
HAL Id: hal-00361042
https://hal.science/hal-00361042

Submitted on 13 Feb 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PERFORMANCE ANALYSIS OF INDUSTRIAL
ETHERNET NETWORKS BY MEANS OF TIMED

MODEL-CHECKING
Daniel Witsch, Birgit Vogel-Heuser, Jean-Marc Faure, Gaëlle Marsal

To cite this version:
Daniel Witsch, Birgit Vogel-Heuser, Jean-Marc Faure, Gaëlle Marsal. PERFORMANCE ANALYSIS
OF INDUSTRIAL ETHERNET NETWORKS BY MEANS OF TIMED MODEL-CHECKING. 12th
IFAC Symposium on Information Control Problems in Manufacturing, INCOM 2006, Saint-Etienne
(France), May 2006, May 2006, France. pp. 101-106. �hal-00361042�

https://hal.science/hal-00361042
https://hal.archives-ouvertes.fr

PERFORMANCE ANALYSIS OF INDUSTRIAL ETHERNET NETWORKS BY
MEANS OF TIMED MODEL-CHECKING

Daniel Witsch1, Birgit Vogel-Heuser1,

Jean-Marc Faure2, Gaëlle Marsal2

1 University of Wuppertal, Germany
{witsch; bvogel} @uni-wuppertal.de

² Ecole Normale Superieure de Cachan, France

{faure; gaelle.marsal} @lurpa.ens-cachan.fr

Abstract: Ethernet networks are promising for the harmonization of the communication
technologies in manufacturing automation but they have not been specifically intended for
industrial control applications. Investigations have thus become necessary to evaluate their
performance. Most analysis approaches use probabilistic models to validate the system’s
behavior. However, if the deterministic behavior of a system needs to be ensured
exhaustively, formal verification techniques, like model-checking are more appropriate.
Unfortunately the state-space explosion problem constitutes a serious obstacle. Considering
a real-time Ethernet network as a case-study, this paper describes sophisticated modeling-
techniques, which help to alleviate the state-space explosion, for the timed model-checker
Uppaal.

Keywords: Ethernet, Queuing network models, Real-time communication, Formal
verification

1. INTRODUCTION

Ethernet networks are promising for the
harmonization of the communication technologies in
manufacturing automation. Indeed, heterogeneity
between the various levels of the communication
hierarchy causes problems of incompatibility, which
complicate the exchange of information throughout
the automation pyramid. The use of a single network
could overcome the limits of current systems (Lo
Bello and Mirabella, 2001).

Common approaches towards the implementation of
a real-time Ethernet solution can be classified in
three different categories (Jasperneite, 2005). The
Ethernet solutions belonging to class one make use
of the common TCP/IP protocol-stack. Only an
automation specific application protocol is added.
But passing the TCP/IP stack introduces drastic
delays to messages. Therefore, this solution is only
used for soft real-time data with time frames larger

than 100ms. This solution is implemented for
example in Profinet Non-RT (Profinet V1),
ModBus/IDA, Ethernet/IP. The second class is
formed by those solutions, which do not use the
standard TCP/IP stack for the exchange of real-time
data. Through the reduction of the protocol stack,
real-time messages can be exchanged within a time-
frame of about 10ms. In order to guarantee that non-
real-time traffic does not disturb the real-time traffic,
the priority mechanisms described in IEEE 802.1Q/D
are applied. This idea is realized (among others) by
Profinet SRT (Profinet V2) and the Modbus I/O-
scanning mechanism. Class three of the real-time
Ethernet concepts introduces proprietary scheduling
mechanisms and hardware in order to reach high
performance. Ethernet concepts like Profinet IRT
(Profinet V3), Powerlink, EtherCAT can exchange
real-time messages with delays smaller than one
millisecond. As a drawback, these implementations
require special, proprietary Ethernet devices. So it
can be stated that high performance and determinism

can be obtained for the price of proprietary solutions.
Therefore, if the harmonization of heterogeneous
communication structures with a convenient
performance is an aim Ethernet implementations
belonging to the second class are promising.

However, the roots of these Ethernet solutions still
lay in office communication. As a consequence they
have not been specifically intended for industrial
control applications. The physical architecture and
the behavior of the networks obtained are quite
different of those of specific fieldbusses. The use of
IP protocols and Ethernet implies to add active
components in the network such as switches.
Moreover, IP-based communication is based on
client-server relationships in contrast to specific
fieldbusses where often master-slave structures are
used. A number of studies and investigations have
thus become necessary to evaluate the performance
of the control system in order to check if it meets the
requirements of industrial control applications such
as manufacturing automation systems.

Such automation systems can be roughly structured
in three parts: a control level, a process level and the
network connecting these levels. Within this paper
the network includes Ethernet-switches, I/O-modules
and PLC Ethernet couplers. This communication
system forms the scope of the performance analysis
within this paper (Fig. 1, dashed rectangle). Within
this network, two PLCs communicate with five I/O-
modules each, whereby two I/O-modules
communicate with both PLCs (Fig. 1 middle). Data-
exchange between the PLCs and the I/O-modules is
initiated by the PLCs. They demand process-data
periodically from the I/O-modules. One I/O-module
can be polled from different PLCs, simultaneously.
This occurs for example in a manufacturing process
when workpieces are passed by means of a pick-and-
place unit between two parts of a plant, which are
controlled by their own PLC (Fig. 1, process). For
communication, the Modbus I/O-scanning service, as
a member of the second class of industrial Ethernet
solutions, is used and analyzed.

Most analysis approaches dealing with Ethernet
networks use simulation techniques to analyze the
system’s behavior. However, a simulation is not
exhaustive, i.e. it does not cover all possible cases.
Therefore, if the deterministic behavior of a system
needs to be ensured, simulation is not sufficient.
However, model-checking - as an exhaustive model-

analysis technique - can provide unambiguous
results. This technique implies to define both, the
specification of the system and the properties to be
checked. The Model-checker returns whether the
system fulfills those properties in all possible cases
or not. If the system violates the properties defined,
the model-checker returns an error trace. Due to the
so-called state space-explosion problem model-
checking is strongly restricted regarding the model’s
complexity. The term state-space explosion describes
the circumstance that the state space of transition
systems grows exponentially with the size of the
model. Therefore raising the system’s complexity
leads to an enormous amount of states. This behavior
turns into a problem if the size of the state space
cannot be handled anymore by the computing system
available or calculated within an appropriate time
frame. Alleviating this obstacle and by this enabling
the application of model-checking for analysis
purposes in an industrial context, constitutes the main
challenge regarding model-checking.

2. UPPAAL MODELING TECHNIQUES

Uppaal is an integrated toolset for the modeling,
simulation and verification of real-time systems. It
offers an intuitive graphical user interface for
modeling, simulation and verification. It belongs to
the class of timed, symbolic model-checkers and uses
timed automata (Alur and Dill, 1990) for modeling
purposes. The properties to verify, have to be
formulated in Computation Tree Logic (CTL). The
algorithms implemented in Uppaal use a symbolic
model-representation in order to perform model-
checking efficiently.

2.1 Known Modeling Techniques

Uppaal is based on an asynchronous execution
model, i.e. several edges in different automata can be
executed simultaneously. During the verification
process, all possible combinations that result from
these interleavings have to be considered. This leads
to a drastic enlargement of the model’s state space.
Thus, one central concept to reduce the state space is
the intensive usage of so-called committed locations.
Marking a location as committed, (which is indicated
by a C in the center of the location) means that time
cannot pass while this location is active and no
interleaving with other automata will occur
(Behrmann, et al., 2004).

Generally, there are at least two ways to reduce the
model’s size. One principle to cope with the size,
follows the divide and conquer strategy. The idea is
to split up the whole system into independent system
parts, which can be verified separately. When all
parts of the system are verified subsequently, it can
be assumed that the functionality of the entire system
is assured. In (Giese, et al., 2003) and (Hirsch, 2004)
such a successive component based verification
approach is derived. Two main difficulties emerge
when applying this strategy. It is difficult to find
independent partial systems and it has to be verified
that it is sufficient to verify partial systems in order

Process (e.g. material flow with pick&place unit)

Network

PLC

Switch

PLC Ethernet coupler

I/O-module

Control

Material Flow B Material Flow A pic&place

Fig. 1 Context and system within consideration

to verify the whole system because combinations of
correct working components can also lead to faulty
behavior.

Another more general principle, which needs to be
applied in all cases, is abstraction. The main
difficulty is, to decide which details can be neglected
or subsumed and which have an important influence
to the system’s behavior. It is difficult to formulate
well-considered abstractions exactly or in a way, the
model-checker is able to calculate the model
efficiently. To ease this process, modeling patterns
provide useful expertise. In (Behrmann, et al., 2004)
several modeling pattern for Uppaal are described.
Furthermore, the size of the state-space, which has to
be explored in order to verify the model, is crucial
for the computability of model-checking problems.
The size of the state-space is a result of all possible
variable combinations. Therefore, if an action is
modeled to be executed at an arbitrary point in time
all these possibilities have to be taken into account
during the verification process. This leads inevitably
to state explosion in non-trivial models. So it is
necessary to narrow such degrees of freedom in the
model. Therefore, all edges should be modeled to
fire within well-defined time intervals, ideally at one
distinct point in time. There are at least three
different possibilities to force an edge to fire at a
certain point in time. An edge can be executed at an
absolute point in time, as soon as it becomes enabled
or synchronized with another edge, which has to be
in turn executed at an absolute point in time or as fast
as possible.

Unfortunately applying these timing restrictions and
the modeling patterns is not sufficient to obtain
computable models. More effort has to be made in
order to meet the special algorithmic properties of
the model-checker. A phenomenon peculiar for
symbolic real-time model-checking is that the
repetition of control situations (e.g. for-loops, case)
in the exploration of the model can lead to an
unfavorable segmentation of the state space’s data
structure (Möller, 2002). Based on this observation,
techniques were developed to solve this problem and
by this speed up the verification drastically. This
circumstance is exploited by the approximation
techniques presented by Möller and in (Hendriks and
Larsen, 2002). As a drawback, these approximation

techniques cannot be used together with important
modeling patterns. Therefore they can only be
applied in special cases.

2.2. Developed Modeling Guideline

Considering all commonly known modeling
guidelines for Uppaal, it was not possible to handle
even a relatively small model of an Ethernet control
system containing two switches, two Ethernet
couplers and eight I/O modules. Hence other
modeling techniques were needed. Keeping in mind
the problem of segmented state-spaces caused by
control structures and by comparing the verification
time of a subsequently changed model along
numerous experiments, the following modeling
rationale was developed.

Counter-variables (e.g. from control structures, like
for-loops) should be expressed by a chain of
committed locations, even though this leads to more
locations or edges.

This guideline will be illustrated on an automaton
modeling a buffer (Fig. 2). Due to the fact that a
buffer realizes the input-side of each Ethernet port,
this is the automaton which occurs most frequently in
the system. Even though this automaton is relatively
simple, small changes will lead to significant
differences in the verification time. The buffer
automaton represents a FIFO queue. It can carry five1
elements.

Elements of this buffer are simplified Ethernet-
frames, which are implemented as a two dimensional
array, where Frame[0] stands for the source address
and Frame[1] for the destination address of the
Ethernet frame. Reading or writing to a buffer is not
time-consuming. Writing to this buffer can be
performed by copying the new value to the variable
Frame and subsequently activating the add?
synchronization. By setting the get? synchronization,
the first Ethernet-frame is copied to the variable
Frame and all following elements in the buffer shift
down one place (see for-loop in Fig. 2) subsequently.
For this shiftdown, a bounded integer variable is
used. The variable Backlog indicates how many
messages reside in the buffer.

The verification process of the whole system, which
contains among others 16 of these buffer automata
took 81 minutes2. The shiftdown algorithm
implemented in the buffer is based on a for-loop. In
Fig. 3 an adapted version of the buffer is given
according to the modeling rationale mentioned
above. The for-loop was replaced by a chain of
committed locations, i.e. each iteration of the for-
loop is modeled by one committed location. Hence,
this new buffer automaton contains three more
locations and seven more edges but no counter
variables. Because the only difference between these

1 However, this factor does not constitute a loss of
generality.
2 Calculated with an Intel Xeon, 2,6GHz, 1GB RAM.

for-loop

Fig. 2 Standard Buffer Automaton [BDL04]

two automata is, that the for-loop is modeled
explicitly in the optimized automaton, it can be
asserted that their functionality is identical.
In fact, the verification of the system with the
adapted buffer automaton can be verified within 4:30
minutes instead of 81 minutes. The same behavior
regarding the verification performance was obtained
with other automata. So it can be assumed, that this
constitutes a general modeling rationale. As a
drawback, this modeling principle leads to models,
which are more difficult to extend and to
parameterize. For example, if the buffer described
above, needs to be extended in its size, in the primal
version, this can be done by simply changing a
parameter value. Using the proposed modeling
principle, new locations and new edges have to be
introduced. This may lead to the necessity to create
more slightly different model templates, where one
template with different parameterizations was
sufficient before. However, this effort is reasonable
in the case studied here.

3. OPTIMIZED UPPAAL MODELS FOR
ETHERNET NETWORK COMPONENTS

The observed system is an industrial switched
Ethernet Network including I/O-modules, which
couple the physical process to the network, PLC
Ethernet devices, which connect the network to the
controlling devices and store-and-forward Ethernet
switches. The protocol considered is Open Modbus
TCP, a client-server protocol designed for soft real-
time communication between the control and the
field level (Schneider, 2004). Consequently, data-
exchange between the PLCs and the I/O-modules is
initiated by the PLCs. They demand process-data
periodically from the I/O-modules. One I/O-module
can be polled from different PLCs, simultaneously.
Objective of the analysis is to compare the different
network architectures (e.g. a line-, star-, or tree-
architecture with a given count of I/O-modules and
PLC-Ethernet couplers) regarding their performance.
The indicator for the performance is chosen
according to the special needs of determinism of
real-time Ethernet solutions in an industrial context.
Therefore model-checking is used to prove for a
given architecture that the answers to each polling

cycle, initiated by each PLC, returns before the next
cycle is executed, i.e. the polling cycles configured
by the user can be hold under all circumstances
(quality of service). Such circumstances are for
example the increase of the response-time which
results from the blocking behavior of a
simultaneously polled I/O-module.

To obtain these results, each network component was
modeled within the model-checker Uppaal according
to the modeling guidelines mentioned in section two.
The network components considered (switches, PLC-
Ethernet couplers and I/O-modules), consist of at
least two subcomponents, an input-buffer and a
processor, which realizes the main function of the
network component. The input-side of each network
component is implemented as a buffer. Its Uppaal
model is given in Fig. 3. For each network
component a single delay value is used to model its
response-time behavior, which represents a worst-
case approximation including all occurring delays
within a component.

3.1 The Switch Automaton

The switches modeled, provide eight ports. Each
switch contains one single buffer for all input-ports
and the dispatcher, which fulfills the switching
function. The dispatcher automaton (Fig. 4) of the
switch detects if a messages resides in the buffer.
Starting with the first message arrived, the message’s
target-address is extracted. The delay dSW stands for
this procedure. Afterwards the dispatcher automaton
forwards the message to the switchport, where the
target address can be found. This target can be a
terminal device, which is directly connected to the
switch or the input-port of another switch, if the
addressed component is not reachable directly.
Thanks to this mechanism, switches can be arbitrarily
cascaded. The sending rate of the switch is given to
rSW = 1/ dSW. The n-th element in the buffer is
forwarded with a delay of tSW,n = n ⋅ dSW.

Fig. 4 The Uppaal Automaton for the Switch (the

Variable N stands for the number of addressable
Network components)

Fig. 3 Adapted Uppaal Buffer Automaton

3.2 The I/O-Module Automaton

An I/O-Module represents a terminal device, which
collects digital process data and sends them as one
Ethernet frame back to the PLC, which requested the
data. This process takes the time dIOM. An I/O-
module contains one buffer at its input and another
component called data-engine, which realizes the
main functionality. Due to the fact that one I/O
module can only be connected to one switch, which
can in turn send two messages with a minimum gap
of dSW, it can be assured that two messages arrive at
one I/O-Module with a minimum ∆t = (t2-t1)≥ dSW.
Therefore, the answer to a second message which
arrives within (t1 + dSW) < t2 < (t1 + dIOM) will be sent
from the I/O-module at tA,2 = t1 + 2dIOM. The sending
rate of an I/O-module is given to rIOM = 1 / dIOM.

3.3 The PLC’s Ethernet Coupler Automaton

The PLC’s Ethernet coupler (Fig. 5) periodically
sends a burst of N (which corresponds to the number
of scanned I/O-modules of this PLC) messages to the
different I/O-modules within its scope. This scanning
period tSC is configured by the user. Moreover,
processing one message (sending or receiving) takes
the time dPLC . For the PLC’s Ethernet coupler it is
assumed that the treatment of incoming and outgoing
messages is handled by one CPU, so its maximal
sending-rate depends on the frequency of incoming
messages and vice versa. For the correct behavior of
the system, it has to be assured that treating
incoming messages from scancycle k-1 do not
disturb sending messages in cycle k. Hence, all
answers to scancycles k-1 have to be processed by
the PLC’s Ethernet coupler before scancycle k is
initialized. If the value for tSC is chosen conveniently
high, no message will be sent within
N ⋅ dPLC < t < tSC. So the sending process will not be
disturbed by the receiving process and vice versa.
Therefore the sending rate of a PLC is given to
rPLC = 1/ dPLC. Consequently, the receiving rate
equals the sending rate. If the value for tSC is too

small undesired behavior occurs. This will be
detected during the formal verification.

3.4 Performance Analysis Results

Fig. 6 shows the results of the performance analysis
through model-checking of three different network
topologies, whereby all architectures contain the
same number of PLC Ethernet devices and I/O-
modules and the same I/O-scanning configuration.
The results in Fig. 6 show three different areas. The
leftmost part of each diagram (dark grey) contains all
configurations of scanning-times of PLC1 and PLC2
which lead to undesired behavior. The rightmost part
of each diagram (white) shows all configurations
where only desired behavior occurs. Between these
two areas the border is fuzzy. In the light grey part in
the middle of the diagrams, the results toggle due to
beneficial synchronizations among the single
processes. But such exact synchronizations cannot be
realized in a real network, so these points represent
only theoretical values. Regarding the performance
analysis it can be stated that a topology with less
switches is beneficial.

These results were validated against a simulation,
which was in turn validated against measures on a
real network. This indirect validation had to be used
because, it was not possible to configure the
hardware available in a way that undesired behavior
can occur. In order to obtain undesired behavior it
would be necessary to an Ethernet network with
more than 30 I/O-modules (Schneider, 2004). Such a
number of I/O-modules was not available. Another
possibility would have been to configure polling
cycles with the values given in Fig. 6 (tSC < 5ms).
Due to the restriction of the engineering software the
fastest scanning periods are 10ms. Here the
simulation developed by Poulard (Poulard, et al.,
2004) offered much more flexibility. The comparison
between the simulation results and the results
obtained by means of model-checking showed a very
good coherence.

Fig. 5 Uppaal Automaton for the PLC's Ethernet coupler

4,4 4,5 4,6 4,7 4,8 4,9 Scancycle
PLC1 [ms]

8

6

4

Scancycle PLC2 [ms]

8

6

4
8

6

4

area of undesired behavior

area of desired behavior

area of desired and undesired
behavior

next scancyles sent before previous
scancycles received (undesired behavior)

next scancyles sent after previous
scancycles received (desired behavior)

Architecture 3

Architecture 2

Architecture 1

Fig. 6 Performance Analysis Results

4. SUMMARY AND OUTLOOK

This paper presented commonly known and new
modeling techniques which can be used in order to
cope with the state-space-explosion problem.
Further, optimized Uppaal models for standard
Ethernet network components and their according
real-time behavior were given. Finally the developed
models were applied within a case-study, where the
real-time capability of a standard Ethernet network
with client-server communication was discussed.

The results of the performance analysis are surely
not new nor very surprising. But the way these
results were obtained is new and offers another
quality compared to those values obtained by non
exhaustive analysis processes like simulations. In
fact the more interesting result is that it is possible to
verify models, which have a degree of complexity
similar to other analysis-models, like simulations.

Regarding the real-time performance of Ethernet,
model-checking can be used complementary to
simulation approaches like discussed by Jasperneite
(Jasperneite, 2002) or Poulard. But the area of
application of model-checking and the discussed
modeling guidelines is not restricted to a certain
domain. Therefore this paper showed also that and
how model-checking can be used in order to verify
the real-time behavior of critical systems, which
occur usually in the field of manufacturing
automation.

5. REFERENCES

Alur, R., D.L. Dill (1990). Automata for modeling
real-time systems. In: Proc. of Int. Colloquium
on Algorithms, Languages, and Programming,
volume 443 of LNCS, pages 322–335.

Behrmann, G., A. David and K.G. Larsen (2004). A
Tutorial on Uppaal, Department of Computer
Science, Aalborg University, Denmark.

Giese, H., M. Tichy, S. Burmester, W. Schäfer and
S. Flake (2003). Towards the Compositional
Verification of Real-Time UML Designs. In
Proceedings of ESEC/FSE’03, September 1–5,

2003, Helsinki, Finland, ACM Press, New York,
NY, USA.

Hirsch, M. (2004). Effizientes Model Checking von
UML-RT Modellen und Realtime Statecharts mit
UPPAAL, Diploma Thesis Universität
Paderborn, Germany.

Hendriks, M., K.G. Larsen (2002). Exact
acceleration of real-time model checking. In
Theory and Practice of Timed Systems, volume
65 of Electronic Notes in Theoretical Computer
Science. Elsevier Science Publishers, Oxford,
England.

Jasperneite, J. (2002). Performance Evaluation of
a Class-of-service based Local Area Network
for using at the Field device level. Dissertation,
IFAK Magdeburg, Germany, Shaker, Aachen,
Germany.

Jasperneite, J. (2005): Echtzeit-Ethernet im
Überblick. In atp - Automatisierungstechnische
Praxis, Oldenbourg, No. 3, pp. 29 - 34.

Lo Bello, L., O. Mirabella (2001). Design Issues for
Ethernet in Automation. In: Proc. of ETFA'2001,
8th IEEE International Conference on Emerging
Technologies and Factory Automation, Antibes
Juan-Les-Pins, France.

Madl, G., S. Abdelwahed and D.C. Schmidt (2005).
Verifying Distributed Real-time Properties of
Embedded Systems via Graph Transformations
and Model Checking, International Journal of
Time-Critical Computing Systems, invited
paper, accepted.

Möller, M.O. (2002). Structure and Hierarchy in
Real-Time Systems, Dissertation at the
University of Aarhus, Denmark.

Poulard, G., B. Denis, J.M. Faure. (2004)
Modélisation par réseau de Petri coloré des
architectures de commande distribuées sur
réseau de terrain Ethernet et TCP/IP. 5ème
Conférence francophone de MOdélisation et
SIMulation, MOSIM04, Nantes (France), pp.
405-412.

Schneider Electric (2004). Telemechanique:
Automation and control, Ethernet TCP/IP and
Web technologies Catalogue. Available online:
http://coffer.elmatik.ee/info/kataloogid/Telemeca
nique/Ethernet%20TCPIP%20and%20Web%20t
echnologies%20-%2007.04.pdf (27/06/05).

