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Self-similar solutions of the p-Laplace heat equation: the case p > 2

We study the self-similar solutions of the equation

We make a complete study of the existence and possible uniqueness of solutions of the form u(x, t) = (±t) -α/β w((±t) -1/β |x|)

of any sign, regular or singular at x = 0. Among them we find solutions with an expanding compact support or a shrinking hole (for t > 0), or a spreading compact support or a focussing hole (for t < 0). When t < 0, we show the existence of positive solutions oscillating around the particular solution U (x, t) = C N,p (|x| p /(-t)) 1/(p-2) .

.

Introduction and main results

Here we consider the self-similar solutions of the degenerate heat equation involving the p-Laplace operator u t -div(|∇u| p-2 ∇u) = 0.

(E u ) in R N , with p > 2. This study is the continuation of the work started in [START_REF] Bidaut-Véron | Self-similar solutions of the p-Laplace heat equation: the fast diffusion case[END_REF], relative to the case p < 2. It can be read independently. We set

γ = p p -2 , η = N -p p -1 , (1.1) 
thus γ > 1, η < N, N + γ p -1 = η + γ = N -η p -2 . (1.2)
If u is a solution, then for any α, β ∈ R, u λ (x, t) = λ α u(λx, λ β t) is a solution of (E u ) if and only if β = α(p -2) + p = (p -2)(α + γ);

notice that β > 0 ⇐⇒ α > -γ. Given α ∈ R such that α = -γ, we search self-similar solutions, radially symmetric in x, of the form: u = u(x, t) = (εβt) -α/β w(r), r = (εβt) -1/β |x| , (1.4) where ε = ±1. By translation, for any real T, we obtain solutions defined for any t > T when εβ > 0, or t < T when εβ < 0. We are lead to the equation

w ′ p-2 w ′ ′ + N -1 r w ′ p-2 w ′ + ε(rw ′ + αw) = 0 in (0, ∞) . (E w )
Our purpose is to give a complete description of all the solutions, with constant or changing sign. Equation (E w ) is very interesting, because it is singular at any zero of w ′ , since p > 2, implying a nonuniqueness phenomena.

For example, concerning the constant sign solutions near the origin, it can happen that lim r→0 w = a = 0, lim r→0 w ′ = 0, we will say that w is regular, or lim We first show that any local solution w of (E w ) can be defined on (0, ∞) , thus any solution u of equation (E u ) associated to w by (1.4) is defined on R N \ {0} × (0, ±∞) . Then we prove the existence of regular solutions, flat ones, and of all singular solutions mentioned above.

Moreover, for ε = 1, there exist solutions w with a compact support (0, r); then u ≡ 0 on the set D = (x, t) : x ∈ R N , βt > 0, |x| > (βt) 1/β r .

For ε = -1, there exist solutions with a hole: w(r) = 0 ⇐⇒ r ∈ (0, r). Then u ≡ 0 on the set

H = (x, t) : x ∈ R N , βt < 0, |x| < (-βt) 1/β r .
The free boundary is of parabolic type for β > 0, of hyperbolic type for β < 0. This leads to four types of solutions, and we prove their existence:

• If t > 0, with ε = 1, β > 0, we say that u has an expanding support; the support increases from {0} as t increases from 0.

• If t > 0, with ε = -1, β < 0, we say that u has a shrinking hole: the hole decreases from infinity as t increases from 0;

• If t < 0, with ε = 1, β < 0, we say that u has a spreading support: the support increases to be infinite as t increases to 0.

• If t < 0, with ε = -1, β > 0, we say that u has a focussing hole: the hole disappears as t increases to 0.

Up to our knowledge, some of them seem completely new, as for example the solutions with a shrinking hole or a spreading support. In particular we find again and improve some results of [START_REF] Gil | Focusing solutions for the p-Laplacian evolution equation[END_REF] concerning the existence of focussing type solutions. Finally for t < 0 we also show the existence of positive solutions turning around the fundamental solution U given at (1.8) with a kind of periodicity, and also the existence of changing sign solutions doubly oscillating in |x| near 0 and infinity.

As in [START_REF] Bidaut-Véron | Self-similar solutions of the p-Laplace heat equation: the fast diffusion case[END_REF] we reduce the problem to dynamical systems.

When ε = -1, a critical negative value of α is involved:

α * = -γ + γ(N + γ) (p -1)(N + 2γ)
.

(1.5)

Explicit solutions

Obviously if w is a solution of (E w ), -w is also a solution. Some particular solutions are well-known.

The solution U . For any α such that ε(α + γ) < 0, that means εβ < 0, there exist flat solutions of (E w ), given by w(r) = ±ℓr γ , (

where

ℓ = |α + γ| γ p-1 (γ + N ) 1/(p-2) > 0.
(1.7)

They correspond to a unique solution of (E u ) called U , defined for t < 0, such that U (0, t) = 0, flat, blowing up at t = 0 for fixed x = 0 :

U (x, t) = C |x| p -t 1/(p-2) , C = ((p -2)γ p-1 (γ + N )) 1/(2-p) . (1.8) 
The case α = N. Then β = β N = N (p -2) + p > 0, and the equation has a first integral w + εr -1 w ′ p-2 w ′ = Cr -N .

(1.9)

All the solutions corresponding to C = 0 are given by w = w K,ε (r) = ± Kεγ -1 r p ′ (p-1)/(p-2) + , K ∈ R, u = ±u K,ε (x, t) = ±(εβ N t) -N/β N Kεγ -1 (εβ N t) -p ′ /β N |x| p ′ (p-1)/(p-2) + .

(1.10)

For ε = 1, K > 0, they are defined for t > 0, called Barenblatt solutions, regular with a compact support. Given c > 0, the function u K,1 , defined on R N × (0, ∞) , is the unique solution of equation (E u ) with initial data u(0) = cδ 0 , where δ 0 is the Dirac mass at 0, and K being linked by R N u K (x, t)dt = c. The u K,1 are the only nonnegative solutions defined on R N × (0, ∞) , such that u(x, 0) = 0 for any x = 0. For ε = -1, the u K,-1 are defined for t < 0; for K > 0, w does not vanish on (0, ∞) ; for K < 0, w is flat with a hole near 0. For K = 0, we find again the function w given at (1.6).

The case α = η = 0. We exhibit a family of solutions of (E w ) :

w(r) = Cr -η , u(t, x) = C |x| -η , C = 0.
(1.11)

The solutions u, independent of t, are p-harmonic in R N ; they are fundamental solutions when p < N . When p > N, w satisfies lim r→0 w = 0, and lim r→0 w ′ = ∞ for N > 1, lim r→0 w ′ = b for N = 1.

The case α = -p ′ . Equation (E w ) admits regular solutions of the form w(r) = ±K N (Kp ′ ) p-2 + εr p ′ , u(x, t) = ±K N (Kp ′ ) p-2 t + |x| p ′ , K > 0. (1.12)

Here β > 0; in the two cases ε = 1, t > 0 and ε = -1, t < 0, u is defined for any t ∈ R and of the form ψ(t) + Φ(|x|) with Φ nonconstant, and u(., t) has a constant sign for t > 0 and changing sign for t < 0.

The case α = 0. Equation (E w ) can be explicitely solved: either w ′ ≡ 0, thus w ≡ a ∈ R, u is a constant solution of (E u ), or there exists K ∈ R such that

w ′ = r -(η+1) K - ε γ + N r N -η 1/(p-2) + ; (1.13) 
and w follows by integration, up to a constant, and then u(x, t) = w(|x| /(εpt) 1/p ). If ε = 1, then t > 0, K > 0 and w ′ has a compact support; up to a constant, u has a compact support. If ε = -1, then t < 0; for K > 0, w is strictly monotone; for K < 0, w is flat, constant near 0; for K = 0, we find again (1.6). For ε = ±1, K > 0, observe that lim r→0 w = ±∞ if p ≦ N ; and lim r→0 w = a ∈ R, lim r→0 w ′ = ±∞ if p > N > 1; and lim r→0 w = a ∈ R, lim r→0 w ′ = K if p > N = 1. In particular we find solutions such that w = cr |η| (1 + o(1)) near 0, with c > 0.

(v) Case N = 1 and α = -(p -1)/(p -2) < 0. Here β = 1, and we find the solutions

w(r) = ± Kr + ε |α| p-1 |K| p (p-1)/(p-2) + , u(x, t) = ± K |x| + |α| p-1 |K| p t (p-1)/(p-2) + , (1.14) 
If ε = 1, t > 0, then w has a singularity at the level of the gradient, and either K > 0, w > 0, or K < 0 and w has a compact support. If ε = -1, t < 0 then K > 0, w has a hole.

Main results

In the next sections we provide an exhaustive study of equation (E w ). Here we give the main results relative to the function u. Let us show how to return from w to u. Suppose that the behaviour of w is given by lim r→0 r λ w(r) = c = 0, lim r→∞ r µ w(r) = c ′ = 0, where λ, µ ∈ R.

(i) Then for fixed t = 0, the function u has a behaviour in |x| -λ near x = 0, and a behaviour in |x| -µ for large |x| .

If λ = 0, then u is defined on R N ×(0, ±∞) . Either w is regular, then u(., t) ∈ C 1 R N × (0, ∞) ; we will say that u is regular; nevertheless the regular solutions u presents a singularity at time t = 0 if and only if α < -γ or α > 0. Or a singularity can appear for u at the level of the gradient.

If λ < 0, thus u is defined on R N × (0, ±∞) and u(0, t) = 0; either w is flat, we also say that u is flat, or a singularity appears at the level of the gradient.

If 0 < λ < N, then u(., t) ∈ L 1 loc R N for t = 0, we say that x = 0 is a weak singularity. We will show that there exist no stronger singularity.

If λ < N < µ; then u(., t) ∈ L 1 R N .
(ii) For fixed x = 0, the behaviour of u near t = 0, depends on the sign of β:

lim t→0 |x| µ |t| (α-µ)/β u(x, t) = C = 0 if α > -γ, lim t→0 |x| λ |t| (α-λ)/β u(x, t) = C = 0 if α < -γ. If µ < 0, α > -γ or λ < 0, α < -γ, then lim t→0 u(x, t) = 0.

Solutions defined for t > 0

Here we look for solutions u of (E u ) of the form (1.4) defined on R N \ {0} × (0, ∞) . That means εβ > 0 or equivalently ε = 1, -γ < α (see Section 6) or ε = -1, α < -γ see (Section 7). We begin by the case ε = 1, treated at Theorem 6.1.

Theorem 1.1 Assume ε = 1, and -γ < α.

(1) Let α < N.

All regular solutions on

R N \ {0} × (0, ∞) have a strict constant sign, in |x| -α near ∞ for fixed t, with initial data L |x| -α (L = 0) in R N ; thus u(., t) ∈ L 1 R N ,
and u is unbounded when α < 0.

There exist nonnegative solutions such that near x = 0, for p < N, u has a weak singularity in |x| -η , for p = N, u has a weak singularity in ln |x| ,

for p > N, u ∈ C 0 (R N × (0, ∞) , u(0, t) = a > 0, with a singular gradient,    (1.15)
and u has an expanding compact support for any t > 0, with initial data L |x| -α in R N \ {0} .

There exist positive solutions with the same behaviour as x → 0, in |x| -α near ∞ for fixed t; and also solutions such that u has one zero for fixed t = 0, and the same behaviour.

If p > N, there exist positive solutions satisfying (1.15), and also positive solutions such that u ∈ C 0 (R N × (0, ∞) , u(0, t) = 0, in |x| |η| near 0, with a singular gradient, (1.16) in |x| -α near ∞ for fixed t, with and initial data L |x| -α in R N \ {0} .

(2) Let α = N.

All regular (Barenblatt) solutions are nonnegative, have a compact support for any t > 0. If p ≦ N, all the other solutions have one zero for fixed t, satisfy (1.15) or (1.16) and have the same behaviour at ∞.

(3) Let N < α.

All regular solutions u have a finite number m ≧ 1 of simple zeros for fixed t, and u(., t) ∈ L 1 R N . Either they are in |x| -α near ∞ for fixed t, then there exist solutions with m zeros, compact support, satisfying (1.15); or they have a compact support. All the solutions have m or m + 1 zeros. There exist solutions satisfying (1.15) with m + 1 zeros, and in |x| -α near ∞. If p > N, there exist solutions satisfying (1.15) with m zeros; there exist also solutions with m zeros, u(0, t) = 0, and a singular gradient, in |x| -α near ∞.

Next we come to the case ε = -1, which is the subject of Theorem 7.1.

Theorem 1.2 Assume ε = -1 and α < -γ.
All the solutions u on R N \ {0} × (0, ∞) , in particular the regular ones, are oscillating around 0 for fixed t > 0 and large |x| , and r -γ w is asymptotically periodic in ln r. Moreover there exist solutions such that r -γ w is periodic in ln r, in particular We look for solutions u of (E u ) of the form (1.4) defined on R N \ {0} × (-∞, 0) . That means εβ < 0 or equivalently ε = 1, α < -γ (see Section 8, Theorem 8.1) or ε = -1, α > -γ (see Section 9). In the case ε = 1, we get the following:

C 1 t -|α/β| ≦ |u| ≦ C 2 t -|α/β| for some C 1 , C 2 > 0; solutions u ∈ C 1 (R N × [0, ∞)), u(x, 0) ≡ 0, with a shrinking hole; flat solutions u ∈ C 1 (R N × [0, ∞)),
Theorem 1.3 Assume ε = 1, and α < -γ. The function U (x, t) = C |x| p -t 1/(p-2)
is a positive flat solution on R N \ {0} × (-∞, 0).

All regular solutions have a constant sign, are unbounded in |x| γ near ∞ for fixed t, and blow up at t = 0 like (-t) -|α|/|β| for fixed x = 0.

There exist flat positive solutions

u ∈ C 1 (R N × (-∞, 0]), in |x| γ near ∞ for fixed t, with final data L |x| |α| (L > 0).
There exist nonnegative solutions satisfying (1.15) near 0, with a spreading compact support, blowing up near t = 0 (like |t| -(η+|α|)/|β| for p < N, or |t| -|α|/|β| ln |t| for p = N , or (-t) -|α|/|β| for p > N ).

There exist positive solutions with the same behaviour near 0, in |x| γ near ∞, blowing up as above at t = 0, and solutions with one zero for fixed t, and the same behaviour. If p > N, there exist positive solutions satisfying (1.15) (resp. (1.16)) near 0, in |x| γ near ∞ for fixed t, blowing up at t = 0 like |t| -|α|/|β| ( resp. |t| (|η|-|α|)/|β| ) for fixed x.

Up to a symmetry, all the solutions are described.

The most interesting case is ε = -1, -γ < α. For simplicity we will assume that p < N. The case p ≧ N is much more delicate, and the complete results can be read in terms of w at Theorems 9.4, 9.6, 9.9, 9.10, 9.11 and 9.12. We discuss according to the position of α with respect to -p ′ and α * defined at (1.5). Notice that α * < -p ′ .

Theorem 1.4 Assume ε = -1, and -p ′ ≦ α = 0. The function U is still a flat solution on R N \ {0} × (-∞, 0) . (1) Let 0 < α.
All regular solutions have a strict constant sign, in |x| γ near ∞ for fixed t, blowing up at t = 0 like (-t) -1/(p-2) for fixed x = 0.

There exist nonnegative solutions with a focussing hole: u(x, t) ≡ 0 for |x| ≦ C |t| 1/β , t > 0, in |x| γ near ∞ for fixed t, blowing up at t = 0 like (-t) -1/(p-2) for fixed x = 0.

There exist positive solutions u with a (weak) singularity in |x| -η at x = 0, in |x| -α near ∞ for fixed t, with u(., t)

∈ L 1 R N if α > N, with final data L |x| -α (L > 0) in R N \ {0} .
There exist positive solutions u in |x| -η at x = 0, in |x| γ near ∞ for fixed t, blowing up at t = 0 like (-t) -1/(p-2) for fixed x = 0; solutions with one zero and the same behaviour.

(2) Let -p ′ < α < 0.

All regular solutions have one zero for fixed t, and the same behaviour. There exist solutions with one zero, in |x| -η at x = 0, in |x| |α| near ∞ for fixed t, with final data L |x| -α (L > 0) in R N \ {0} . There exist solutions with one zero, u in |x| -η at x = 0, in |x| γ near ∞ for fixed t, blowing up at t = 0 like (-t) -1/(p-2) for fixed x = 0; solutions with two zeros and the same behaviour.

3) Let α = -p ′ .
All regular solutions have one zero and are in |x| |α| near ∞ for fixed t, and with final data L |x| |α| (L > 0). The other solutions have one or two zeros, are in |x| -η at x = 0, in |x| γ near ∞ for fixed t.

In any case, up to a symmetry, all the solutions are described.

Theorem 1.5 Assume ε = -1, -γ < α < -p ′ . Then U is still a flat solution on R N \ {0} × (-∞, 0) . (1)Let α ≦ α * .
Then there exist positive flat solutions, in

|x| γ near 0, in |x| |α| near ∞ for fixed t, with final data L |x| -α (L > 0) in R N .
All the other solutions, among them the regular ones, have an infinity of zeros: u(t, .) is oscillating around 0 for large |x| . There exist solutions with a focussing hole, and solutions with a singularity in |x| -η at x = 0. There exist solutions oscillating also for small |x| , such that r -γ w is periodic in ln r.

(2) There exist a critical unique value α c ∈ (max(α * , -p ′ ) such that for α = α c , there exists nonnegative solutions with a focussing hole near 0, in |x| |α| near ∞ for fixed t, with final data

L |x| -α (L > 0) in R N . And α c > -(p -1)/(p -2).
There exist positive flat solutions, such that |x| -γ u is bounded on R N for fixed t, blowing up at t = 0 like (-t) -1/(p-2) for fixed x = 0. The regular solutions are oscillating around 0 as above. There exist solutions oscillating around 0, such that r -γ w is periodic in ln r. There are solutions with a weak singularity in |x| -η at x = 0, and oscillating around 0 for large |x| .

(3) Let α * < α < α c .

The regular solutions are as above. There exist solutions of the same types as above. Moreover there exist positive solutions, such that r -γ w is periodic in ln r, thus there exist C 1 , C 2 > 0 such that

C 1 |x| p |t| 1/(p-2) ≦ u ≦ C 2 |x| p |t| 1/(p-2)
There exist positive solutions, such that r -γ w is asymptotically periodic in ln r near 0 and in |x| γ near ∞ for fixed t; and also, solutions with a hole, and oscillating around 0 for large |x|. There exist solutions positive near 0, oscillating near ∞, and r -γ w is doubly asymptotically periodic in ln r.

4) Let α c < α < -p ′ .
There exist nonnegative solutions with a focussing hole near 0, in |x| γ near ∞ for fixed t, blowing up at t = 0 like (-t) -1/(p-2) for fixed x = 0. Either the regular solutions have an infinity of zeros for fixed t, then the same is true for all the other solutions. Or they have a finite number m ≧ 2 of zeros, and can be in |x| γ or |x| |α| near ∞ (in that case they have a final data L |x| |α| ); all the other solutions have m or m + 1 zeros.

In the case α = α c , we find again the existence and uniqueness of the focussing solutions introduced in [START_REF] Gil | Focusing solutions for the p-Laplacian evolution equation[END_REF].

Different formulations of the problem

In all the sequel we assume α = 0, recalling that the solutions w are given explicitely by (1.13) when α = 0. Defining

J N (r) = r N w + εr -1 w ′ p-2 w ′ , J α (r) = r α-N J N (r), (2.1) 
equation (E w ) can be written in an equivalent way under the forms

J ′ N (r) = r N -1 (N -α)w, J ′ α (r) = -ε(N -α)r α-2 w ′ p-2 w ′ . (2.2)
If α = N, then J N is constant, so we find again (1.9).

We mainly use logarithmic substitutions; given d ∈ R, setting

w(r) = r -d y d (τ ), Y d = -r (d+1)(p-1) w ′ p-2 w ′ , τ = ln r, (2.3) 
we obtain the equivalent system:

y ′ d = dy d -|Y d | (2-p)/(p-1) Y d , Y ′ d = (p -1)(d -η)Y d + εe (p+(p-2)d)τ (αy d -|Y d | (2-p)/(p-1) Y d ).      (2.4) 
At any point τ where w ′ (τ ) = 0, the functions y d , Y d satisfy the equations

y ′′ d + (η -2d)y ′ d -d(η -d)y d + ε p -1 e ((p-2)d+p)τ dy d -y ′ d 2-p y ′ d + (α -d)y d = 0, (2.5) 
Y ′′ d + (p -1)(η -2d -p ′ )Y ′ d + εe ((p-2)d+p)τ |Y d | (2-p)/(p-1) (Y ′ d /(p -1) + (α -d)Y d ) -(p -1) 2 (η -d)(p ′ + d)Y d = 0, (2.6) The main case is d = -γ: setting y = y -γ , w(r) = r γ y(τ ), Y = -r (-γ+1)(p-1) w ′ p-2 w ′ , τ = ln r, (2.7) 
we are lead to the autonomous system

y ′ = -γy -|Y | (2-p)/(p-1) Y, Y ′ = -(γ + N )Y + ε(αy -|Y | (2-p)/(p-1) Y ).      (S)
Its study is fundamental: its phase portrait allows to study all the signed solutions of equation (E w ). Equation (2.5) takes the form (p -1)y ′′ + (N + γp)y ′ + γ(γ + N )y + ε γy + y ′ 2-p y ′ + (α + γ)y = 0, (E y )

Notice that J N (r) = r N +γ (y(τ ) -εY (τ )).

Remark 2.1 Since (S) is autonomous, for any solution w of (E w ) of the problem, all the functions w ξ (r) = ξ -γ w(ξr), ξ > 0, are also solutions.

Notation 2.2 In the sequel we set ε∞ :

= +∞ if ε = 1, ε∞ := -∞ if ε = -1.
2.1 The phase plane of system (S)

In the phase plane (y, Y ) we denote the four quadrants by

Q 1 = (0, ∞) × (0, ∞) , Q 2 = (-∞, 0) × (0, ∞) , Q 3 = -Q 1 , Q 4 = -Q 2 .
Remark 2. [START_REF] Bidaut-Véron | The p-Laplace heat equation with a source term: self-similar solutions revisited[END_REF] The vector field at any point (0, ξ) , ξ > 0 satisfies y ′ = -ξ 1/(p-1) < 0, thus points to

Q 2 ; moreover Y ′ < 0 if ε = 1. The field at any point (ϕ, 0) , ϕ > 0 satisfies Y ′ = εαϕ, thus points to Q 1 if εα > 0 and to Q 4 if εα < 0; moreover y ′ = -γϕ < 0.
If ε(γ + α) ≧ 0, system (S) has a unique stationary point (0, 0). If ε(γ + α) < 0, it admits three stationary points:

(0, 0), M ℓ = (ℓ, -(γℓ) p-1 ) ∈ Q 4 , M ′ ℓ = -M ℓ ∈ Q 2 , (2.8) 
where ℓ is defined at (1.7). The point (0, 0) is singular because p > 2; its study concern in particular the solutions w with a double zero. When ε(γ + α) < 0, the point M ℓ is associated to the solution w ≡ ℓr γ of equation (E w ) given at (1.1).

Linearization around M ℓ . Near the point M ℓ , setting

y = ℓ + y, Y = -(γℓ) p-1 + Y , (2.9) 
system (S) is equivalent in Q 4 to

y ′ = -γy -εν(α)Y + Ψ(Y ), Y ′ = εαy -(γ + N + ν(α))Y + εΨ(Y ), (2.10) 
where

ν(α) = - γ(N + γ) (p -1)(γ + α)
, and Ψ(ϑ) = ((γℓ) p-1 -ϑ) 

y ′ = -γy -εν(α)Y , Y ′ = εαy -(γ + N + ν(α))Y .
Its eigenvalues λ 1 ≦ λ 2 are the solutions of equation

λ 2 + (2γ + N + ν(α))λ + p ′ (N + γ) = 0 (2.12)
The discriminant ∆ of the equation (2.12) is given by

∆ = (2γ + N + ν(α)) 2 -4p ′ (N + γ) = (N + ν(α)) 2 -4ν(α)α.
(2.13)

For ε = 1, M ℓ is a sink, and a node point, since ν(α) > 0, and α < 0, thus ∆ > 0. For ε = -1, we have ν(α) < 0; the nature of M ℓ depends on the critical value α * defined at (1.5); indeed

α = α * ⇐⇒ λ 1 + λ 2 = 0.
Then M ℓ is a sink when α > α * and a source when α < α * . Moreover α * corresponds to a spiral point, and M ℓ is a node point when ∆ ≧ 0, that means α ≦ α 1 , or γ > N/2 + p ′ (N + γ) and α 2 ≦ α, where

α 1 = -γ + γ(N + γ) (p -1)(2γ + N + 2(p ′ (N + γ)) 1/2 ) , α 2 = -γ + γ(N + γ) (p -1)(2γ + N -2(p ′ (N + γ)) 1/2 )
.

(2.14) When ∆ > 0, and λ 1 < λ 2 , one can choose a basis of eigenvectors e 1 = (-εν(α), λ 1 + γ) and e 2 = (εν(α), -γλ 2 ).

(2.15) Remark 2.4 One verifies that α * < -1; and α * < -(p -1)/(p -2) if and only if p > N. Also α 2 ≦ 0, and α 2 = 0 ⇐⇒ N = p/((p -2) 2 ; and α 2 > -p ′ ⇐⇒ γ 2 -7γ -8N < 0, which is not always true.

As in [START_REF] Bidaut-Véron | Self-similar solutions of the p-Laplace heat equation: the fast diffusion case[END_REF]Theorem 2.16] we prove that the Hopf bifurcation point is not degenerate, which implies the existence of small cycles near α * . Proposition 2.5 Let ε = -1, and α = α * > -γ. Then M ℓ is a weak source. If α > α * and αα * is small enough, there exists a unique limit cycle in Q 4 , attracting at -∞.

Other systems for positive solutions

When w has a constant sign, we define two functions associated to (y, Y ) :

ζ(τ ) = |Y | (2-p)/(p-1) Y y (τ ) = - rw ′ (r) w(r) , σ(τ ) = Y y (τ ) = - |w ′ (r)| p-2 w ′ (r) rw(r) .
(2.16)

Thus ζ describes the behaviour of w ′ /w and σ is the slope in the phase plane (y, Y ) . They satisfy the system

ζ ′ = ζ(ζ -η) + ε |ζy| 2-p (α -ζ)/(p -1) = ζ(ζ -η + ε(α -ζ)/(p -1)σ), σ ′ = ε(α -N ) + |σy| (2-p)/(p-1) σ -N (σ -ε) = ε(α -ζ) + (ζ -N ) σ.      (Q)
In particular, System (Q) provides a short proof of the local existence and uniqueness of the regular solutions: they correspond to its stationary point (0, εα/N ), see Section 3.1.

Moreover, if w and w ′ have a strict constant sign, that means in any quadrant Q i , we can define

ψ = 1 σ = y Y (2.17)
We obtain a new system relative to (ζ, ψ) :

ζ ′ = ζ(ζ -η + ε(α -ζ)ψ/(p -1)), ψ ′ = ψ(N -ζ + ε (ζ -α)ψ) .    (P)
We are reduced to a polynomial system, thus with no singularity. System (P) gives the existence of singular solutions when p > N, corresponding to its stationary point (η, 0), see Section 5.

We will also consider another system in any Q i : setting

ζ = -1/g, σ = -s, dτ = gsdν = |Y | (p-2)/(p-1) dν, (2.18) 
we find

dg/dν = g(s(1 + ηg) + ε(1 + αg)/(p -1)), ds/dν = -s(ε(1 + αg) + (1 + N g)s).    (R)
System (R) allows to get the existence of solutions w with a hole or a compact support, and other solutions, corresponding to its stationary points (0, -ε) and (-1/α, 0); it provides a complete study of the singular point (0, 0) of system (S), see Sections 3.3, 5; and of the focussing solutions, see Section 9.

Remark 2.6

The particular solutions can be found again in the different phase planes, where their trajectories are lines: For α = N, the solutions (1.10) correspond to Y ≡ εy, that means σ ≡ ε.

For α = η = 0 the solutions (1.11) correspond to ζ ≡ η.

For α = -p ′ , the solutions (1.12) are given by ζ + εN σ ≡ α.

For N = 1, α = -(p -2)/(p -1)
, the solutions (1.14) satisfy αg + εs ≡ -1.

3 Global existence

Local existence and uniqueness

Proposition 3.1 Let r 1 > 0 and a, b ∈ R. If (a, b) = (0, 0), there exists a unique solution w of equation (E w ) in a neighborhood V of r 1 , such that w and |w ′ | p-2 w ′ ∈ C 1 (V) and w(r 1 ) = a, w ′ (r 1 ) = b.
It extends on a maximal interval I where (w(r), w ′ (r)) = (0, 0).

Proof. If b = 0, the Cauchy theorem directly applies to system (S). If b = 0 the system is a priori singular on the line {Y = 0} since p > 2. In fact it is only singular at (0, 0). Indeed near any point (ξ, 0) with ξ = 0, one can take Y as a variable, and

dy dY = F (Y, y), F (Y, y) := γy + |Y | (2-p)/(p-1) Y (γ + N )Y + ε(|Y | (2-p)/(p-1) Y -αy) ,
where F is continuous in Y and C 1 in y, hence local existence and uniqueness hold.

Notation 3.2 For any point P 0 = (y 0 , Y 0 ) ∈ R 2 \ {(0, 0)} , the unique trajectory in the phase plane (y, Y ) of system (S) going through P 0 is denoted by

T [P 0 ] . By symmetry, T [-P 0 ] = -T [P 0 ] .
Next we show the existence of regular solutions. Our proof is short, based on phase plane portrait, and not on a fixed point method, rather delicate because p > 2, see [START_REF] Bidaut-Véron | The p-Laplace heat equation with a source term: self-similar solutions revisited[END_REF].

Theorem 3.3 For any a ∈ R, a = 0, there exists a unique solution w = w(., a) of equation (E w ) in an interval [0, r 0 ) , such that w and |w ′ | p-2 w ′ ∈ C 1 ([0, r 0 )) and w(0) = a, w ′ (0) = 0; (3.1)
and then lim r→0 |w ′ | p-2 w ′ /rw = -εα/N. In other words in the phase plane (y, Y ) there exists a unique trajectory T r such that lim τ →-∞ y = ∞, and lim τ →-∞ Y /y = εα/N.

Proof. We have assumed α = 0 (when α = 0, w ≡ a from (1.13)). If such a solution w exists, then from (2.1) and ( 2

.2), J ′ N (r) = r N -1 (N -α)a(1 + o(1)) near 0. Thus J N (r) = r N -1 (1 - α/N )a(1 + o(1)), hence lim r→0 |w ′ | p-2 w ′ /rw = -εα/N ; in other words, lim τ →-∞ σ = εα/N. And lim τ →-∞ y = ∞, thus lim τ →-∞ ζ = 0,
and εαζ > 0 near -∞. Reciprocally consider system (Q). The point (0, εα/N ) is stationary. Setting σ = εα/N + σ, the linearized system near this point is given by

ζ ′ = p ′ ζ, σ′ = εζ(α -N )/N -N σ.
One finds is a saddle point, with eigenvalues -N and p ′ . Then there exists a unique trajectory T ′ r in the phase-plane (ζ, σ) starting at -∞ from (0, εα/N ) with the slope ε(α -N )/N (N + p ′ ) = 0 and εαζ > 0. It corresponds to a unique trajectory T r in the phase plane (y, Y ), and

lim τ →-∞ y = ∞, since y = |σ| |ζ| 1-p ) 1/(p-2) . For any solution (ζ, σ) describing T ′ r , the func- tion w(r) = r γ (|σ| |ζ| 1-p (τ )) 1/(p-2) satisfies lim r→0 |w ′ | p-2 w ′ /rw = -εα/N.
As a consequence, w (p-2)/(p-1) has a finite nonzero limit, and lim r→0 w ′ = 0; thus w is regular. Local existence and uniqueness follows for any a = 0, by Remark 2.1.

Definition 3.4

The trajectory T r in the plane (y, Y ) and its opposite -T r will be called regular trajectories. We shall say that y is regular. Observe that T r starts in Q 1 if εα > 0, and in Q 4 if εα < 0. Remark 3.5 From Theorem 3.3 and Remark 2.1, all regular solutions are obtained from one one of them: w(r, a) = aw(a -1/γ r, 1). Thus they have the same behaviour near ∞.

Sign properties

Next we give informations on the zeros of w or w ′ , by using the monotonicity properties of the functions y d , Y d , in particular y, Y, and ζ and σ. At any extremal point τ , they satisfy respectively (iii) If ε = -1 and -p ′ ≦ α < min(0, η), then w ′ has at most one simple zero, consequently w has at most two simple zeros, and at most one if w is regular. If α < -p ′ , the regular solutions have at least two zeros.

y ′′ d (τ ) = y d (τ ) d(η -d) + ε(d -α) p -1 e ((p-2)d+p)τ |dy d (τ )| 2-p , (3.2) 
Y ′′ d (τ ) = Y d (τ ) (p -1) 2 (η -d)(p ′ + d) + ε(d -α)e ((p-2)d+p)τ |Y d (τ )| (2-p)/(p-1) , (3.3) 
(p -1)y ′′ (τ ) = γ 2-p y(τ ) -γ p-1 (N + γ) -ε(γ + α) |y(τ )| 2-p = -|Y (τ )| (2-p)/(p-1) Y ′ (τ ), (3.4) Y ′′ (τ ) = Y (τ ) -γ(N + γ) -ε(γ + α) |Y (τ )| (2-p)/(p-1) = εαy ′ (τ ), (3.5) 
(p -1)ζ ′′ (τ ) = -ε(p -2)((α -ζ) |ζ| 2-p |y| -p yy ′ )(τ ) = ε(p -2)((α -ζ)(γ + ζ) |ζy| 2-p )(τ ), (3.6) (p -1)σ ′′ (τ ) = -(p -2)((σ -ε) |σ| (2-p)/(p-1) Y |y| (4-3p)/(p-1) y ′ )(τ ) = ζ ′ (τ )(σ(τ ) -ε). ( 3 
Proof. (i) Let ε = 1. Consider two consecutive simple zeros ρ 0 < ρ 1 of w, with w > 0 on (ρ 0 , ρ 1 ) ; hence w ′ (ρ 1 ) < 0 < w ′ (ρ 0 ). If α ≦ N, we find from (2.1),

J N (ρ 1 ) -J N (ρ 0 ) = -ρ N -1 1 w ′ (ρ 1 ) p-2 -ρ N -1 0 w ′ (ρ 0 ) p-1 = (N -α) ρ 1 ρ 0 s N -1 wds,
which is contradictory; thus w has at most one simple zero. The contradiction holds as soon as ρ 0 is simple, even if ρ 1 is not. If w is regular with w(0) > 0, and ρ 1 is a first zero, and α < N,

J N (ρ 1 ) = -ρ N -1 1 w ′ (ρ 1 ) p-1 = (N -α) ρ 1 0 s N -1 wds > 0,
which is still impossible. If α = N, the (Barenblatt) solutions are given by (1.10). Next suppose α > N and w regular. If w > 0, then 1) is non increasing and we reach a contradiction for large r. Thus w has a first zero ρ 1 , and J N (ρ 1 ) < 0, thus w ′ (ρ 1 ) = 0.

J N < 0, thus w -1/(p-1) w ′ + r 1/(p-1) < 0. Then the function r → r p ′ + γw (p-2)/(p-
(ii) Let ε = -1 and α ≧ min(η, 0). Here we use the substitution (2.3) from some d = 0. If y d has a maximal point, where it is positive, and is not constant, then (3.2) holds. Taking d ∈ (0, min(α, η)) if η > 0, d = η if η ≦ 0, we reach a contradiction. Hence y d has at most a simple zero, and no simple zero if it has a double one. Suppose w regular and α > 0. Then w ′ > 0 near 0, from Theorem 3.3. As long as w stays positive, any extremal point r is a strict minimum, from (E w ), thus in fact w ′ stays positive.

(iii) Let ε = -1 and -p ′ ≦ α < min(0, η). Suppose that w ′ and has two consecutive zeros ρ 0 < ρ 1 , and one of them is simple, and use again (2.3) with d = α. Then the function Y α has an extremal point τ , where it is positive and is not constant; from (3.3),

Y ′′ α (τ ) = (p -1) 2 (η -α)(p ′ + α)Y α (τ ), (3.8) 
thus Y ′′ α (τ ) ≧ 0, which is contradictory. Next consider the regular solutions. They satisfy (3.9)

Y α (τ ) = e (α(p-1)+p)τ (|α| a/N )(1 + o(1) near -∞, from Theorem 3.
That means with ρ = e τ ∈ (ρ 1 , ρ 2 ) ,

ερ p |w(ρ)| 2-p (d -α) ≦ (p -1)d p-1 (d -η). (3.10) 
First suppose ε = 1 and fix d > α. Consider the energy function

E(r) = 1 p ′ w ′ p + α 2 w 2 .
It is nonincreasing since ), and

E ′ (r) = -(N -1)r -1 |w ′ | p -rw ′2 , thus bounded on I ∩ [ρ 1 , ∞) . Then w is bounded, ρ 2 is bounded, Z is a bounded set. If Z is infinite,
w ′ (ρ n ) = -dρ -1 n w(ρ n ) = O(ρ 2/(p-2) n ), thus E(ρ n ) = o(1)
. Since E is monotone, it implies lim r→0 E(r) = 0, hence E ≡ 0, and w ≡ 0, which is contradictory. Next suppose ε = -1 and fix

d < α. If Z ∩ [m, M ]
is infinite, we construct a sequence converging vers some r > 0 and reach a contradiction as above.

Proposition 3.8 Let y be any non constant solution of (E y ), on a maximal interval I where (y, Y ) = (0, 0), and s be an extremity of I. 

(τ 0 ) = ε, then σ ′ (τ 0 ) = ε(α -N ) from System (Q). If α = N ,
then τ 0 is unique, and σε has a constant sign near s. Thus σ ′′ (τ ) has a constant sign at any extremal point τ of σ, from (3.7) and assertion (i). If α = N , then σ ≡ ε.

(iii) Let y be positive and not strictly monotone near s. There exists a sequence (τ n ) strictly monotone, converging to ±∞, such that y

′ (τ n ) = 0, y ′′ (τ 2n ) > 0 > y ′′ (τ 2n+1 ). Since y(τ n ) = γ -1 |Y | (2-p)/(p-1) Y (τ n ), we deduce Y < 0 near s, from (i). From (3.5), -ε(γ + α)y(τ 2n+1 ) 2-p ≦ γ p-1 (N + γ) ≦ -ε(γ + α))y(τ 2n ) 2-p , (3.11) 
thus ε(γ + α) < 0 and y(τ 2n ) < ℓ < y(τ 2n+1 ), and

Y (τ 2n+1 ) < -(γℓ) p-1 < Y (τ 2n ). If s is finite, then y(s) = y ′ (s) = 0, which is impossible; thus s = ±∞.
(iv) If y is changing sign, then ε = -1 and α < -p ′ , from Propositions 3.6 and 3.7. At any extremal point τ,

(α + γ) |y(τ )| 2-p ≦ γ p-1 (N + γ) from (3.4); if α > -γ it means |y| > ℓ.

Double zeros and global existence

Theorem 3.9 For any r > 0, there exists a unique solution w of (E w ) defined in a interval [r, r ± h) such that w > 0 on (r, r ± h) and w(r) = w ′ (r) = 0.

Moreover εh < 0 and

lim r→r |(r -r)| (p-1)/(2-p) r 1/(2-p) w(r) = ±((p -2)/(p -1)) (p-1)/(p-2) . (3.12)
In other words in the phase plane (y, Y ) there exists a unique trajectory T ε converging to (0, 0) at ε∞. It has the slope ε and converges in finite time; it depends locally continuously of α.

Proof. Suppose that a solution w ≡ 0 exists on [r, r ± h) with w(r) = w ′ (r) = 0. From Propositions 3.7 and 3.8, up to a symmetry, y > 0, |Y | > 0 near τ = ln r, and lim τ →ln r y = 0, and σ, ζ are monotone near ln r. Let µ and λ be their limits.

If |µ| = ∞, then |λ| = ∞, because ζ = |Y | (2-p)/(p-1) σ, |ζ| p-2 ζ = σy 2-p ; then f = 1/ζ tends to 0; but f ′ = -1 + ηf + ε 1 -αf (p -1)σ , (3.13) thus f ′ tends to -1, which is impossible. Thus µ is finite. If λ is finite, then µ = 0, thus λ = α, from system (Q), ln w is integrable at r, which is not true. Then λ = ε∞, hence µ = lim τ →ln r σ = ε,
from system (Q). Then εY > 0 near τ , then εw ′ < 0 near r, thus εh < 0. Consider system (R): as τ tends to τ , ν tends to ±∞, and (g, s) converges to the stationary point (0, -ε).

Reciprocally, setting s = -ε/β + h, the linearized system of system (R) at this point is given by

dg dν = -ε p -2 p -1 g, dh dν = (α -N )g + εh.
The eigenvalues are -ε(p -2)/(p -1) and ε, thus we find a saddle point. There are two trajectories converging to (0, -ε). The first one satisfies g ≡ 0, it does not correspond to a solution of the initial problem. Then there exists a unique trajectory converging to (0, -ε), as ν tends to ε∞, with g > 0 near ε∞. It is associated to the eigenvalue -ε(p -2)/(p -1) and the eigenvector

((2p -3)/(p -1), ε(N -α)). It satisfies dg/dν = -ε((p -2)/(p -1))g(1 + o(1)), thus dg/dτ = ((p -2)/(p -1))(1 + o(1)
). Then τ has a finite limit τ , and τ increases to τ if ε = 1 and decreases to τ if ε = -1. In turn |Y | (p-2)/(p-1) = gs tends to 0, and s tends to ε, thus (y, Y ) tends to (0, 0) as τ tends to τ . Then w and w ′ converges to 0 at r = e τ . And w ′ w -1/(p-1) + (ε + o(1))r 1/(p-1) = 0, which implies (3.12).

Corollary 3.10 Let r 1 > 0, and a, b ∈ R and w be any local solution such that w(r 1 ) = a, w ′ (r 1 ) = b.

(i) If (a, b) = (0, 0), then w has a unique extension by 0 on (r 1 , ∞) if ε = 1, on (0, r 1 ) if ε = -1. (ii) If (a, b) = (0, 0), w has a unique extension to (0, ∞) .
Proof. (i) Assume a = b = 0, the function w ≡ 0 is a solution. Let w be any local solution near r 1 , defined in an interval (r 1h 1 , r 1 + h 1 ) with w(r 1 ) = w ′ (r 1 ) = 0. Suppose that there exists h 2 ∈ (0, h 1 ) such that w(r 1 + εh 1 ) = 0. Let h = inf {h ∈ (0, h 1 ) : w(r 1 + εh) = 0} , and r = r 1 + ε h, thus w(r) = w ′ (r) = 0, and for example w > 0 on some interval (r, r + εk)) with k > 0. This contradicts theorem 3.9. Thus w ≡ 0 on (r 1 , r 1 + εh 1 ) .

(ii) From Theorems 3.9 and 3.3, w has no double zero for ε (rr 1 ) < 0, and has a unique extension to a maximal interval with no double zero. From (i) it has a unique extension to (0, ∞) . In particular any local regular solution is defined on [0, ∞).

Asymptotic behaviour

Next the function y is supposed to be monotone, thus w has a constant sign near 0 or ∞, we can assume that w > 0.

Proposition 4.1 Let y be any solution of (E y ) strictly monotone and positive near s = ±∞.

(1) Then (ζ, σ) has a limit (λ, µ) near s, given by is some of the values

A γ = -γ, ε α + γ N + γ , A r = (0, εα/N ) , A α = (α, 0) , L η = η (1, ∞) (if p = N ), L + = (0, ∞) (if p ≧ N ), L -= (0, -∞) (if p > N ). (4.1)
(2) More precisely,

(i) Either ε (γ + α) < 0 and (y, Y ) converges to ±M ℓ . Then (λ, µ) = A γ and (ε = 1, s = ∞) or (ε = -1, s=-∞ for α ≦ α * , s = ∞ for α > α * ).
(ii) Or (y, Y ) converges to (0, 0). Then (s = ∞ and -γ < α) or (s = -∞ and α < -γ), or (s = ε∞ and α = -γ) and (λ, µ) = A α .

(iii) Or lim τ →s y = ∞. Then s = -∞. If p < N, then (λ, µ) = A r or L η . If p = N, then (λ, µ) = A r or L + . If p > N, then (λ, µ) = A r , L η , L + or L -.
Proof.

(1) The functions Y, σ, ζ are also monotone, and by definition ζσ > 0. Thus ζ has a limit λ ∈ [-∞, ∞] and σ has a limit µ ∈ [-∞, ∞], and λµ ≧ 0.

(i) λ is finite. Indeed if λ = ±∞, then f = 1/ζ tends to 0. From (3.13), either µ = ±∞, then f ′ tends to -1, which is imposible; or µ is finite, thus µ = ε from system (Q), then f ′ tends to (2p)/(p -1), which is still contradictory.

(ii) Either µ is finite, thus (λ, µ) is a stationary point of system (Q), equal to A γ , A r or A α .

(iii) 0r µ = ±∞ and (λ, 0) is a stationary point of system (P).

• If p = N, either λ = η = 0 and (λ, µ) = L η ; or λ = 0 and (λ, µ) = L + or L -. In the last case (ζ, ψ) converges to (0, 0), and ζ ′ /ψ ′ = -(ηζ/N ψ)(1 + o(1)), thus η < 0, that means p > N.

• If p = N, then again (ζ, ψ) converges to (0, 0), thus µ = ±∞, and ψ ′ = N ψ(1 + o(1)), and necessarily s = -∞. We make the substitution (2.4) with d = 0. Then y 0 (τ ) = w(r), and y 0 satisfies

y ′ 0 = -|Y 0 | (2-p)/(p-1) Y 0 = -ζy 0 = o(y 0 ), Y ′ 0 = εe pτ y 0 (α -ζ) = εe pτ y 0 α(1 + o(1).
Thus for any υ > 0, we get y 0 = O(e -υτ ) and 1/y 0 = O(e υτ ). Then Y ′ 0 is integrable, and Y 0 has a finite limit |k| p-2 k. Suppose that k = 0. Then Y 0 = O(e (p-υ)τ ), and y 0 has a finite limit a ≧ 0. If

a = 0, then Y ′ 0 = εαae pτ (1 + o(1)); in turn Y 0 = p -1 εαae pτ (1 + o(1)
), and ψ = e pτ y 0 /Y 0 does not tend to 0. If a = 0, then y 0 = O(e p ′ τ ), which contradicts the estimate of 1/y 0 . Thus k > 0 and

y 0 = -kτ (1 + o(1), Y 0 = k p-1 (1 + o(1)); (4.2) hence (λ, µ) = L + .
(2) Since y is monotone, we encounter one of the three following cases:

(i) (y, Y ) converges to ±M ℓ . Then (λ, µ) = A γ and M ℓ is a source (or a weak source) for α ≦ α * , a sink for α > α * .

(ii) y tends to 0. Since λ is finite, (y, Y ) converges to (0, 0). And |σ| = |ζ| p-1 y p-2 tends to 0, thus (λ, µ) Next we apply these results to the functions w :

= A α . If -γ < α, seeing that y ′ = -y(γ + ζ) < 0 we find s = ∞. If α < -γ, then s = -∞. If α = -γ < 0, then ε (γ + ζ) > 0,
Proposition 4.2
We keep the assumptions of Proposition 4.1. Let w be the solution of (E w ) associated to y by (2.7). (ii) From (2.16), rw ′ (r) = -αw(r)(1 + o(1). We are lead to three cases.

(i) If (λ, µ) = A γ (near 0 or ∞), then lim r -γ w = ℓ. (4.3) (ii) If (λ, µ) = A α (near 0 or ∞), then lim r α w = L > 0 if α = -γ, (4.4) 
lim r -γ (ln r) 1/(p-2) w = ((p -2)γ p-1 (N + γ)) -1/(p-2) if α = -γ. ( 4 
• Either -γ < α, and s = ∞. For any υ > 0, we find w = O(r -α+υ ) and 1/w = O(r α+υ ) near ∞ and w ′ = O(r -α-1+υ ). Then J ′ α (r) = O(r α(2-p)-p-1+υ ), hence J ′ α is integrable, J α has a limit L. And lim r α w = L, seeing that J α (r) = r α w(1 + o(1)). If L = 0, then r α w = O(r α(2-p)-p+υ ), which contradicts the estimate of 1/w = O(r α+υ ) for υ small enough. Thus L > 0.

• Or α < -γ and s = -∞. For any υ > 0, we find w = O(r -α-υ ) and 1/w = O(r α+υ ) near 0 and w ′ = O(r -α-1-υ ). Then J ′ α (r) = O(r α(2-p)-p-1-υ ), and J ′ α is still integrable, J α has a limit L, and lim r α w = L. If L = 0, then r α w = O(r α(2-p)-p-υ ), which contradicts the estimate of 1/w. Thus again L > 0.

• Or α = -γ and s = ε∞. Then Y = -γ p-1 y p-1 (1 + o(1)), and µ = 0, thus y -εY = y(1 + o(1)). From System (S), (y -εY

) ′ = ε(N + γ)Y = -ε(N + γ)γ p-1 (y -εY ) p-1 (1 + o(1)). Then y = (N + γ)γ p-1 (p -2) |τ |) -1/(p-2) (1 + o(1)
), which is equivalent to (4.5).

(iii) From (2.16), we get rw ′ (r) = -ηw(r)(1+ o(1). We use (2.3) with d = η, thus y η = r η w. We find

y η = O(e -υτ ), 1/y η = O(e -υτ ), in turn Y η = O(e -υτ ). From (2.4), Y ′ η = O(e (p+(p-2)η-υ)τ ), thus Y ′ η is integrable, hence Y η has a finite limit. Now (e -ητ y η ) ′ = -e -ητ Y 1/(p-1) η
, and η > 0, thus y η has a limit c. If c = 0, then Y η = O(e (p+(p-2)η-υ)τ ), y η = O(e ((p+(p-2)η)/(p-1)-υ)τ ), which contradicts 1/y η = O(e -υτ ) for υ small enough. Then (4.6) holds.

(iv) As above, Y η has a finite limit. In turn r -|η|+1 w ′ = |Y η | (2-p)/(p-1) Y η has a limit c |η| and w has a limit a ≧ 0. From (2.16), rw N is integrable, J N has a limit at 0, and lim r→0 r N w = 0. Thus lim r→0 r (N -1)/(p-1)

w ′ = -c ∈ R, lim r→0 J N = -ε |c| p-2 c, lim r→0 w = a ≥ 0. If c = 0, then J N (r) = r 0 J ′ N (s)
ds, implying that lim r→0 w ′ = 0. Either a > 0 and then w is regular, then lim τ →-∞ σ = ε; or a = 0, then w ′ > 0 and (w ′ ) p-1 = O(rw); in both cases we get a contradiction. Thus c = 0. If a = 0, we find lim τ →-∞ ζ = η, which is not true, hence a > 0. In any case (4.9) or (4.10) holds. Now we study the cases where y is not monotone, and eventually changing sign. Proof. (i) Suppose by contradiction that w ≧ 0 for large r, then y ≧ 0 for large τ. If y > 0 near ∞, then from Proposition 3.8, either y is constant, which is impossible since (0, 0) is the unique stationary point; or y is strictly monotone, which contradicts Proposition 4.1. Then there exists a sequence (τ n ) tending to ∞ such that y(τ n ) = y ′ (τ n ) = 0; from Theorem 3.10, y ≡ 0 on (-∞, τ n ) , thus y ≡ 0.

(ii) Consider the function

τ → R(τ ) = y 2 2 + |Y | p ′ p ′ |α| ; it satisfies R ′ (τ ) = -γy 2 + 1 |α| |Y | 2/(p-1) - N + γ |α| |Y | p ′ .
From the Young inequality,

|α| (R ′ (τ ) + γR(τ )) = |Y | 2/(p-1) -(N + 1 p -2 ) |Y | p ′ ≦ ( 2 N p + γ ) (p-2)/2 ≦ 1 thus R(τ ) is bounded for large τ, at least by 1/ |α| γ. Proof. Proposition 4.4 (i) Assume ε = 1, or ε = -1, α ∈ (α 2 , α 1 )
. Then for any trajectory of system (S) in Q 4 near ±∞, y is strictly monotone near ±∞.

(ii) Assume ε = 1, and α ≦ α * or -p ′ ≦ α. Then system (S) admits no cycle in Q 4 (or Q 2 ).

Proof. (i) In any case M ℓ is a node point. Following [4, Theorem 2.24], we use the linearization defined by (2.9). Consider the line L given by the equation Ay +Y = 0, where A is a real parameter. The points of L are in Q 4 whenever Y < (γℓ) p-1 and -ℓ < y. We get

Ay ′ + Y ′ = εν(α)A 2 + (N + ν(α))A + εα y + (A + ε)Ψ(Y ).
From (2.13), apart from the case ε = 1, α = N, we can find an A such that εν(α)A 2 + (N + ν(α))A + εα = 0, and

A + ε = 0. Moreover Ψ(Y ) ≦ 0 on L ∩ Q 4 . Indeed (p -1)Ψ ′ (t) = -((γℓ) p-1 -t) (2-p)/(p-1) + (γℓ) 2-p
, thus Ψ has a maximum 0 on -∞, (δℓ) p-1 at point 0. Then the orientation of the vector field does not change along L ∩ Q 4 . In particular y cannot oscillate around ℓ, thus y is monotone, from Proposition 3.8. If ε = 1, α = N, then Y ≡ y ∈ (ℓ, ∞) defines the trajectory T r , corresponding to the solutions given by (1.10) with K > 0. No solution y can oscillate around ℓ, since the trajectory cannot meet T r .

(ii) Suppose that there exists a cycle in Q 4 .

• Assume α ≦ α * . Here M ℓ is a source, or a weak source, from Proposition 2.5. Any trajectory starting from M ℓ at -∞ has a limit cycle in Q 1 , which is attracting at ∞. Writing System (S) under the form y ′ = f 1 (y, Y ), Y ′ = f 2 (y, Y ), the mean value of the Floquet integral on the period [0, P] is given by

I = ( ∂f 1 ∂y (y, Y ) + ∂f 2 ∂Y (y, Y ))dτ = ( |Y | (2-p)/(p-1) p -1 -2γ -N )dτ. (4.11) Such a cycle is not unstable, thus I ≦ 0. Now (αy ′ -γY ′ )dτ = 0 = (α + γ) |Y | 1/(p-1) dτ -γ(γ + N ) |Y | dτ.
From the Jensen and Hölder inequalities, since 1/(p -1) < 1,

γ(γ + N )( |Y | 1/(p-1) dτ ) p-2 ≦ α + γ, 1 ≦ |Y | (2-p)/(p-1) )dτ |Y | 1/(p-1) dτ p-2 ≦ (p -1)(2γ + N ) γ(γ + N ) (α + γ),
then α * < α, which is contradictory.

• Assume -p ′ ≦ α < 0. Consider the functions y α = e (α+γ)τ y and Y α = e (α+γ)(p-1)τ Y defined by (2.3) with d = α. They vary respectively from 0 to ∞ and from 0 to -∞. They have no extremal point. Indeed at such a point, from (3.2) and (3.3) y ′′ α or Y ′′ α have a strict constant sign for α = η, p ′ , which is contradictory. If α = η or p ′ , from uniqueness y α or Y α is constant, thus y or Y is monotone, which is impossible. In any case y

′ α > 0 > Y ′ α on (-∞, ∞) . Next, from (2.5) and (2.6), y ′′ α y ′ α + η -2α - 1 p -1 Y (2-p)/(p-1) = α(η -α) y α y ′ α , (4.12) 
Y ′′ α Y ′ α + (p -1)(η -2α -p ′ ) - 1 p -1 Y (2-p)/(p-1) = (p -1) 2 (η -α)(p ′ + α) Y α Y ′ α . ( 4 

.13)

Let us integrate on the period P. If η ≦ α < 0, then η -N -2(α + γ) ≧ 0 from (4.12), which is contradictory. If -p ′ ≦ α < η, then -2(α + p ′ + γ) > 0 from (4.13), still contradictory.

New local existence results

At Proposition 4.1 we gave all the possible behaviours of the positive solutions near ±∞. Next we prove their existence, and uniqueness or multiplicity. The case p > N is very delicate. (ii) Case p > N. Then η < 0, and (η, 0) is a saddle point. In the plane (ζ, ψ) , there exists a unique trajectory starting from (η, 0), tangentially to the vector (η(αη)ε/(p -1), Nη) , with ψ < 0; it defines a unique trajectory T u in the plane (y, Y ), and (4.7) holds. From Remark 2.1, we get a solution for any c = 0. Theorem 5.2 (i) Suppose p = N. In the phase plane (y, Y ), there exists an infinity of trajectories T + such that lim τ →-∞ (ζ, σ) = L + ; then w satisfies (4.8).

(ii) Suppose p > N. Then there exist an infinity of trajectories T + (resp. T -) such lim τ →-∞ (ζ, σ) = L + (resp. L -); then the corresponding solutions w of (E w ) satisfy (4.9) (resp. (4.10). More precisely for any k > 0 (for p = N ) or any a > 0 and c = 0 (for p > N ) there exists a unique function w satisfying those conditions.

Proof. If lim τ →-∞ (ζ, σ) = L ± , then lim τ →-∞ (ζ, ψ) = (0, 0), with ζψ > 0 in case of L + , ζψ < 0 in case of L -.
. The linearization of System (P) near (0, 0) is given by

ζ ′ = |η| ζ, ψ ′ = N ψ.
(i) Case p = N. The phase plane study is delicate because 0 is a center, thus we use a fixed method. Suppose that such a trajectory exists, and consider the substitution (2.3) with d = 0. From (4.2), there exists k > 0 such that ζ = |Y 0 | (2-p)/(p-1) /y 0 = -τ -1 (1 + o(1)) > 0, and

ψ = -k 2-p τ e N τ (1 + o(1)) > 0. Then ζ ′ = τ -2 (1 + o(1)
) from System (P). The function

V = ψe -N/ζ ζ satisfies lim τ →-∞ V = k 2-p
, and

V ′ = V e N/ζ (N -1)ζ 2 (ε (α -ζ) (N -(N -2)ζ)V + 2N (N -1)ζ 2 e -N/ζ ). Thus εα(V -k 2-p ) > 0 near -∞. Moreover lim τ →-∞ ζ ′ /V ′ = 0, so that ζ can be considered as a function of V near k 2-p , with lim V →k 2-p ζ = 0 and dζ dV = K(V, ζ), K(V, ζ) := ζ 2 V ε (α -ζ) V + (N -1)ζ 2 e -N/ζ ε (α -ζ) (N -(N -2)ζ)V + 2N (N -1)ζ 2 e -N/ζ .
Reciprocally, extending the function ζ 2 e -N/ζ by 0 for ζ ≦ 0, the function K is of class C 1 near (k 2-p , 0). For any k > 0, there exists a unique local solution (ii) Case p > N. Here (0, 0) is a source for System (P). The lines ζ = 0 and ψ = 0 contain trajectories. There exists an infinity of trajectories converging to (0, 0), with ζψ = 0; moreover, if N ≧ 2, then |η| < N, thus lim τ →-∞ (ψ/ζ) = 0. Our claim is more precise. Given a > 0 and c = 0, we look for a solution w of (E w ) such that lim r→0 w = a, lim r→0 r η+1 w ′ = -c. By scaling we can assume a = 1. If w 1 is a such a solution, then ζ and ψ have the sign of c near 0, and

V → ζ(V ) on a interval V where εα(V -k 2-p ) > 0, such that ζ(k 2-p ) = 0. And dζ/dV = (ζ 2 /N k 2-p )(1 + o(1)) near 0, thus ζ > 0. In the plane (ζ, ψ), taking one point P on the curve C = (ζ(V ), V ζ(V )e N/ζ(V ) ) : v ∈ V ,
ζ (τ ) = ce |η|τ (1 + o(1)) and |c| p-2 cψ (τ ) = e N τ (1 + o(1)). The function v = c(|c| p-2 cψ) 1/κ /ζ, with κ = N/ |η| > 1,
satisfies lim τ →-∞ v = 1, and can be expressed locally as a function of ζ, and

dv dζ = H(ζ, v), H(ζ, v) := - v κ (p -1)(κ + 1) + ε(κ -p + 1) |c| 1-p-κ (ζ -α) |ζ| κ-1 v κ (p -1)(ζ -η) + ε |c| 1-p-κ (α -ζ) |ζ| κ-1 ζv κ .
Reciprocally, there exists a unique solution ζ → v(ζ) of this equation on a small interval [0, hc) , with h > 0, such that v(0) = 1. Indeed H is locally continuous in ξ and C 1 in v. w ′ 2 = -c; thus w 2 has a limit a 2 , and lim r→0 r η-1 w ′ 2 = a 1-s 2 b. Moreover a 2 = 0, because a 2 = 0 implies that r -γ w 2 has a nonzero limit, thus (ζ, σ) converges to A γ . The function w(r) = a -1 2 w 2 (a 1/γ 2 r) satisfies lim r→0 w = 1, and lim r→0 r η-1 w ′ = -c, and the proof is done. Theorem 5.3 (i) In the phase plane (y, Y ), for any α = 0 there exists at least a trajectory T α converging to (0, 0) with y > 0, and

lim(ζ, σ) = A α . The convergence holds at ∞ if -γ < α, or -∞ if α < -γ, or ε∞ if α = -γ.
(ii) If ε(γ + α) < 0, T α is unique, it is the unique trajectory converging to (0, 0) at -ε∞ with y > 0, and it depends locally continuously of α.

Proof. (i) Suppose that such a trajectory exists. Then τ tends to ∞ if -γ < α, or -∞ if α < -γ, or ε∞ if α = -γ, from Proposition 4.1. Consider System (R), where g, s and ν are defined by (2.18). Then (g, s) converges to (-1/α, 0), with gs > 0, and ν tends to the same limits as τ , since Y converges to 0. Reciprocally, in the plane (g, s), let us show the existence of a trajectory converging to (-1/α, 0), different from the line s = 0. Setting g = -1/α + ḡ, the linearized system at this point is

dḡ dν = - ε p -1 ḡ + η -α α 2 s, ds dν = 0,
thus we find a center: the eigenvalues are 0 and λ = ε/(p -1). Since the system is polynomial, it is known that System (R) admits a trajectory, depending locally continuously of α, such that sg > 0, and tangent to the eigenvector ((p -1)(ηα), εα 

y d(ζ 1 -ζ 2 ) 2 dy = 2(F (ζ 1 , y) -F (ζ 2 , y)) (ζ 1 -ζ 2 )
near 0, where

F (ζ, y) = 1 γ + ζ (-ζ(ζ -η) + ε p -1 |ζy| 2-p (ζ -α)). Then (ζ 1 -ζ 2 ) 2 is nonincreasing, seeing that ∂F/∂ζ(ζ, y) = -((p -1)ε(γ + α)) -1 |αy| 2-p (1 + o(1)).
Hence ζ 1 ≡ ζ 2 near 0, and

T 1 ≡ T 2 .
6 The case ε = 1, -γ ≦ α

In that Section and in Sections 7, 8 and 9 we describe the solutions of (E w ). When we give a uniqueness result, we mean that w is unique, up to a scaling, from Remark 2.1.

Theorem 6.1 Assume ε = 1, -γ ≦ α (α = 0).
Any solution w of (E w ) has a finite number of simple zeros, and satisfies (4.4) or (4.5) near ∞ or has a compact support. Either w is regular, or |w| satisfies (4.6), (4.8), (4.7),(4.9) or (4.10) near 0, and there exist solutions of each type.

(1) Case α < N. All regular solutions have a strict constant sign, and satisfy (4.4) or (4.5) near ∞. Moreover there exist (and exhaustively, up to a symmetry) (i) a unique nonnegative solution with (4.6)or (4.8) or (4.9)) near 0, and compact support; (ii) positive solutions with the same behaviour at 0 and (4.4) or ( 4 (2) Case α = N. Then the regular (Barenblatt) solutions have a constant sign with compact support. If p ≦ N, all the other solutions are of type (iii). If p > N, there exist also solutions of type (iv) and (v).

(3) Case α > N.

Either the regular solutions have m simple zeros and satisfy satisfies (4.4) near ∞. Then there exist (vi) a unique solution with m simple zeros, |w| satisfies (4.6), (4.8) or(4.9) near 0, with compact support; (vii) solutions with m + 1 simple zeros, |w| satisfies (4.6), (4.8) or (4.9) near 0, and (4.4) or (4.5) near ∞; (viii) for p > N, solutions with m simple zeros, |w| satisfies (4.9),(4.7) or (4.10) near 0, and (4.4) or (4.5) near ∞.

Or the regular solutions have m simple zeros and a compact support. Then the other solutions are of type (vii) or (viii).

th 6.1,fig1: ε = 1, N = 2, p = 3, α = -2 th 6.1,fig2: ε = 1, N = 2, p = 3, α = 1 th 6.1,fig3: ε = 1, N = 2, p = 3, α = 2 th 6.1,fig4: ε = 1, N = 2, p = 3, α = 50
Proof. All the solutions w have a finite number of simple zeros, from Proposition 3.7 and Theorem 3.9. Either they have a compact support. Or y has a strict constant sign and is monotone near ∞, and converge to (0, 0) at ∞, and (4.4) or (4.5) holds, from Propositions 3.8, 4.1.

In the phase plane (y, Y ), system (S) admits only one stationary point (0, 0). The trajectory T r starts in Q 4 when α < 0, in Q 1 when α > 0, and lim τ →-∞ y = ∞, with an asymptotical direction of slope α/N . From Propositions 4.1 and 4.2 all the nonregular solutions ±w satisfy (4.6), (4.8), (4.7), (4.9) or (4.10) near -∞. The existence of solutions of any kind is proved at Theorems 5.1 and 5.2. When p ≦ N, they correspond to trajectories ±T η such that T η starts in Q 1 with an infinite slope, in any case above T r . When p > N, there is a unique trajectory T u satisfying (4.7), starting in Q 4 , under T r ; the trajectories T + start from Q 1 , above T r ; the trajectories T -start in Q 4 under T r . From Theorem 3.9, there exists a unique trajectory T ε converging to (0, 0) in Q 1 at ∞, with the slope 1.

(1) Case α < N. From Proposition 3.6, all the solutions w have at most one simple zero. The regular solutions stay positive, and T r stays in its quadrant, Q 4 or Q 1 , from Remark 2.3 (see figures 1 and2). Then T ε stays in Q 1 , because it cannot meet T r for α > 0, or the line {Y = 0} for α < 0, from Remark 2.3; and the corresponding w is of type (i).

Consider any trajectory T [P ] with P ∈ Q 1 above T ε . It cannot stay in Q 1 because it does not meet T ε and converges to (0, 0) with a slope 0. Thus it enters Q 2 from Remark 2.3. Then y has a unique zero, and

T [P ] stays in Q 1 before P, and in Q 2 ∪ Q 3 after P. Since T [P ] cannot meet ±T ε , and lim τ →∞ ζ = α, T [P ] ends up in Q 3 if α > 0, in Q 2 if α < 0.
It has the same behaviour as T ε at -∞, and w is of type (iii).

Next consider T [P ] for any P ∈ Q 1 ∪ Q 4 between T ε and T r . Then y stays positive, and T [P ] necessarily starts from Q 1 , and w is of type (ii).

At least take any

P ∈ Q 1 ∪ Q 4 under T r . If p ≦ N, T [P ]
starts from Q 3 and y has a unique zero, and -w is of type (iii). If p > N, either -w is of type (iii), or T [P ] stays in Q 4 . From Theorems 5.1, 5.2, either T [P ] coincides with T u , and w is of type (iv), or with one of the trajectories T -, thus w is of type (v).

(2) Case α = N. All the solutions are given by (1.9), which is equivalent to J N ≡ C, where J N is defined by (2.1). For C = 0, the regular (Barenblatt) solutions, given by (1.10), are nonnegative, with a compact support. In other words the trajectory T ε given by Theorem 5.3 coincides with T r , it is given by y ≡ Y, y > 0 (see figure 3). The only change in the phase plane is the nonexistence of solutions of type (ii).

(3) Case α > N. The regular solutions have a number m ≧ 1 of simple zeros, from Proposition 3.6 (see figure 4). As above, T r starts from Q 1 with a finite slope α/N.

Either T r = T ε . Then the regular solutions satisfy lim r→∞ r α w = L = 0. Since T ε cannot meet T r , T ε also cuts the line {y = 0} at m points, and the corresponding w is of type (vi). For any P ∈ Q 1 above T r , the trajectory T [P ] cuts the line {y = 0} at m + 1 points and w is of type (vii). If p > N, there exist trajectories starting from Q 1 between T ε and T r , with (4.9), such that w has m simple zeros, and trajectories with (4.7) or (4.10), m zeros, and lim r→∞ r α w = L = 0.

Or T r = T ε , the regular solutions have a compact support, and we only find solutions of type (vii), (viii). Remark 6.2 In the case α = η < 0, the solutions (iv) are given by (1.11). In the case N = 1, α = -(p -1)/(p -2), the solutions of types (i) and (v) are given by (1.14).

cycle; near -∞, y has a constant sign, is monotone and converges to (0, 0) from Propositions 3.8 and 4.1, and lim τ →-∞ ζ = α. This show again the existence of such trajectories, proved at Theorem 5.1, and there is an infinity of them; and w is if type (iii).

From Theorems 5.1 and 5.2, there exist trajectories starting from infinity, with O as limit cycle, and w is of type (iv) or (v). If O = O ε , all the solutions are described.

8 Case ε = 1, α < -γ. Proof. Here system (S) admits three stationary points in the plane (y, Y ), given at (2.8), thus w ≡ ±ℓr γ is a solution; and M ℓ is a sink (see figure 6). Any solution y of (E y ) has at most one zero, and is strictly monotone near ±∞, from Propositions 3.6 and 3.8.

From Theorems 3.9 and 5.3, there exists a unique trajectory T ε converging to (0, 0) in Q 1 at ∞, and a unique trajectory T α converging to (0, 0) in Q 4 at -∞. The trajectory T r starts in Q 4 with the asymptotical direction -|α| /N . From Remark 2.3, Q 4 is positively invariant, and Q 1 negatively invariant. Then T ε stays in Q 1 , and T α and T r in Q 4 . From Proposition 4.1, all the trajectories, apart from ±T ε , converge to ±M ℓ at ∞. Then T r converges to M ℓ , and w satisfies (4.3) near ∞. And T α also converges to M ℓ , and w is of type (i).

From Propositions 4.1, Theorems 5.1 and 5.2, all the nonregular solutions which are positive near -∞ satisfy (4.6), (4.8), (4.9), (4.10) or (4.7), and there exist such solutions. For p < N (resp. p = N ), they correspond to trajectories T η (resp. T + ) starting in Q 1 . For p > N, there is a unique trajectory T u satisfying (4.7), starting in Q 4 under T r ; and the trajectories T + satisfying (4.9) start from Q 1 ; the trajectories T -satisfying (4.10) and the unique trajectory T u satisfying (4.7) start from Q 4 , under T r . Since T ε stays in Q 1 , it defines solutions w of type (ii).

Consider the basis of eigenvectors (e 1 , e 2 ) defined at (2.15), where ν(α) > 0, associated to the eigenvalues λ 1 < λ 2 . One verifies that λ 1 < -γ < λ 2 ; thus e 1 points towards Q 3 and e 2 points towards Q 4 . There exist unique trajectories T e 1 and T -e 1 converging to M ℓ , tangentially to e 1 and -e 1 . All the other trajectories converging to M ℓ at ∞ are tangent to ±e 2 . Let

M = |Y | (2-p)/(p-1) Y = -γy , N = (N + γ)Y + ε |Y | (2-p)/(p-1) Y = εαy
be the sets of extremal points of y and Y.

The trajectory T r starts above the curves M and N , thus y ′ < 0 and Y ′ > 0 near -∞. And T r converges to M ℓ at ∞, tangentially to e 2 . Indeed if T r = T e 1 , then y has a minimal point such that y < ℓ and Y < -(γℓ) p-1 , then (y, Y ) cannot be on M. If T r = T -e 1 , then Y has a maximal point such that y > ℓ and Y < -(γℓ) p-1 , then also (y, Y ) cannot be on N . Finally T r cannot end up tangentially to -e 2 , it would intersect T e 1 or T -e 1 .

The trajectory T α converge to M ℓ tangentially to -e 2 . Indeed if T α = T e 1 , then Y has a maximal point such that y < ℓ and Y < -(γℓ) p-1 ; if T α = T -e 1 , then y has a maximal point such that y > ℓ and Y > -(γℓ) p-1 . In any case we reach a contradiction. Moreover T e 1 does not stay in Q 4 : y would have a minimal point such that y < ℓ and Y < -(γℓ) p-1 , which is impossible; thus T e 1 starts in Q 3 , and enters Q 4 at some point (ξ 1 , 0) with ξ 1 < 0. And -w is of type (iv).

Any trajectory T [P ]

, with P in the domain of Q 1 ∪ Q 4 delimitated by T r , T α and T ε , comes from Q 1 , and converges to M ℓ in Q 4 , in particular T -e 1 ; the corresponding w are of type (iii).

Any trajectory T [P ]

, with P in the domain of Q 3 ∪ Q 4 delimitated by T e 1 , T α and -T ε , goes from Q 3 to Q 4 , and T [P ] converges to M ℓ at ∞, and -w is of type (iv). For any ξ < ξ 1 , the trajectory T [(0,ξ)] is of the same type. If p ≦ N, any trajectory in the domain under T r , and T e 1 is of the same type.

If p > N, moreover in this domain there exists a the unique trajectory T u and trajectories of the type T -corresponding to solutions w of type (v) and (vi), from Theorems 5.1 and 5.2. Up to a symmetry, all the solutions are described, and all of them do exist.

9 Case ε = -1, -γ < α

Here again System (S) admits the three stationary points (2.8), thus w ≡ ±ℓr γ is a solution of (E w ). The behaviour is very rich: it depends on the position of α with respect to α * defined at (1.5), and 0, -p ′ , and η (in case p > N ), and also α 1 , α 2 defined at (2.14). We start from some general remarks. Remark 9.1 (i) There exists a unique trajectory T ε starting from (0, 0) in Q 4 with the slope -1, from Theorem 3.9. (ii) There exists a unique trajectory

T α converging to (0, 0) at ∞, in Q 1 if α > 0, in Q 4 if α < 0,
with a slope 0 at (0, 0), and lim τ →∞ ζ = α, from Theorem 5.3. (iii) From Remark 2.3, if α > 0, Q 4 is positively invariant and Q 1 negatively invariant. If α < 0, at any point (0, ξ), ξ < 0, the vector field points to Q 4 , and at any point (ϕ, 0), ϕ > 0, it points to

Q 1 . Thus if T ε does not stay in Q 1 , then T α stays in the bounded domain delimitated by Q 4 ∩ T ε . If T α does not stay in Q 4 , then T ε stays in the bounded domain delimitated by Q 4 ∩ T α . If T ε is homoclinic, in other words T ε = T α , it stays in Q 4 .
Remark 9.2 From Propositions 4.1, Theorems 5.1 and 5.2, all the nonregular solutions positive near -∞ satisfy (4.6) for p < N , (4.8) for p = N, corresponding to trajectories T η , T + starting fromQ 1 ; and (4.9), (4.10) or (4.7) for p > N, corresponding to trajectories T + starting from Q 1 , and T -, T u starting from Q 4 . Remark 9.3 Any trajectory T is bounded near ∞ from Proposition 4.3. From the strong form of the Poincaré-Bendixon theorem, any trajectory T bounded at ±∞ converges to (0, 0) or ±M ℓ , or its limit set Γ ± at ±∞ is a cycle, or it is homoclinic, namely T ε = T α . If there exists a limit cycle surrounding (0, 0), it also surrounds the points ±M ℓ , from Proposition 3.8.

The simplest case is α > 0. Proof. Any solution y of (E y ) has at most one zero, and y is strictly monotone near ∞, from Propositions 3.6 and 4.4. The point M ℓ is a sink and a node point, since α > 0 ≧ α 2 (see figure 7). Consider the basis eigenvectors (e 1 , e 2 ), defined at (2.15), where ν(α) < 0, associated to the eigenvalues λ 1 < λ 2 < 0. One verifies that λ 1 < -γ < λ 2 , thus e 1 points towards Q 3 and e 2 points towards Q 4 . There exist unique trajectories T e 1 and T -e 1 tangent to e 1 and -e 1 at ∞. All the other trajectories which converge to M ℓ end up tangentially to ±e 1 .

The trajectory T α stays in Q 1 from Remark 9.1; near -∞ it is of type T η for p < N, and T + for p ≧ N ; it defines the solution of type (ii). Since T α is the unique trajectory converging to (0, 0) at ∞, all the trajectories, apart from ±T α , converge to ±M ℓ at ∞, from Propositions 3.8 and 4.1.

The trajectories T r and T ε start in Q 4 , and stay in it from Remark 9.1, and both converge to M ℓ at ∞, then w satisfies (4.3); and T r starts with the asymptotical direction -α/N . And T ε defines the solution of type (i).

As in the proof of Theorem 8.1, T r ends up tangentially to e 2 , and T ε tangentially to -e 2 .

Moreover T e 1 does not stay in Q 4 , it starts in Q 3 , and converges to M ℓ in Q 4 , and -w is of type (iv). Any trajectory T [P ] , with P in the domain of Q 4 between T e 1 , T ε , starts from Q 3 , enters Q 4 at some point (0, ξ), ξ > ξ 1 , and has the same type as T e 1 . Any trajectory T [(0,ξ)] with ξ < ξ 1 is of the same type.

Any trajectory T [P ]

, with P in the domain of Q 1 ∪ Q 4 above T r ∪ T ε , starts from Q 1 , and converges to M ℓ in Q 4 , in particular T -e 1 ; the corresponding w are of type (iii). If p ≦ N, all the solutions are described. If p > N , moreover there exist trajectories staying in Q 4 : T u and the T -, starting under T r , corresponding to types (v) and (vi).

Remark 9.5 For α = N, T r and T ε are given by (1.10), respectively with K > 0 and K < 0. The trajectory T ε describes the portion 0M ℓ of the line {Y = -y} , and T r the complementary half-line in Q 4 (see figure 8).

Next we assume -p ′ ≦ α < 0. The case p > N is delicate: indeed the special value α = η is involved, because η < 0. Theorem 9.6 Assume ε = -1, p ≦ N, and -p ′ ≦ α < 0. Then w ≡ ℓr γ is a solution w of (E w ).

There exist a unique nonnegative solution with a hole, satisfying (4.3) at ∞. • for p > N, α < η, (viii) a unique solution with one zero, with (4.9) near 0, and (4.4) near ∞; (ix) a unique solution with one zero, with (4.7) near 0, and |w| satisfies (4.3) near ∞; (x) solutions with one zero, with (4.9) or (4.9) near 0, and |w| satisfies (4.3) near ∞; (xi) solutions with two zeros, with (4.9) near 0, and (4.3) near ∞.

• for p > N, α = η, solutions of the form w = cr |η| (c > 0). The other solutions are of type (vii).

(2) If α = -p ′ , all regular solutions have one zero and satisfy (4.4) near ∞. The solutions without hole are of types (ii), (iii) for p ≦ N, (ix), (x), (xi) for p > N. The unique trajectory T α ends up in Q 4 with the slope 0. From the uniqueness of T α and T ε , all the trajectories, apart from ±T α , converge to ±M ℓ at ∞, from Proposition 4.1 and Remark 9.3. Since εα > 0, the trajectory T r starts in Q 1 , and y has at most one zero. Then T r converges to -M ℓ in Q 2 , or T r = -T α .

The trajectory T ε starts in Q 4 with the slope -1, satisfies y ≧ 0 from Proposition 3.6. If T ε converge to (0, 0), then T ε = T α , thus it is homoclinic. Then M ℓ is in the bounded component defined by T ε , and T ε meets T r , which is impossible. Hence T ε converges to M ℓ in Q 4 , and w is nonnegative with a hole and satisfies (4.3) near ∞.

If α = -p ′ , we claim that T r = -T α . Indeed suppose T r = -T α . Consider the functions y α , Y α , defined by (2.3) with d = α. Then Y α stays positive, and Y α = O(e (α(p-1)+p)τ ) at ∞, thus lim

τ →∞ Y α = 0, lim τ →∞ Y α = c > 0, lim τ →-∞ y α = ∞, lim τ →∞ y α = L < 0.
Moreover y α , Y α have no extremal point: at such a point, from (3.2), (3.3) the second derivatives have a strict constant sign; then (1) Case α = -p ′ . Since T r = -T α , T r converges to -M ℓ , and y has one zero, and |w| satisfies (4.3).

Y ′ α > 0 > y ′ α . If α < η (in particular if p ≦ N ), from (4.13), near ∞, (p -1)Y ′′ α /Y ′ α ≧ |Y | (2-p)/(p-1) (1 + o(1)), thus Y ′′ α > 0 near ∞, which is contradictory; if α > η, from (4.12) (p -1)y ′′ α /y ′ α ≧ |Y | (2-p)/(p-1) (1 + o( 1 
• Case p ≦ N . All the other trajectories start in Q 3 or Q 1 , from Remarks 9.1 and 9.2. For any ϕ > 0, the trajectory T [(ϕ,0)] goes from Q 4 into Q 1 , and converges to -M ℓ in Q 2 , since it cannot meet T r and -T ε ; thus y has two zeros, and w is of type (iii). The trajectory T α cannot meet T [(ϕ,0)] , thus y has one zero, and it has the same behaviour at -∞, and w is of type (i). All the trajectories T [P ] with P in the interior domain of Q 1 delimitated by -T ε and T r start from Q 1 and converge to -M ℓ , y has precisely one zero, and has the same behaviour at -∞, and w is of type (ii).

• Case p > N, η < α (see figure 9). Any solution y has at most one simple zero. The trajectory T α stays in Q 4 . Indeed if it started in Q 3 , then for any trajectory T [(0,ξ)] with (0, ξ) above -T α , the function y would have two zeros. Since T α = T u , we have T α ∈ T -, and w is of type (iv). The trajectory T u necessarily stays in Q 4 and converges to M ℓ , and w is of type (v). The trajectories T [P ] , with P in the domain delimitated by T u , T α and T ε , are of type T -and converge in Q 4 to M ℓ , and w is of type (vi). The trajectories T [P ] , with P in the domain delimitated by T r , T α and -T ε , are of type T -, and converge to -M ℓ , and y has one zero. The trajectories T [P ] , with P in the domain delimitated by T r and -T u , are of type T +, converge to -M ℓ , and y has one zero. Both define solutions w of type (vii).

• Case p > N, α < η (see figure 10). We have seen that T r = -T α . If T α ∈ T + , then ζ decreases from 0 to α, which contradicts System (Q) at ∞. Then T α does not stay in Q 4 , it starts in Q 3 and -T α ∈ T -, hence y has a zero, and w is of type (viii). Then T u and the trajectories T -converge to -M ℓ , and y has one zero. The trajectories T [P ] , with P in the domain delimitated by T r , -T α and -T ε , are of type T + and converge to -M ℓ , y has one zero. They correspond to w is of type (ix) or (x). The trajectories T [P ] , with P in Q 4 above T r , cut the line {y = 0} twice, and converge to M ℓ , and w is of type (xi).

• Case p > N, α = η. Then T α = T u , the functions w = cr -η (c > 0) are particular solutions. The phase plane study is the same, and gives only solutions of type (vii).

(2) Case α = -p ′ (see figure 11). Here T r = -T α , since the regular solutions are given by (1.12). Thus there exist no more solutions of type (ii) or (viii).

Next we study the behaviour of all the solutions when α < -p ′ . In particular we prove the existence and uniqueness of an α c for which there exists an homoclinic trajectory. Thus we find again some results obtained in [START_REF] Gil | Focusing solutions for the p-Laplacian evolution equation[END_REF], with new detailed proofs. We also improve the bounds for α c , in particular α * < α c . If N = 1, for α = α p , then there exists an homoclinic trajectory in the phase plane (y, Y ) . If N ≧ 2, for α = α p , there is no homoclinic trajectory, moreover T α converges to M ℓ at -∞ or has a limit cycle in Q 4 .

Proof. In the case N = 1, α = α p , the explicit solutions (1.14) define an homoclinic trajectory in the phase plane (y, Y ), namely T ε = T α . In the phase plane (g, s) of System (R), from Remark 2.6, they correspond to the line s ≡ 1 + αg, joining the stationary points (0, 1) and (-1/α, 0). Next assume N ≧ 2 and consider the trajectory T α in the plane (y, Y ). In the plane (g, s) of System (R), the corresponding trajectory T ′ α ends up at (-1/α, 0), as ν tends to ∞ from (2.18), with the slope -k p . If T α is homoclinic, then T ′ α converges to (0, 1) as ν tends to -∞. Consider the segment

T = {(g, -k(g + 1/α p ) : g ∈ [0, 1/ |α p |]} , with k = p ′ α 2 p /(N + 2/(p -2)) > k p .
Its extremity (0, k/ |α p |) is strictly under (0, 1). The domain R delimitated by the axes, which are particular orbits, and T, is negatively invariant: indeed, at any point of T, we find

k dg dν + ds dν = (N -1)p ′ ks(g - 1 γ ) 2 .
The trajectory T ′ α ends up in R, thus it stays in it, hence T ′ α cannot join (0, 1). In the phase plane (y, Y ), T α is not homoclinic, and T α stays in Q 4 , and Remark 9.3 applies. Remark 9.8 Notice that α * ≦ α p ⇔ N ≦ p. Theorem 9.9 Assume ε = -1, and α < -p ′ . There exists a unique α c < 0 such that there exists an homoclinic trajectory in the plane (y, Y ) ; in other words

T ε = T α . If N = 1, then α c = α p . If N ≧ 2, then max(α * , α p ) < α c < min(α 2 , -p ′ ). ( 9.1) 
Proof. In order to prove the existence of an homoclinic orbit for System (S), we could consider a Poincaré application as in [START_REF] Bidaut-Véron | Self-similar solutions of the p-Laplace heat equation: the fast diffusion case[END_REF], but it does not give uniqueness. Thus we consider the system (R β ) obtained from (R) by setting s = βS:

dg dν = gF (g, S), F (g, S) := βS(1 + ηg) -1 p-1 (1 + αg), dS dν = SG(g, S), G(g, S) := 1 + αg -β(1 + N g)S.    (R β )
Its stationary points are (0, 0),

A ′ = (1/ |α| , 0), B ′ = (0, 1/β), M ′ = (1/γ, 1/(N + γ)(p -2)),
where M ′ corresponds to M ℓ . The existence of homoclinic trajectory for System (S) resumes to the existence of a trajectory for System (R β ) in the plane (g, S), starting from B ′ and ending at A ′ .

(i) Existence. We can assume that α ∈ (α 1 , min(α 2 , -p ′ )), from Proposition 4.4. In the plane (g, S), consider the trajectories T ′ ε and T ′ α corresponding to T ε ∩ Q 4 and T α ∩ Q 4 in the plane (y, Y ). Then T ′ ε starts from B ′ and T ′ α ends up at A ′ . From Remark 9.1, for any α ∈ (α 1 , α 2 ) , with α ≦ -p ′ , we have three possibilities:

• T ′ ε is converging to M ′ as ν tends to ∞ and turns around this point, since α is a spiral point, or it has a limit cycle in Q 1 around M ′ . And T ′ α admits the line g = 0 as an asymptote as ν tends to -∞, which means that T α does not stay in Q 4 in the plane (y, Y ). Then T ′ ε meats the line

L := {g = 1/γ} at a first point (1/γ, S 0 (α)). And T ′ α meats L at a last point (1/γ, S 1 (α)), such that S 0 (α)-S 1 (α) < 0; • T ′ α is converging to M ′ at -∞ or it has a limit cycle in Q 1 around M ′ .
And T ′ ε admits the line S = 0 as an asymptote at ∞, which means that T ε does not stay in Q 4 . Then with the same notations, S 0 (α) -S 1 (α) > 0.

• T ′ ε = T ′ α , equivalently S 0 (α) -S 1 (α) = 0.
The function α → ϕ(α) = S 0 (α) -S 1 (α) is continuous, from Theorems 3.9 and 5.3. If -p ′ < α 2 , then ϕ(-p ′ ) is well defined and ϕ(-p ′ ) < 0; indeed T α = -T r , thus T α does not stay in Q 4 from Theorem 9.6. If α 2 ≦ -p ′ , in the plane (y, Y ), the trajectory T α 2 leaves Q 4 , from Proposition 4.4, because α 2 is a sink, and transversally from Remark 9.1. The same happens for T α 2-υ for υ > 0 small enough, by continuity, thus ϕ(α 2υ) < 0. From Lemma 9.7, ϕ(α p ) > 0 if N ≧ 2, and ϕ(α p ) = 0 if N = 1. In any case there exists at least an α c satisfying (9.1), such that ϕ(α c ) = 0.

(ii) Uniqueness. First observe that 1 + ηg > 0

; indeed 1 + η/ |α| > (p ′ + η)/ |α| > 0. Now (p -1)F + G = pβS(1/γ -g) = (p -2)βS(1 -γg),
hence the curves {F = 0} and {G = 0} intersect at M ′ and A ′ , = 0} contains B ′ and is above {F = 0} for g ∈ (0, 1/γ) and under it for g ∈ (1/γ, 1/ |α|) . Moreover T ′ ε has a negative slope at B ′ , thus F > 0 > G near 0 from (R β ). And T ′ ε cannot meet {G = 0} for (0, 1/γ) , because on this curve the vector field is (gF, 0) and F > 0. Thus T ′ ε satisfies F > 0 > G on (0, 1/γ). In the same way T ′ α has a negative slope -θα 2 /(p -1)(η + |α|) < 0 at 1/ |α| , thus F > 0 > G near 1/ |α| . And T ′ α cannot meet {F = 0} , because the vector field on this curve is (0, SG) and G < 0. Thus T

′ α satisfies F > 0 > G on (1/γ, 1/ |α|) .
Let α < ᾱ. Then T ′ ε is above T ′ ε near g = 0, and T ′ α is at the left of T ′ ᾱ near S = 0. We show that ϕ(α) > ϕ(ᾱ). First suppose that T ′ ε and T ′ ε (or T ′ α and T ′ ᾱ) intersect at a first point P 1 (or a last point) such g = 1/γ. Then at this point This implies d 2 (S -S)/dg 2 = 0 and d 3 (S -S)/dg 3 = 2S 1 γ 2 (p -1)(p -2)(1/β -1/ β) > 0, which is a contradiction. Then T ′ ε and T ′ ε cannot intersect on this line, similarly for T ′ α and T ′ ᾱ. Hence ϕ(α) > ϕ(ᾱ), which proves the uniqueness.

As a consequence, for α < α c , ϕ(α) > 0, in the plane (y, Y ), T ε does not stay in Q 4 ; for α > α c , ϕ(α) < 0, T α does not stay in Q 4 . From Lemma 9.7, it follows that α p < α c if N ≧ 2. Moreover α * < α c . Indeed α * is a source from Proposition 2.5, thus for α > α * small enough, there exists a unique cycle O around M ℓ , which is unstable. For such an α, T ε cannot stay in Q 4 : it would have O as a limit cycle at ∞, which contradicts the unstability.

Next we discuss according to the position of α with respect to α * and α c . Theorem 9.10 Assume ε = -1, and α ≦ α * . Then (i) there exist a unique flat positive solution w of (E w ) with (4.3) near 0, and (4.4) near ∞;

(ii) All the other solutions are oscillating at among them the regular ones, and r -γ w is asymptotically periodic in ln r. There exist solutions with a hole, also with (4.3), (4.6) or (4.9) or (4.9) or (4.7) near 0. There exist solutions such that r -γ w is periodic in ln r. Proof. Here α < α c , from Theorem 9.9, and the trajectory T α stays in Q 4 . From Proposition 4.4, it converges at -∞ to M ℓ , and w is of type (i).

The trajectory T ε leaves Q 4 , and cannot converge either to (0, 0) since T ε = T α , or to ±M ℓ , because this point is a source, or a weak source. Recall that M ℓ is a node point for α ≦ α 1 (see figure 12,, where α 1 ∼ = -2.50), or a spiral point (see figure 13). And T ε is bounded at ∞ from Proposition 4.3. Then it has a limit cycle O ε surrounding (0, 0) from Proposition 4.4, and ±M ℓ from Remark 9.3. Thus w is oscillating around 0 near ∞, r -γ w is asymptotically periodic in ln r.

The solutions w corresponding to O ε are oscillating and r -γ w is periodic in ln r. Any trajectory T [P ] with P in the interior domain delimitated by O ε converges to M ℓ at -∞ and has the same limit cycle at ∞. The trajectory T r starts in Q 1 , with lim τ →-∞ y = ∞ and cannot converge to any stationary point at ∞. It is bounded, thus has a limit cycle O r surrounding O 0 . For any P ∈ T r in the exterior domain to O r , the trajectory T [P ] admits O r as a limit cycle at ∞, and y is necessarily monotone at -∞, thus (4.6) or (4.9) or (4.9) or (4.7) near 0; all those solutions exist. The question of the uniqueness of the cycle (O r = O ε ) is open. Theorem 9.11 Let α c be defined by Theorem 9.9.

(1) Let α * < α < α c . Then all regular solutions w of (E w ) are oscillating around 0 near ∞, and r -γ w is asymptotically periodic in ln r. There exist (i) positive solutions, such that r -γ w is periodic in ln r; (ii) a unique positive solution such that r -γ w is asymptotically periodic in ln r near 0, with (4.4) near ∞; (iii) positive solutions such that r -γ w is asymptotically periodic in ln r near 0, with (4.3) near ∞; (iv) solutions oscillating around 0 such that r -γ w is periodic in ln r; (v) solutions with a hole, oscillating near ∞, such that r -γ w is asymptotically periodic in ln r; (vi) solutions satisfying (4.6) or (4.9) or (4.9) or (4.7) near 0, oscillating around 0 near ∞, such that r -γ w is asymptotically periodic in ln r; (vii) solutions positive near 0, oscillating near ∞, such that r -γ w is asymptotically periodic in ln r near 0 and ∞.

(2) Let α = α c .

(viii) There exist a unique nonnegative solution with a hole, with (4.4) near ∞. The regular solutions are as above. There exist solutions of types (iv), (vi), and (ix) positive solutions such that r -γ w is bounded from above near 0, with (4.3) near ∞.

(1) Either there exists a cycle surrounding (0, 0) and ±M ℓ , thus solutions w oscillating around 0, such that r -γ w is periodic in ln r. Then T r has such a limit cycle O r , and w is oscillating around 0. The trajectory T α has a limit cycle at -∞ of the same type O α ⊂ O r , and w is of type (ii). For any P ∈ T ε in the interior domain in O α , T [P ] admits O α as a limit cycle at -∞ and converges to M ℓ at ∞, or has a limit cycle in Q 4 ; and w is of type (iii). For any P ∈ T r , in the domain exterior to O r , T [P ] has O α as limit cycle at ∞, and w is of type (i).

(2) Or no such cycle exists. Then any trajectory converges at ∞, any trajectory, apart from ±T α , converges to ±M ℓ or has a limit cycle in Q 1 . All the trajectories end up in Q 2 or Q 4 . Since T r starts in Q 1 , y has at least one zero. Suppose that it is unique. Then T r converges to -M ℓ , thus Y stays positive. Consider the function Y α = e (α+γ)(p-1)τ Y defined by (2.3) with d = α. From Theorem 3.3, Y α = (a |α| /N )e (α(p-1)+p)τ (1 + o(1)) near -∞; thus Y α tends to ∞, since α < p ′ . And Y α = (γℓ) p-1 e (α+γ)(p-1)τ near ∞, thus also Y α tends to ∞; then it has a minimum point τ, and from (2.6), Y ′′ α (τ ) = (p -1) 2 (ηα)(p ′ + α)Y α < 0, which is contradictory. Thus y has a number m ≧ 2 of zeros.

Either T r = T α . Since the slope of T α near -∞ is infinite and the slope of T r is finite, T α cuts the line {y = 0} at m points, starts from Q 1 , and w is of type (iv). For any P in the domain of Q 1 between T r and T α , T [P ] cuts {y = 0} at m + 1 points, and w is of type (v). For any P in the domain of Q 1 above T r , T [P ] cuts the line {y = 0} at m + 1 points, and w is of type (vi). If p > N, the trajectories T -and T u cut the line {y = 0} at m points, and w is of type (vii).

Or T r = T α , and then we find only trajectories with w of type (vi) or (vii). Remark 9.13 Consider the regular solutions in the range α c < α < -p ′ . We conjecture that there exists a decreasing sequence (ᾱ n ) , with ᾱ0 = -p ′ and α c < ᾱn such that for α ∈ ( ᾱm , ᾱm-1 ) , y has m zeros and converges to ±M ℓ ; and for α = ᾱm , y has m + 1 zeros and converges to (0, 0), thus T r = T α . We presume that ( ᾱm ) has a limit ᾱ > α c . And for α < ᾱ, y has an infinity of zeros, in other words there exists a cycle O r surrounding {0} and ±M ℓ .

Numerically, for α = α c , the cycle O r seems to be the unique cycle surrounding the three points. But for α > α c and αα c small enough, there exist two different cycles O α ⊂ O r (see figure 15). As α increases, we observe the coalescence of those cycles; they disappear after some value ᾱ (see figure 16).

  w is flat. Or different kinds of singularities may occur, either at the level of w : lim r→0 w = ∞, or at the level of the gradient: lim r→0 w = a ∈ R, lim r→0 w ′ = ±∞, when p > N > 1, lim r→0 w = a ∈ R, lim r→0 w ′ = b = 0 when p > N = 1.
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 736 Proposition Let w ≡ 0 be any solution of (E w ) on an interval I. (i) If ε = 1 and α ≦ N, then w has at most one simple zero; if α < N and w is regular, it has no zero. If α = N it has no simple zero and a compact support. If α > N and w is regular, it has at least one simple zero. (ii) If ε = -1 and α ≧ min(0, η), then w has at most one simple zero. If w ≡ 0 has a double zero, then it has no simple zero. If α > 0 and w is regular, it has no zero.

  3 and (2.3), thus lim τ →-∞ Y α = 0. As above Y α cannot have any extremal point, then Y α is positive and increasing. In turn w ′ < 0 from (2.3), hence w has at most one zero. Proposition 3.7 Let w ≡ 0 be any solution of (E w ) on an interval I. If ε = 1, then w has a finite number of isolated zeros. If ε = -1, it has a finite number of isolated zeros in any interval [m, M ] ∩ I with 0 < m < M < ∞. Proof. Let Z be the set of isolated zeros on I. If w has two consecutive isolated zeros ρ 1 < ρ 2 , and τ ∈ (e ρ 1 , e ρ 2 ) is a maximal point of |y d |, from (3.2), it follows that εe ((p-2)d+p)τ |dy d (τ )| 2-p (dα) ≦ (p -1)d(dη).

  there exists a sequence of zeros (r n ) converging to some point r ∈ [0, ∞) , and a sequence (τ n ) of maximal points of |y d | converging to τ = ln r. If r > 0, then w(r) = w ′ (r) = 0; we get a contradiction by taking ρ = ρ n = e τn in (3.10), because the left-hand side tends to ∞. If r = 0, fixing now d < η, there exists a sequence (τ n ) of maximal points of |y d | converging to -∞. Then w(ρ n ) = O(ρ p/(p-2) n

  (i) If y has a constant sign near s, then the same is true for Y .(ii) If y > 0 is strictly monotone near s, then Y, ζ, σ are monotone near s.(iii) If y > 0 is not strictly monotone near s, then s = ±∞, ε(γ + α) < 0 and y oscillates around ℓ.(iv) If y is oscillating around 0 near s, then ε = -1, s = ±∞, α < -p ′ ; if α > -γ,then |y| > ℓ at the extremal points. Proof. (i) The function w has at most one extremal point on I : at such a point, it satisfies (|w ′ | p-2 w ′ ) ′ = -εαw with α = 0. From (2.7), Y has a constant sign near s. (ii) Suppose y strictly monotone near s. At any extremal point τ of Y, we find Y ′′ (τ ) = εαy ′ (τ ) from (3.5). Then y ′ (τ ) = 0, Y ′′ (τ ) has a constant sign. Thus τ is unique, and Y is strictly monotone near s. Next consider ζ. If there exists τ 0 such that ζ(τ 0 ) = α, then ζ ′ (τ 0 ) = α(αη), from system (Q). If α = η, then τ 0 is unique, thus αζ has a constant sign near s. Then ζ ′′ (τ ) has a constant sign at any extremal point τ of ζ, from (3.6), thus ζ is strictly monotone near s. If α = η, then ζ ≡ α. At last consider σ. If there exists τ 0 such that σ

  from the first equation of (Q), thus εy ′ < 0, hence s = ε∞.(iii) y tends to ∞. Either λ = 0, thus |σ| = |ζ| p-1 y p-2 tends to ∞, and λ = η from system (Q), thus p = N, (λ, µ) = L η . Or λ = 0 and µ is finite, thus µ = εα/N, (λ, µ) = A r . Or (λ, µ) = L 0 ; then either p = N, L 0 = L η , or p > N. In any case, y ′ = -y(γ + ζ) < 0, from (1.2), hence s = -∞.
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 5 (iii) If p < N and (λ, µ) = L η , then lim r→0 r η w = c > 0. (4.6) (iv) If p > N and (λ, µ) = L η , then lim r→0 r -|η| w = c > 0. (4.7)(v) If p = N and (λ, µ) = L + , then lim r→0 |ln r| -1 w = k > 0, lim r→0 rw ′ = -k if p = N. (4.8) (vi) If p > N and (λ, µ) = L + , or L -, then lim r→0 w = a > 0, lim r→0 (-r (N -1)/(p-1) w ′ ) = c > 0(N -1)/(p-1) w ′ ) = c < 0. (4.10)Proof. (i) This follows directly from (2.7).

  ′ = |η| w(1 + o(1), hence a = 0. Then c ≧ 0; if b = 0, then Y < 0, the function v = -e (γ+N )τ Y > 0 tends to 0 and v ′ = -e (γ+N )τ ε(αη)y(1 + o(1)) = -ε(αη) |η| e -(γ+N )(p-2)/(p-1)τ v 1/(p-1) ; we reach again a contradiction.Thus a = 0 and c > 0, and (4.7) holds. (v) Assertion (4.8) follows from (4.2). (vi) Here rw ′ = o(w), thus w + |w ′ | = O(r -k ) for any k > 0. Then J ′

Proposition 4 . 3

 43 Suppose ε = -1. Let w ≡ 0 be any solution of (E w ).(i) If α ≦ -γ, then w is oscillating near 0 at ∞.(ii) If α < 0, then y and Y are bounded at ∞.

Theorem 5 . 1

 51 (i) Suppose p < N. In the phase plane (y, Y ) of system (S) there exist an infinity of trajectories T η such that lim τ →-∞ (ζ, σ) = L η ; the corresponding w satisfy(4.6).(ii) Suppose p > N. There exist a unique trajectory T u such that lim τ →-∞ (ζ, σ) = L η ; in other words for any c = 0, there exists a unique solution w of equation (E w ) such that (4.7) holds. Proof. Suppose that such a trajectory exists in the plane (y, Y ). In the phase plane (ζ, ψ) of System (P), ζ and ψ keep a strict constant sign, because the two axes ζ = 0 and ψ = 0 contain particular trajectories, and (ζ, ψ) converges to (η, 0) at -∞. Reciprocally, setting ζ = η + ζ, the linearized problem at point (η, 0) ζ′ = η ζ + η(αη)εψ/(p -1), ψ ′ = (Nη)ψ, admits the eigenvalues η and Nη. The trajectories linked to the eigenvalue η are tangent to the line ψ = 0. (i) Case p < N. Then η > 0, and (η, 0) is a source. In the plane (ζ, ψ) there exist an infinity of trajectories, starting from this point at -∞, such that ψ > 0, and lim τ →-∞ ζ = η, thus ζ > 0. In the phase plane (y, Y ), setting y = (ψ |ζ| p-2 ζ) 2-p and Y = y/ψ, they correspond to an infinity of trajectories in the plane (y, Y ) such that lim τ →-∞ (ζ, σ) = L η , and (4.6) holds from Proposition (4.2).

  there exists a unique solution of System (P) issued from P at time 0. Its trajectory is on C, thus it converges to (0, 0), with ζ, ψ > 0. It corresponds to a unique trajectory T + in the plane (y, Y ), and (ζ, σ) converges to L + , as τ tends to -∞, from Proposition 4.1. The corresponding functions w satisfy (4.8) from Proposition (4.2).

  Taking one point P on the curve C ′ = (ζ, |c| 1-p-κ |ζ| κ-1 ζv(ζ)) : ζ ∈ [0, hc) , there exists a unique solution of System (P) issued from P at time 0. Its trajectory is on C ′ , thus converges to (0, 0) with ζψ > 0. It corresponds to a solution (y, Y ) of System (S), such that (ζ, σ) converges to L + , as τ tends to -∞, from Proposition 4.1. The corresponding function, called w 2 , satisfies lim r→0 r η+1 w γ -1 |η|-1 2

  2 ). It satisfies ds/dν = (p -2)(α + γ)s 2 (1 + o(1)). Then ds/dτ = -(p -2)α(α + γ)s(1 + o(1)), thus τ tends to ±∞. And |y| p-2 = |s| |g| 1/(p-1) , then y tends to 0, (y, Y ) converges to (0, 0), and lim(ζ, σ) = A α .(ii) Suppose ε(γ + α) < 0. Consider two trajectories T 1 , T 2 in the plane (y, Y ), converging to (0, 0) at -ε∞, with y > 0. They are different from T ε which converges at ε∞, thus lim(ζ i , σ i ) = (α, 0) from Proposition 4.1. Then ζ 1 , ζ 2 can locally be expressed as a function of y, and

  .5) near ∞; (iii) solutions with one simple zero, and |w| has the same behaviour at 0 and ∞; (iv) for p > N, a unique positive solution with (4.7) near 0, and (4.4) or (4.5) near ∞; (v) for p > N, positive solutions with (4.10) near 0, and (4.4) or (4.5) near ∞.

Theorem 8 . 1

 81 Assume ε = 1, α < -γ. Then w ≡ ±ℓr γ is a solution of (E w ). All regular solutions have a strict constant sign, and satisfy(4.3) near ∞. Moreover there exist (exhaustively, up to a symmetry) (i) a unique positive flat solution with (4.4) near 0 and (4.3) near ∞; (ii) a unique nonnegative solution with (4.6) or (4.8) or (4.9) near 0, and compact support; (iii) positive solutions with the same behaviour near 0 and (4.3) near ∞; (iv) solutions with one zero and the same behaviour near 0, and |w| satisfies (4.3) near ∞; (v) for p > N, positive solutions with (4.7) near 0 and (4.3) near ∞; (vi) for p > N, positive solutions with (4.10) near 0 and (4.3) near ∞.

th 8 . 1 ,

 81 fig6: ε = 1, N = 2, p = 3, α = -6

Theorem 9 . 4

 94 Assume ε = -1, α > 0.Then w ≡ ℓr γ is a solution w of (E w ). All regular solutions have a strict constant sign; and satisfy (4.3) near ∞. There exist (exhaustively, up to a symmetry) (i) a unique nonnegative solution with a hole, and (4.3) near ∞; (ii) a unique positive solution with (4.6), or (4.8) or (4.9), and (4.4) near ∞; (iii) positive solutions with the same behaviour near 0, and (4.3) near ∞; (iv) solutions with one zero, the same behaviour near 0, and |w| satisfies (4.3) near ∞; (v) for p > N, a unique positive solution with (4.7) near 0, and (4.3) near ∞; (vi) for p > N, positive solutions with (4.10) near 0, and (4.3) near ∞. th 9.4, fig7: ε = -1, N = 1, p = 3, α = 0.7 th 9.4, fig8: ε = -1, N = 1, p = 3, α = 1

( 1 )

 1 If α = -p ′ , all regular solutions have one zero, and |w| satisfies (4.3) near ∞. There exist (exhaustively, up to a symmetry) • for p ≦ N, (i) a unique solution with one zero, with (4.6) or (4.8) near 0,and (4.4) near ∞; (ii) solutions with one zero, with (4.6) or (4.8) near 0, and |w| satisfies (4.3) near ∞; (iii) solutions with two zeros, with (4.6) or (4.8) near 0, and (4.3) near ∞; • for p > N, η < α, (iv) a unique positive solution, with (4.10) near 0, and (4.4) near ∞; (v) a unique positive solution, with (4.7) near 0, and (4.3) near ∞; (vi) positive solutions, with (4.10) near 0, and (4.3) near ∞; (vii) solutions with one zero with (4.10) or (4.9) near 0, and (4.3) near ∞;

  th 9.6, fig9: ε = -1, N = 1, p = 3, α = -0.7 th 9.6, fig10:ε = -1, N = 1, p = 3, α = -1.49 th 9.6, fig11: ε = -1, N = 1, p = 3, α = -3/2Proof. Here again M ℓ is a sink; but it is a node point only if α ≧ α 2. . The phase plane (y, Y ) does not contain any cycle, from Proposition 4.4. From Proposition 3.6, any solution y has at most two zeros, and Y at most one.

  )), thus y ′′ α < 0 near ∞, still contradictory. If α = η, T α = T u from (1.11), thus again T r = -T α . If p > N and α = η, we claim that T α = T u . Indeed suppose T α = T u . This trajectory stays Q 4 , the function ζ stays negative, and lim τ →-∞ ζ = η, lim τ →∞ ζ = α. If ζ has an extremal point ϑ, then ϑ ∈ (α, η) from System (Q), and ζ ′′ has a constant sign, the sign of αζ; it is impossible. Thus ζ is monotone; then (αη)ζ ′ > 0, which contradicts System (Q).

Lemma 9. 7

 7 Let α p := -(p -1)/(p -2).

- 2 )( 1 -

 21 γg)S (p -1)S(1 + ηg)β -1 (1 + αg) = (p -2)(1γg)S h S (g)β -1 (1γg) (9.2)with h S (g) = (p -1)S(1 + ηg)g/(p -2). Thus the denominator, which is positive, is increasing in α on (0, 1/γ) , decreasing on (1/γ, 1/ |α|) ; in any case dS/dg > dS/dg at P 1 , which is contradictory.Next suppose that there is an intersection on L. At such a point P 1 = (1/γ, S 1 ) = (1/γ, S 1 ) the derivatives are equal from (9.2), and P 1 is above M ′ , because F > 0. At any points (g, S(g)) ∈ T ′ ε (or T ′ α ), (g, S(g)) ∈ T ′ ε (or T ′ ᾱ), setting g = 1/γ + u, γ))u 2 (1 + o(1)), And h S (1/γ) = h S (1/γ) > 0, and h ′ S (1/γ) = h ′ S (1/γ), then (Φ -Φ)(u) = γu 2 (1/β -1/ β) h(1/γ) (1 + o(1)).

th 9 .

 9 10,fig 12: ε = -1, N = 1, p = 3, α = -2.53 th 9.10, fig 13: ε = -1, N = 1, p = 3, α = -2.2

 Remark 6.3We conjecture that there exists an increasing sequence ( ᾱm ) , with ᾱ0 = N such that the regular solutions w have m simple zeros for α ∈ (ᾱ m-1 , ᾱm ) , with lim r→∞ r α w = L = 0, and m simple zeros and a compact support for α = ᾱm , in which case T r = T ε . [START_REF] Hubbard | Differential equations: A dynamical systems approach[END_REF] The case ε = -1, α ≦ -γ Theorem 7.1 Assume ε = -1, α ≦ -γ. Then all the solutions w of (E w ), among them the regular ones, are ocillating near ∞ and r -γ w is asymptotically periodic in ln r. There exist (i) solutions such that r -γ w is periodic in ln r;

(ii) a unique solution with a hole; (iii) flat solutions w with (4.4) or (4.5) near 0; (iv) solutions with (4.6) or (4.8) or (4.9) or also (4.10) near 0; (v) for p > N, a unique solution with (4.7) near 0.

Proof. Here again, (0, 0) is the unique stationary point in the plane (y, Y ). Any solution y of (E y ) oscillates near ∞, and (y, Y ) is bounded from Proposition 4.3. From the strong form of the Poincaré-Bendixon theorem, see [7, p.239], all the trajectories have a limit cycle or are periodic. In particular T r starts in Q 1 , since εα > 0, with the asymptotical direction εα/N . and it has a limit cycle O. There exists a periodic trajectory of orbit O, thus w is of type (i) (see figure 5).

From Theorem 5.2 there exists a unique trajectory T ε starting from (0, 0) with the slope -1, y > 0; it has a limit cycle O ε ⊂ O, and w is of type (ii). For any P in the bounded domain delimitated by O ε , not located on T ε , the trajectory T [P ] does not meet T ε , and admits O ε as limit Proof. (1) Let α * < α < α c (see figure 14). Then T α stays in Q 4 , but cannot converge neither to M ℓ which is a sink, nor to (0, 0) since

and w is of type (ii). The orbit O α corresponds to solutions of type (i). There exist positive solutions converging to M ℓ at ∞, with a limit cycle O ℓ at -∞ surrounded by O α , and w is of type (iii). This cycle is unique (O ℓ = O α ) for αα * small enough, from Proposition 2.5. The trajectory T ε still cannot stay in Q 4 . As in the case α ≦ α * , T ε has a limit cycle O ε surrounding the three stationary points, w is of type (v), and T r is oscillating around 0, and there exist solutions of type (vi). Any trajectory T [P ] with P ∈ T ε in Q 4 in the domain delimitated by O α and O ε admits O α as a limit cycle at -∞ and O ε at ∞, and w is of type (vii).

(2) Let α = α c (see figure 15). The homoclinic trajectory T ε = T α corresponds to the solution w of type (viii). The trajectory T r has a limit cycle O r surrounding the three points. Thus there exist solutions of types (iv) or (vi). Any trajectory ending up at M ℓ at ∞ is bounded, contained in the domain delimitated by T ε , and its limit set at -∞ is the homoclinic trajectory T ε , or a cycle around M ℓ , and w is of type (ix). Theorem 9.12 Assume ε = -1, and α c < α < -p ′ .

There exist a unique nonnegative solution w of (E w ) with a hole, with r -γ w bounded from above and below at ∞. The regular solutions have at least two zeros.

(1) Either there exist oscillating solutions such that r -γ w is periodic in ln r. Then the regular solutions have an infinity of zeros, and r -γ w is asymptotically periodic in ln r. There exist (i) solutions satisfying (4.6) or (4.9) or (4.9) or (4.7) near 0, oscillating near ∞, such that r -γ w is asymptotically periodic in ln r;

(ii) a unique solution oscillating near 0, such that r -γ w is asymptotically periodic in ln r, and with (4.4) near ∞; (iii) solutions positive near 0, with r -γ w bounded, and oscillating near ∞, such that r -γ w is asymptotically periodic in ln r.

(2) Or all the solutions have a finite number of zeros, and at least two. Two cases may occur:

• Either regular solutions have m zeros and r -γ w bounded from above and below at ∞. Then there exist (iv) solutions with m zeros, with (4.6) Proof. Here T ε stays in Q 4 , converges to M ℓ or has a limit cycle around M ℓ , thus w has a hole and r -γ w bounded from above and below at ∞. If α ≧ α 2 , there is no cycle in Q 4 , from Proposition 4.4, thus T ε converges to M ℓ .