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Abstract

In this paper, we present a new objective function for scheduling on parallel ma-
chines: minimizing the number of machines for schedules of minimum length. We
study its complexity and we prove the NP-completeness of this problem, even if
there is no precedences or for unitary execution times. We propose several polyno-
mial algorithms for various particular cases.
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1 Introduction

In parallel scheduling, a compromise must usually be made between efficiency
(the length of a schedule) and costs (the number of processors). Whenever
efficiency is critical, one is just interested in minimum-length schedules and
the natural question that arises is to minimize the costs, that is to find the
minimum number of processors required to perform the whole schedule in the
shortest possible time.
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This is typically what happens when designing systolic networks. A systolic
network is a particular parallel architecture made of several identical proces-
sors regularly connected that are synchronized at every clock-top. A systolic
network is designed for a particular function and, thanks to its regularity and
uniformity, it is a good candidate as an efficient and specialized computing de-
vice without prohibitive costs — in particular for embedded applications [1,2].

The design of a systolic network starts with the construction of the graph of
its elementary transformations. The global function that must be computed
is decomposed into elementary transformations: each of these transformations
corresponds to a task that a processor will have to process, and the graph
is indeed the precedence graph of these transformations. The second step is
then to schedule this precedence graph: under the constraint of efficiency that
the whole function is computed in the shortest possible amount of time, the
cost of the systolic network — that is its number of processors — must be
minimized.

In this paper, we focus on this second step. Hence we assume that the graph of
the elementary transformations is given. Furthermore, in a systolic network,
processors are synchronized at every clock-top and all tasks are of the same
(unitary) length. We will put a particular emphasis on this special case.

In the remaining parts of this paper, we first introduce a formal definition
of the problem we deal with (Section 2). We then study the complexity of
this problem, in the general case (Section 3) and for unitary processing times
(Section 4). In an appendix, we shall briefly discuss the practical solution of
the problem.

2 Formalization

The problem of minimizing the number of machines has already been studied
but in different and particular contexts (e.g., with fixed processing dates and
additional constraints [3] or with communication delays [4,5]). In this paper,
we consider a classical scheduling environment on parallel machines: n tasks
and m processors; a task Tj requires an execution time pj and precedence con-
straints between tasks are represented as a directed graph prec. Such systems
have already been extensively studied, in particular for the objective of mini-
mizing the completion time Cmax for a given number of machines [6,7]. We are
interested, here, in the new criterion of minimizing the number of machines
required to be able to schedule every task such that the whole schedule is of
minimum length. More precisely, let C = Cm=∞

max be the minimum length for
a schedule using an infinite number of machines; this length C is indeed the
length of a critical (longest) path in the precedence graph prec. We are looking
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Fig. 1. (a) Seven tasks with precedences and (b) a minimum-length schedule using
only 2 machines.

for m∗, the smallest possible number of machines m that allows to schedule
all tasks within C. Figure 1 shows an example of such a schedule.

Extending the 3-field notation [6], we shall denote this problem P |prec,
Cm=∞

max |m. The problem P |prec, Cm=∞
max |m is obviously very close to, but dif-

ferent from, the classical P |prec|Cmax: here, the schedule length is not part
of the objective but appears as a constraint. Formally the decision problem
P |prec, Cm=∞

max |m is:

Problem P |prec, Cm=∞
max |m :

instance : a set T of tasks ; a processing time pj for each task Tj ; a partial
order prec on the tasks ; a bound m.
question : is there a schedule of T , of minimum length, that respects the
precedences prec and uses at most m processors?

In this formulation, the fact that a solution must be of minimum length (and
not just shorter than a given arbitrary bound) is essential and, in particular,
distinguishes P |prec, Cm=∞

max |m from P |prec|Cmax. However, it must be noted
that this particular constraint does not take the problem out of NP, since
computing the length of a longest path in an acyclic network can be done in
polynomial time [8].

3 Arbitrary processing times

In the case of arbitrary processing times, the problem is NP-complete, even if
there are no precedences. In this case, the critical path is simply the longest
task, of length C = maxj pj . This task will be assigned to a processor, and
then all remaining tasks (equivalent to objects) will have to be scheduled on
the remaining m−1 processors (equivalent to bins of height C). This is indeed
similar to the Bin-Packing problem [9], and hence similar results hold:

Proposition 1 P |Cm=∞
max |m is NP -complete in the strong sense.
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Proposition 2 P |Cm=∞
max |m is not approximable within less than 4/3. More

precisely, if P 6= NP then, for every approximation algorithm A solving
P |Cm=∞

max |m, there is an instance I such that:

mA(I) ≥ 4

3
m∗(I)

where mA(I) is the value of the solution provided by A, and m∗(I) is the
optimal value.

PROOF. We shall use the classical trick that if an algorithm A provides, for
every instance I, a solution such that: mA(I) < 4

3
m∗(I), then it solves the

NP-complete problem Bipartition.

Consider an instance of Bipartition: n integers a1, a2, . . . , an. Let B =
∑n

i=1 ai. The question is: is there a sub-set of indices S ⊂ N = {1, 2, . . . , n}
such that:

∑

i∈S ai =
∑

i∈N\S ai = B
2
? For the given instance, we define the

following instance for P |Cm=∞
max |m: n + 1 tasks, the n first ones having the ai

as processing times, and the last one having length B/2. There are no prece-
dences. With such a transformation, there is a schedule on 3 processors if and
only if Bipartition has a “yes” answer; otherwise, at least 4 processors are
required. An algorithm A with the guaranty that mA(I) < 4

3
m∗(I) would op-

timally solve such an instance and so would solve Bipartition. Hence it does
not exist unless P = NP .

In the case of precedences, a stronger bound holds:

Proposition 3 P |prec, Cm=∞
max |m is not approximable within less than 3/2.

More precisely, if P 6= NP then, for every approximation algorithm A solving
P |prec, Cm=∞

max |m, there is an instance I such that:

mA(I) ≥ 3

2
m∗(I)

where mA(I) is the value of the solution provided by A, and m∗(I) is the
optimal value.

PROOF. The proof is similar to the preceding one. To the n integers a1, a2,
. . . , an and the bound B of a Bipartition instance corresponds an instance
of P |prec, Cm=∞

max |m with n + 4 tasks such that: pi = ai, i = 1, 2, . . . , n and
pn+1 = pn+4 = B/2 and pn+2 = pn+3 = 1. Furthermore Tn+1 precedes Tn+2 and
Tn+3, which both precede Tn+4; there are no other precedences. For such an
instance, there is a solution to P |prec, Cm=∞

max |m using only 2 machines if and
only if the corresponding Bipartition is possible (see Figure 2). Hence, an
algorithm with the guaranty that mA(I) < 3

2
m∗(I) would solve Bipartition,

and hence does not exist if P 6= NP .
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Fig. 2. An instance of P |prec, Cm=∞
max |m corresponding to an instance of Biparti-

tion.

A simple but useful lower bound on the optimal number of machines exists:

m∗ ≥

⌈
∑n

j=1 pj

C

⌉

.

This bound holds whatever the precedences are; in the case of unitary tasks, it
becomes m∗ ≥

⌈

n
C

⌉

. Furthermore, it can be improved if the precedence graph
is made of several serial components:

Proposition 4 A lower bound for P |prec, Cm=∞
max |m is:

m∗ ≥ max
i=1..q

⌈

p(Si)

Ci

⌉

where {S1, S2, . . . , Sq} is a serial decomposition of prec (every task of Si pre-
cedes every task of Si+1), p(Si) is the sum of the execution times over the tasks
of Si and Ci is the length of a longest path in Si.

The principle of the serial decomposition is indeed a general phenomenon for
this problem, since the components of such a decomposition are independent
for the considered objective. Hence, any result for a particular class of graphs
can directly be extended to the case of serial compositions of such graphs.

With arbitrary processing times, a special case is polynomially solvable where
every task is part of a critical path. In this case, processing dates are fixed
and it is enough to compute the instant when the greatest number of tasks
have to be performed simultaneously.

Proposition 5 The special case of P |prec, Cm=∞
max |m where every task belongs

to a critical path of prec can be solved in polynomial time O(|prec| + n ln n),
and even O(|prec| + n) if the processing times are unitary.
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Fig. 3. A solution if every task belongs to a critical path and pj = 1.

PROOF. A possible solution is built as follows. First, compute for each task
its starting and finishing dates (which are fixed): this can be done in time
linear in the number of edges and the number of tasks, that is O(|prec| + n)
in the worst case, for an acyclic graph. Then, sort the list of these 2n dates in
non-decreasing order (this takes O(n lnn)) and traverse it to determine how
many tasks are executed during each of the 2n intervals of time: the maximum
value is m∗, the value one is looking for. The whole procedure runs in time
O(|prec| + n lnn).

In the case of unitary tasks, we call Li the set of the tasks executed between
time i − 1 and i, defined for i = 1, . . . , C ≤ n. A single traversal of the graph
prec is enough to compute, instead of the execution dates of each task, the
cardinality of each Li. The optimal value is then found in O(n) as m∗ =
maxi |Li|. The whole procedure runs in time O(|prec|+ n) (see Figure 3).

4 Unitary processing times (and preemption)

We consider now the case where every task has unitary processing time:
P |prec, pj = 1, Cm=∞

max |m. This problem is closely linked to the preemptive case.

First, remark that, in the decision problem, the number of machines m can
be bounded by the number of tasks: the size of an instance is determined by
the size of the precedence graph, |prec| = O(n2), and P |prec, pj = 1, Cm=∞

max |m
is not a numerical problem. Hence, the notion of NP-completeness and NP-
completeness in the strong sense are equivalent.

The related problem P |prec, pj = 1|Cmax is NP -complete in the general case.
For a fixed number of processors (Pm|prec, pj = 1|Cmax), the status is open for
m ≥ 3 [6], but it is solvable in polynomial time if there are only 2 processors
[10]. Hence it is not surprising that P |prec, pj = 1, Cm=∞

max |m, even with unitary
tasks, cannot be solved optimally with rules such as processing a task as early
or as late as possible (see Figure 4): indeed, this problem is NP-complete.

Proposition 6 P |prec, pj = 1, Cm=∞
max |m is NP -complete.
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Fig. 4. Seventeen unitary tasks with precedences and their (a) earliest time schedule
and (b) optimal schedule.

PROOF. We shall reduce P |prec, pj = 1|Cmax to P |prec, pj = 1, Cm=∞
max |m.

Let I be an instance of P |prec, pj = 1|Cmax: a set of n tasks of unitary length,
with a precedence graph prec, a bound C on the completion time and a bound
m on the number of processors. From this instance, we define an instance I ′

for P |prec, pj = 1, Cm=∞
max |m as follows: a number of processors m′ = m + 1, a

set of n + C tasks and a new precedence graph prec′ composed by prec and
an additional chain between the additional C dummy tasks.

Without loss of generality, we may assume that C ≤ n: hence, I ′ is a polyno-
mial transformation of I. Furthermore, I has a “yes” answer if and only if I ′

has one too: if C is shorter than the length of a critical path, then there is no
solution for I, nor for I ′. If C is at least the length of a critical path of prec
then the C dummy tasks form a critical path in prec′, and we may assume
that these tasks are all performed by the m + 1th processor. This leaves the n
real tasks of I ′ to be scheduled on m processors, which is possible if and only
if I has a solution.

As a conclusion, P |prec, pj = 1|Cmax reduces to P |prec, pj = 1, Cm=∞
max |m; since

the former is NP-complete [6,7], so is the latter.

The preemptive case P |prec, pmtn, Cm=∞
max |m is also NP-complete. Indeed, the

same proof holds, using the NP-complete problem P |prec, pmtn, pj = 1|Cmax

[6,7].

For some particular graphs, polynomial results on Pm|prec, pj = 1|Cmax can
be adapted to solve P |prec, pj = 1, Cm=∞

max |m. In particular, Hu proposed an
O(n) algorithm for trees [11,12] which, in our case, leads to the following
result.
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solution.

Proposition 7 The decision problem P |tree, pj = 1, Cm=∞
max |m can be solved

in time O(n). The optimization problem P |tree, pj = 1, Cm=∞
max |m can be solved

in time O(n ln(n)).

PROOF. Hu’s algorithm [11] solves optimally P |tree, pj = 1|Cmax in time
O(n). Then the value has just to be compared to the length of a critical path
(that can be computed in time O(n) for a tree) to solve the decision problem.
To find the optimal value m∗, the smallest number of processors such that
Hu’s algorithm finds a solution of length C, a binary search over {1, 2, . . . , n}
can be done, which provides an optimal procedure for P |tree, pj = 1, Cm=∞

max |m
running in time O(n ln(n)).

A similar approach is valid for other kinds of graphs. In particular, the case
Pm|opposing forest, pj = 1|Cmax has been solved, first by Garey, Johnson,
Tarjan and Yannakakis for m = 3 [13], and then by Dolev and Warmuth
[14]. However, their O(n2m−2 ln(n)) algorithm is exponential in the number
of machines and hence implies a non-polynomial solution when applied to
P |opposingforest, pj = 1, Cm=∞

max |m.

For the preemptive case, Muntz and Coffman [15] proposed an O(n2) algorithm
for P |pmtn, forest|Cmax. Straightforwardly:

Proposition 8 The decision problem P |pmtn, forest, Cm=∞
max |m can be solved

in time O(n2). The optimization problem P |pmtn, forest, Cm=∞
max |m can be

solved in time O(n2 ln(n)).

If, instead of a tree, the precedence graph is a set of chains, a variant of
McNaughton’s algorithm [16] provides a simple solution, as shown in Figure 5.

Proposition 9 An optimal schedule for P |chains, pj = 1, Cm=∞
max |m can be
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built in time O(n). The optimal value is:

m∗ =
⌈

n

C

⌉

.

PROOF. The announced value is a lower bound for m∗ (proposition 4). To
reach it, one can apply the following procedure: for each chain, schedule as
many as possible of the end of the chain on the last processor; if the chain
cannot be completely scheduled, add a new processor and schedule on it, as
early as possible, the extra tasks.

The arguments in this proof are also valid for arbitrary processing times if
preemptions are allowed. As a consequence, the algorithm above applies to
P |chains, pmtn, Cm=∞

max |m.

5 Conclusions

We have presented a new objective for the classical parallel scheduling en-
vironment with precedences: to minimize the number of processors required
for a minimum-length schedule. This new objective is practical and arises in
industrial applications.

We have proved that the problem is NP-complete even if there are no prece-
dences or for unitary processing times. We have proposed several polynomial
procedures for particular cases.

For a practical solution one may use constraint programming. As we briefly
present in the appendix A, even a naive implementation is enough to solve
large random instances. However, further developments are required to de-
sign a specific constraint programming system that could handle the hardest
instances. Some work on better lower and upper bounds would be valuable
too.

A Towards a practical solution using constraint programming

One may remark that a task usually falls into one of two main configurations.
On one hand, it may be in conflict with other tasks for a same time-window
and any decision concerning one task implies quickly the decisions for the other
tasks, without much freedom. On the other hand, it may be rather free, in a
time-zone without many other tasks, and its presence/absence does not really
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Fig. A.1. Computational times for solving random instances (average for 10 in-
stances) on a Pentium IV with 256Mo RAM, running under Linux/Debian.

matter for the considered objective. Both cases are appropriate for constraint
programming (this can be seen as a natural extension to real instances of the
algorithm of Proposition 5).

We tried this approach for systolic networks (i.e., with unitary tasks), using
a generic finite domain solver [17]. Tested on randomly generated precedence
graphs (a precedence between two tasks Ti and Tj , i < j, exists with given
probability), this procedure performs well. As shown in Figure A.1, and in spite
of an exponentially growing running-time, instances with several hundreds of
tasks are solved optimally in a few seconds on a standard PC.
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