 
simulation and verification of real-time systems. It 
offers an intuitive graphical user interface for 
modeling, simulation and verification. It belongs to 
the class of timed, symbolic model-checkers and uses 
timed automata (Alur and Dill, 1990) for modeling 
purposes. The properties to verify, have to be 
formulated in Computation Tree Logic (CTL). The 
algorithms implemented in Uppaal use a symbolic 
model-representation in order to perform model-
checking efficiently. 
 
2.1 Known Modeling Techniques 
 
Uppaal is based on an asynchronous execution 
model, i.e. several edges in different automata can be 
executed simultaneously. During the verification 
process, all possible combinations that result from 
these interleavings have to be considered. This leads 
to a drastic enlargement of the model’s state space. 
Thus, one central concept to reduce the state space is 
the intensive usage of so-called committed locations. 
Marking a location as committed, (which is indicated 
by a C in the center of the location) means that time 
cannot pass while this location is active and no 
interleaving with other automata will occur 
(Behrmann, et al., 2004). 
 
Generally, there are at least two ways to reduce the 
model’s size. One principle to cope with the size, 
follows the divide and conquer strategy. The idea is 
to split up the whole system into independent system 
parts, which can be verified separately. When all 
parts of the system are verified subsequently, it can 
be assumed that the functionality of the entire system 
is assured. In (Giese, et al., 2003) and (Hirsch, 2004) 
such a successive component based verification 
approach is derived. Two main difficulties emerge 
when applying this strategy. It is difficult to find 
independent partial systems and it has to be verified 
that it is sufficient to verify partial systems in order 
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Fig. 1 Context and system within consideration 



to verify the whole system because combinations of 
correct working components can also lead to faulty 
behavior.  
 
Another more general principle, which needs to be 
applied in all cases, is abstraction. The main 
difficulty is, to decide which details can be neglected 
or subsumed and which have an important influence 
to the system’s behavior. It is difficult to formulate 
well-considered abstractions exactly or in a way, the 
model-checker is able to calculate the model 
efficiently. To ease this process, modeling patterns 
provide useful expertise. In (Behrmann, et al., 2004) 
several modeling pattern for Uppaal are described. 
Furthermore, the size of the state-space, which has to 
be explored in order to verify the model, is crucial 
for the computability of model-checking problems. 
The size of the state-space is a result of all possible 
variable combinations. Therefore, if an action is 
modeled to be executed at an arbitrary point in time 
all these possibilities have to be taken into account 
during the verification process. This leads inevitably 
to state explosion in non-trivial models. So it is 
necessary to narrow such degrees of freedom in the 
model. Therefore, all edges should be modeled to 
fire within well-defined time intervals, ideally at one 
distinct point in time. There are at least three 
different possibilities to force an edge to fire at a 
certain point in time. An edge can be executed at an 
absolute point in time, as soon as it becomes enabled 
or synchronized with another edge, which has to be 
in turn executed at an absolute point in time or as fast 
as possible.  
 
Unfortunately applying these timing restrictions and 
the modeling patterns is not sufficient to obtain 
computable models. More effort has to be made in 
order to meet the special algorithmic properties of 
the model-checker. A phenomenon peculiar for 
symbolic real-time model-checking is that the 
repetition of control situations (e.g. for-loops, case) 
in the exploration of the model can lead to an 
unfavorable segmentation of the state space’s data 
structure (Möller, 2002). Based on this observation, 
techniques were developed to solve this problem and 
by this speed up the verification drastically. This 
circumstance is exploited by the approximation 
techniques presented by Möller and in (Hendriks and 
Larsen, 2002). As a drawback, these approximation 

techniques cannot be used together with important 
modeling patterns. Therefore they can only be 
applied in special cases. 
 
2.2. Developed Modeling Guideline 
  
Considering all commonly known modeling 
guidelines for Uppaal, it was not possible to handle 
even a relatively small model of an Ethernet control 
system containing two switches, two Ethernet 
couplers and eight I/O modules. Hence other 
modeling techniques were needed. Keeping in mind 
the problem of segmented state-spaces caused by 
control structures and by comparing the verification 
time of a subsequently changed model along 
numerous experiments, the following modeling 
rationale was developed. 
 
Counter-variables (e.g. from control structures, like 
for-loops) should be expressed by a chain of 
committed locations, even though this leads to more 
locations or edges. 
 
This guideline will be illustrated on an automaton 
modeling a buffer (Fig. 2). Due to the fact that a 
buffer realizes the input-side of each Ethernet port, 
this is the automaton which occurs most frequently in 
the system. Even though this automaton is relatively 
simple, small changes will lead to significant 
differences in the verification time. The buffer 
automaton represents a FIFO queue. It can carry five1 
elements.  
 
Elements of this buffer are simplified Ethernet-
frames, which are implemented as a two dimensional 
array, where Frame[0] stands for the source address 
and Frame[1] for the destination address of the 
Ethernet frame. Reading or writing to a buffer is not 
time-consuming. Writing to this buffer can be 
performed by copying the new value to the variable 
Frame and subsequently activating the add? 
synchronization. By setting the get? synchronization, 
the first Ethernet-frame is copied to the variable 
Frame and all following elements in the buffer shift 
down one place (see for-loop in Fig. 2) subsequently. 
For this shiftdown, a bounded integer variable is 
used. The variable Backlog indicates how many 
messages reside in the buffer.  
 
The verification process of the whole system, which 
contains among others 16 of these buffer automata 
took 81 minutes2. The shiftdown algorithm 
implemented in the buffer is based on a for-loop. In 
Fig. 3 an adapted version of the buffer is given 
according to the modeling rationale mentioned 
above. The for-loop was replaced by a chain of 
committed locations, i.e. each iteration of the for-
loop is modeled by one committed location. Hence, 
this new buffer automaton contains three more 
locations and seven more edges but no counter 
variables. Because the only difference between these 

                                                 
 
1 However, this factor does not constitute a loss of 
generality. 
2 Calculated with an Intel Xeon, 2,6GHz, 1GB RAM. 

for-loop 

Fig. 2 Standard Buffer Automaton [BDL04]



two automata is, that the for-loop is modeled 
explicitly in the optimized automaton, it can be 
asserted that their functionality is identical. 
In fact, the verification of the system with the 
adapted buffer automaton can be verified within 4:30 
minutes instead of 81 minutes. The same behavior 
regarding the verification performance was obtained 
with other automata. So it can be assumed, that this 
constitutes a general modeling rationale. As a 
drawback, this modeling principle leads to models, 
which are more difficult to extend and to 
parameterize. For example, if the buffer described 
above, needs to be extended in its size, in the primal 
version, this can be done by simply changing a 
parameter value. Using the proposed modeling 
principle, new locations and new edges have to be 
introduced. This may lead to the necessity to create 
more slightly different model templates, where one 
template with different parameterizations was 
sufficient before. However, this effort is reasonable 
in the case studied here. 
 
 

3. OPTIMIZED UPPAAL MODELS FOR 
ETHERNET NETWORK COMPONENTS 

 
The observed system is an industrial switched 
Ethernet Network including I/O-modules, which 
couple the physical process to the network, PLC 
Ethernet devices, which connect the network to the 
controlling devices and store-and-forward Ethernet 
switches.  The protocol considered is Open Modbus 
TCP, a client-server protocol designed for soft real-
time communication between the control and the 
field level (Schneider, 2004). Consequently, data-
exchange between the PLCs and the I/O-modules is 
initiated by the PLCs. They demand process-data 
periodically from the I/O-modules. One I/O-module 
can be polled from different PLCs, simultaneously.   
Objective of the analysis is to compare the different 
network architectures (e.g. a line-, star-, or tree-
architecture with a given count of I/O-modules and 
PLC-Ethernet couplers) regarding their performance. 
The indicator for the performance is chosen 
according to the special needs of determinism of 
real-time Ethernet solutions in an industrial context. 
Therefore model-checking is used to prove for a 
given architecture that the answers to each polling 

cycle, initiated by each PLC, returns before the next 
cycle is executed, i.e. the polling cycles configured 
by the user can be hold under all circumstances 
(quality of service). Such circumstances are for 
example the increase of the response-time which 
results from the blocking behavior of a 
simultaneously polled I/O-module.  
 
To obtain these results, each network component was 
modeled within the model-checker Uppaal according 
to the modeling guidelines mentioned in section two. 
The network components considered (switches, PLC-
Ethernet couplers and I/O-modules), consist of at 
least two subcomponents, an input-buffer and a 
processor, which realizes the main function of the 
network component. The input-side of each network 
component is implemented as a buffer. Its Uppaal 
model is given in Fig. 3. For each network 
component a single delay value is used to model its 
response-time behavior, which represents a worst-
case approximation including all occurring delays 
within a component.  
 
3.1 The Switch Automaton 
 
The switches modeled, provide eight ports. Each 
switch contains one single buffer for all input-ports 
and the dispatcher, which fulfills the switching 
function. The dispatcher automaton (Fig. 4) of the 
switch detects if a messages resides in the buffer. 
Starting with the first message arrived, the message’s 
target-address is extracted. The delay dSW stands for 
this procedure. Afterwards the dispatcher automaton 
forwards the message to the switchport, where the 
target address can be found. This target can be a 
terminal device, which is directly connected to the 
switch or the input-port of another switch, if the 
addressed component is not reachable directly. 
Thanks to this mechanism, switches can be arbitrarily 
cascaded. The sending rate of the switch is given to 
rSW = 1/ dSW. The n-th element in the buffer is 
forwarded with a delay of tSW,n = n ⋅ dSW. 

 
Fig. 4 The Uppaal Automaton for the Switch (the 

Variable N stands for the number of addressable 
Network components) 

Fig. 3 Adapted Uppaal Buffer Automaton 



3.2 The I/O-Module Automaton 
 
An I/O-Module represents a terminal device, which 
collects digital process data and sends them as one 
Ethernet frame back to the PLC, which requested the 
data. This process takes the time dIOM. An I/O-
module contains one buffer at its input and another 
component called data-engine, which realizes the 
main functionality. Due to the fact that one I/O 
module can only be connected to one switch, which 
can in turn send two messages with a minimum gap 
of dSW, it can be assured that two messages arrive at 
one I/O-Module with a minimum ∆t = (t2-t1)≥ dSW. 
Therefore, the answer to a second message which 
arrives within (t1 + dSW) < t2 < (t1 + dIOM) will be sent 
from the I/O-module at tA,2 = t1 + 2dIOM. The sending 
rate of an I/O-module is given to rIOM = 1 / dIOM. 

 
3.3 The PLC’s Ethernet Coupler Automaton 
 
The PLC’s Ethernet coupler (Fig. 5) periodically 
sends a burst of N (which corresponds to the number 
of scanned I/O-modules of this PLC) messages to the 
different I/O-modules within its scope. This scanning 
period tSC is configured by the user. Moreover, 
processing one message (sending or receiving) takes 
the time dPLC . For the PLC’s Ethernet coupler it is 
assumed that the treatment of incoming and outgoing 
messages is handled by one CPU, so its maximal 
sending-rate depends on the frequency of incoming 
messages and vice versa. For the correct behavior of 
the system, it has to be assured that treating 
incoming messages from scancycle k-1 do not 
disturb sending messages in cycle k. Hence, all 
answers to scancycles k-1 have to be processed by 
the PLC’s Ethernet coupler before scancycle k is 
initialized. If the value for tSC is chosen conveniently 
high, no message will be sent within 
N ⋅ dPLC < t < tSC. So the sending process will not be 
disturbed by the receiving process and vice versa. 
Therefore the sending rate of a PLC is given to 
rPLC = 1/ dPLC. Consequently, the receiving rate 
equals the sending rate. If the value for tSC is too 

small undesired behavior occurs. This will be 
detected during the formal verification. 
 
3.4 Performance Analysis Results 
 
Fig. 6 shows the results of the performance analysis 
through model-checking of three different network 
topologies, whereby all architectures contain the 
same number of PLC Ethernet devices and I/O-
modules and the same I/O-scanning configuration. 
The results in Fig. 6 show three different areas. The 
leftmost part of each diagram (dark grey) contains all 
configurations of scanning-times of PLC1 and PLC2 
which lead to undesired behavior. The rightmost part 
of each diagram (white) shows all configurations 
where only desired behavior occurs. Between these 
two areas the border is fuzzy. In the light grey part in 
the middle of the diagrams, the results toggle due to 
beneficial synchronizations among the single 
processes. But such exact synchronizations cannot be 
realized in a real network, so these points represent 
only theoretical values. Regarding the performance 
analysis it can be stated that a topology with less 
switches is beneficial.  
 
These results were validated against a simulation, 
which was in turn validated against measures on a 
real network. This indirect validation had to be used 
because, it was not possible to configure the 
hardware available in a way that undesired behavior 
can occur. In order to obtain undesired behavior it 
would be necessary to an Ethernet network with 
more than 30 I/O-modules (Schneider, 2004). Such a 
number of I/O-modules was not available. Another 
possibility would have been to configure polling 
cycles with the values given in Fig. 6 (tSC  < 5ms). 
Due to the restriction of the engineering software the 
fastest scanning periods are 10ms. Here the 
simulation developed by Poulard (Poulard, et al., 
2004) offered much more flexibility. The comparison 
between the simulation results and the results 
obtained by means of model-checking showed a very 
good coherence. 

Fig. 5 Uppaal Automaton for the PLC's Ethernet coupler 
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4. SUMMARY AND OUTLOOK 
 
This paper presented commonly known and new 
modeling techniques which can be used in order to 
cope with the state-space-explosion problem. 
Further, optimized Uppaal models for standard 
Ethernet network components and their according 
real-time behavior were given. Finally the developed 
models were applied within a case-study, where the 
real-time capability of a standard Ethernet network 
with client-server communication was discussed. 
  
The results of the performance analysis are surely 
not new nor very surprising. But the way these 
results were obtained is new and offers another 
quality compared to those values obtained by non 
exhaustive analysis processes like simulations. In 
fact the more interesting result is that it is possible to 
verify models, which have a degree of complexity 
similar to other analysis-models, like simulations.  
 
Regarding the real-time performance of Ethernet, 
model-checking can be used complementary to 
simulation approaches like discussed by Jasperneite  
(Jasperneite, 2002) or Poulard. But the area of 
application of model-checking and the discussed 
modeling guidelines is not restricted to a certain 
domain. Therefore this paper showed also that and 
how model-checking can be used in order to verify 
the real-time behavior of critical systems, which 
occur usually in the field of manufacturing 
automation. 
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