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The regularity of optimal irrigation patterns

Jean-Michel Morel, Filippo Santambrogio∗

June 6, 2007

Abstract

A branched structure is observable in draining and irrigation systems, in electric power supply systems
and in natural objects like the blood vessels, the river basins or the trees.Recent approaches of these
networks derive their branched structure from an energy functionalwhose essential feature is to favor
wide routes. Given a flows in a river, a road, a tube or a wire, the transportation cost per unit lengthis
supposed in these models to be proportional tos

α with 0 < α < 1.
The aim of this paper is to prove the regularity of paths (rivers, branches,...) when the irrigated

measure is the Lebesgue density on a smooth open set and the irrigating measure is a single source. In
that case we prove that all branches of optimal irrigation trees satisfy anelliptic equation and that their
curvature is a bounded measure. In consequence all branching points in the network have a tangent cone
made of a finite number of segments, and all other points have a tangent. An explicit counterexample
disproves these regularity properties for non-Lebesgue irrigated measures.

2000 Mathematics Subject Classification:49Q10 (primary); 90B10, 90B06, 90B20 (secondary).

Corresponding Author: Filippo Santambrogio

1 Introduction

Humans and Nature have designed many supply-demand distribution networks permitting to transport
goods from an initial distribution (the supply) to another (the demand). This is obviously the case with dis-
tribution networks such as communication networks [16], electric power supply, water distribution, drainage
networks [20], or gas pipelines [6]. Many observable natural flow networks connect a finite size volume to
a source or an outlet. Think of trees, river basins, bronchial systems [23] or cardiovascular systems.

Probably the first mathematical transportation model was proposed by Monge, and formalized by Kan-
torovitch ([24], [19]). The problem was to move a pile of sandfrom a place to another with the least possible
work. In the Monge-Kantorovitch framework,µ+ andµ− are measures onRN which model respectively
the supply and demand mass distributions. The solution to the problem is a measureπ onR

N ×R
N where

π(A × B) represents the amount of mass going fromA to B, and the marginal laws ofπ areµ+ andµ−.
The measureπ is called atransport plan. To evaluate the efficiency of a transport plan, a cost function
c : R

N ×R
N → R is considered wherec(x, y) is the cost of transporting a unit mass fromx to y. The cost

associated with a transference plan is
∫

RN×RN c(x, y)dπ(x, y). The minimization of this functional is the
Monge-Kantorovitch problem, which has yielded a rich mathematical harvest. See the recent monographs
[17], [18], [11].

1.1 The Gilbert-Steiner problem modeling a discrete branched structure

In the Monge-Kantorovich framework, the cost of the structure achieving the transport is not modeled. In-
deed, with this formulation, the cost behaves as if every single particle of sand went straight from its starting
to its ending point. In the case of real supply-demand distribution problems, achieving this kind of single
particle transport would be very costly. In most transportation networks, the aggregation of particles on
common routes is preferable to individual straight ones. The local structure of human-designed distribution
systems doesn’t look as a set of straight wires but rather like a tree.
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The first model taking into account subadditive capacities for routes was proposed by Gilbert [16] in
the case of communication networks. This author models the network as a graph such that each edgee is
associated with a capacityce. Let f(c) denote the cost per unit length of an edge with capacityc. It is
assumed thatf(c) is subadditive and increasing, i.e.,f(a) + f(b) ≥ f(a + b) ≥ max(f(a), f(b)). Gilbert
then considers the problem of minimizing the cost of networks supporting a given set of flows between
terminals. The subadditivity of the costf translates the fact that it is more advantageous to transport flows
together. In the fluid mechanics context, this subadditivity follows from Poiseuille’s law, according to which
the resistance of a tube increases when it gets thinner (we refer to [3, 10] for a study of irrigation trees in
this context). The simplest model of this kind is to takef(c) = cα with 0 < α < 1.

Following [16], consider atomic sourcesµ+ =
∑k

i=1 aiδxi
and sinksµ− =

∑l
j=1 bjδyj

with
∑

i ai =
∑

j bj , ai, bj ≥ 0. An irrigation graphG is a weighted directed graph with a setE(G) of straight edges and
a floww : E(G) → (0,∞) satisfying Kirchhoff’s law. Observe thatG can be written as a vector measure

G =
∑

e∈E(G)

w(e)H1|e~e (1)

where~e denotes the unit vector in the direction ofe andH1 is the one-dimensional Hausdorff measure. We
say thatG irrigates(µ+, µ−) if

div G = µ− − µ+ (2)

in the distributional sense. The Gilbert energy ofG is defined by

Mα(G) =
∑

e∈E(G)

w(e)αH1(e). (3)

We call the problem of minimizingMα(G) among all finite graphs irrigating(µ+, µ−) the Gilbert-
Steiner problem. The Monge-Kantorovich model correspondsto the limit caseα = 1 and the classical
Steiner problem toα = 0. The Gilbert model was adapted to the study of optimal pipeline or drainage net-
works [6, 20]. From a numerical point of view, a backtrack algorithm exploring relevant Steiner topologies
is proposed in [35] to solve a problem of water treatment network. A different algorithmic approach can be
found in [36].

1.2 Three continuous extensions of the Gilbert-Steiner problem

In analogy with the Monge-Kantorovich problem, the discrete Gilbert-Steiner model has been recently set
in a continuous framework [31], [22] where the wells and sources are arbitrary measures, instead of a finite
sum of Dirac masses. There were three approaches to this generalization, which we shall review briefly.

Xia’s relaxation

Let µ+, µ− be two positive Radon measures in a compact convex setX ⊂ R
N with equal mass. A vector

measureT onX with values inR
N is called by Xia [31] atransport path from µ+ to µ− if there exist two

sequencesµ−
i , µ+

i of finite atomic measures with equal mass and a sequence of finite graphsGi irrigating
(µ+

i , µ−
i ) such thatµ+

i → µ+, µ−
i → µ− as measures andGi → T as vector measures. The energy ofT is

defined by
Mα(T ) := inf lim inf

i→∞
Mα(Gi)

where the infimum is taken over the set of all possible approximating sequences{µ+
i , µ−

i , Gi} to T . Denote

Mα(µ+, µ−) := inf{Mα(T ) : T is a transport path fromµ+ to µ−}.

If α ∈ (1− 1
N , 1], by Theorem 3.1 in [31], the above infimum is finite and attained for any pair(µ+, µ−). Xia

showed or conjectured in a series of papers several structure and regularity properties of optimal transport
paths which we shall comment later on.
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Maddalena-Solimini’s patterns

Maddalena and Solimini [22] gave a different (Lagrangian) formulation in the case of a single source supply
µ+ = δS . They model the transportation network as a set of particle trajectories, or “fibers”,χ(ω, ·), where
χ(ω, t) ∈ R

N represents the location of a particleω ∈ Ω at timet andχ(ω, 0) = S. The setΩ is an abstract
probability space indexing all fibers ; it is endowed with a measure| · | (without loss of generality one could
takeΩ = [0, 1] endowed with the Lebesgue measure). All the fibers are required to stop at some timeT (ω)
and to satisfyχ(ω, 0) = S for all ω, i.e. all fibers start at the same rootS. The set of fibers is given a
structure corresponding to the intuitive notion of branches. Two fibersω andω′ belong to the same branch
at timet if χ(ω, s) = χ(ω′, s) for s ≤ t. Then the partition ofΩ given by the branches at timet yields a
time filtration. The branch ofω at timet is denoted by[ω]t and its measure by|[ω]t|. The energy of the set
of fibers, or “irrigation pattern” is defined by

Ẽα(χ) =

∫

Ω

∫ T (ω)

0

|[ω]t|α−1dωdt

It is easily checked on discrete trees that this definition extends the Gilbert energy (3). The measureµ−

irrigated by a pattern is easily defined. For every Borel setA in R
N , µ−(A) is the measure of the set of

fibers stopping inA, µ−(A) = |{ω, χ(ω, T (ω)) ∈ A}|.

Traffic plans

In [2] the pattern formalism was extended to the case where the source is any Radon measure. The authors
of [2] called “traffic plan” any probability measure on the set of Lipschitz paths. The equivalence of all
models is proven in [21] and [4]. More precisely:

1. When the irrigated measuresµ+ andµ− are finite atomic, the traffic plan minimizers are the same as
the Gilbert finite graph minimizers.

2. For two general probability measuresµ+ andµ−, Xia’s minimizers are also optimal traffic plans and
conversely.

3. Whenµ+ = δS is a single source, optimal patterns and optimal traffic plans are equivalent notions.

Throughout the paper we shall refer to the formalism of traffic plans which is the slight extension of the
pattern formalism as explained above. The next section formalizes all definitions and recalls all properties
we shall need in the sequel. They refer mainly to [31], [32], [33], [22]. The used formalism and the form
given to statements follow [2], [4] and [5].

1.3 The regularity questions in a discrete and in a continuousframework

In the discrete Gilbert setting, the irrigated mass and the irrigating mass are finite atomic masses and the
optimal graph has no circuits and is therefore a tree, with a finite number of vertices joined by straight
edges. In addition, the following equilibrium equation is satified at all vertices:

∑

i∈I

w(ei)
α~ei = 0 (4)

wherew(ei) and~ei are the flows and directions of all edgesei arriving or leaving a given vertex and all~ei’s
are oriented inwards the corresponding edge.

One of the main challenges of the continuous model is to explore the regularity of very large and
therefore virtually infinite networks. Our main goal in thispaper is actually to prove that equation (4) still
holds in the continuous model.

This needs some explanation. Xia defined the notion ofinterior [32] andboundary [33] regularity
for infinite irrigation circuits. Interior regularity is the fact that, away from the supports of irrigated and
irrigating measures, the network keeps locally the finite structure of the discrete case. This fact has been
proven under a variety of assumptions including the case where the initial measure is atomic in [4]. In such
a case the equation (4) is therefore satisfied and there is nothing to add.

Let us now consider the much more intricate case of boundary regularity, namely theregularity of the
network inside the irrigated body. This is the case of river networks or of biological networks(blood),
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where the irrigated measure is a Lebesgue measure. Figure 1 shows such a river network. Models for river
networks [27] could hardly raise the question of regularityin a discrete framework. The figure illustrates
the relevance of this question when virtually infinitely many branches occur.

Figure 1: From the site of US Geological Survey: the branching network of the Amazon River: Is each
river’s direction aBV functions? It is possible to answer positively this question in the simplest available
model for irrigation networks. A counterexample will also prove that the “yes’ answer depends crucially
on the fact that the irrigated measure is equivalent to the Lebesgue measure.

When a Lebesgue measure is irrigated the network bifurcates at an infinite, countable set of branching
points. It has been proven in [33], [4] that the number of branches at each vertex is bounded by a constant
depending only onα and the dimension of the ambient space. However, the generalization of the equi-
librium equation (4) to the continuous framework was left open. Even worse, the existence of a tangent
direction for each edge was a pending result. It is a main aim in this paper to prove this regularity result and
to give an equilibrium equation, which generalizes the finite structure to infinite networks.

One of these regularity issues was raised in Xia’s work [32],namely the existence of half-tangent
directions at any point of the network. We shall deduce this existence from the stronger fact that each
river’s direction is locallyBV . TheBV estimate will be proven in Section 3. Section 2 is devoted to a
more detailed explanation of the traffic plan model, which will be the one we will refer to, and of all the
preliminary results we need for our further analysis.

For a related result concerning optimal traffic plans see Chapter 9 in [29], where the existence of tangent
directions at branching points is proven when the dimensionis 2 underLp assumptions on the irrigated
measure. The result is weaker (here we prove existence of tangents at any point of the network) but the
hypotheses on the measures too (no lower bound on the densityis required). The techniques are very
similar to [30].

After proving thisBV result, Section 4 formalizes by means of a differential equation the necessary
optimality conditions on the tangent directions which generalizes equation (4). TheODE that we write in
weak form involves the BV estimate of Section 3.

Sections 5 and 6 are aimed at the construction of a counter-example where the existence of a tangent
direction fails, by properly choosing an irrigated measure. This irrigate measure won’t of course satisfy the
assumption of Section 3, that is, it won’t be equivalent to the Lebesgue measure. The explicit counterexam-
ple is a countable atomic measure.

Section 5 is devoted to some geometric lemmas that will be preliminary to the example. They may be
useful in other situations too. For instance we prove that ifµ+ andµ− have distant and small supports, then
the traffic plan consists of a single curve in a large part of the transportation. In Section 6 we give explicit
choices for the irrigated measures of the counter-example and we use the lemmas of Section 5 to prove that
the optimal traffic plan oscillates in a cone, thus giving raise to a non differentiable point. Providing non
trivial explicit optimal traffic plans is not at all easy and we do not know of any other similar result.

2 Preliminaries on traffic plans

2.1 Basic definitions [2]

Denote by|A| = LN (A) theN -dimensional measure of a subsetA of R
N . It is convenient that the supports

of the irrigated measuresµ+ andµ− are bounded inRN . Thus it is reasonable to consider paths contained
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in some compact convexN -dimensional setX ⊆ R
N . Denote by(Lip1(X), d) the space of1−Lipschitz

curves inX with the metricd of uniform convergence on compact sets.

Definition 2.1. Let Ω be a measure space, its measure, being denoted by| · |, having finite total mass. A
(parametric) traffic plan is a Borel measurable mapχ : Ω × R

+ → X such thatt 7→ χω(t) =: χ(ω, t)
is constant for sufficiently larget and1-Lipschitz for allω ∈ Ω. Without risk of ambiguity we shall call
fiber the pathχ(ω, ·), ω ∈ Ω itself and the image inRN of χ(ω, ·). Denote by|χ| := |Ω| the total mass
transported byχ.

In the original definition [2], traffic plans are defined as measures on the set of paths. By Skorokhod
theorem such a measure also defines a parametric traffic plan in the sense of the above definition. Conversely
the law of a parametric traffic plan viewed as a mapω ∈ Ω → χ(ω, .) ∈ Lip1(X) is a traffic plan in the
original sense. In this paper we will deal with parametric traffic plans but omit the mention “parametric".

Stopping time, irrigated measures, transference plan

If χ : Ω × R
+ → X is a traffic plan, define its stopping time by

Tχ(ω) := inf{t : χ(ω) is constant on[t,∞)}.

Observe thatTχ : Ω → R
+ is measurable [22, 2]. The initial and final point of a fiberω areχ(ω, 0) and

χ(ω, Tχ(ω)). Using these maps one can associate with any traffic planχ its irrigating and irrigated measure
defined by

µ+(χ)(A) := |{ω : χ(ω, 0) ∈ A}|,
µ−(χ)(A) := |{ω : χ(ω, Tχ(ω)) ∈ A}|

respectively, whereA is any Borel subset ofRN . We shall say thatχ irrigates the measureµ(χ) =
(µ+(χ), µ−(χ)) and callTP (µ+, µ−) the set of traffic plans irrigatingµ+ andµ−.

Energy of a traffic plan

Definition 2.2. Letχ : Ω × R
+ → X be a traffic plan. Define the path class ofx ∈ R

N in χ as the set

Ωχ
x := {ω : x ∈ χ(ω, R)},

and the multiplicity ofχ at x by |x|χ = |Ωχ
x |. We shall noteSχ the support ofχ, i.e. the set of pointsx such

that |x|χ > 0.

We use the convention0α−1 = +∞ whenα ∈ [0, 1).

Definition 2.3. Letα ∈ [0, 1]. We call energy of a traffic planχ : Ω × R
+ → X the functional

Eα(χ) =

∫

Ω

∫

R+

|χ(ω, t)|α−1
χ |χ̇(ω, t)|dtdω. (5)

Proposition 2.4. [2] The traffic plan energy is not changed if each fiber is re-parameterized by length. This
energy decreases if all loops in the fibers are eliminated. Traffic plans normalized by length and loop-free
will be callednormal.

It is proven in [2] that the traffic plan energy is equal to the Gilbert energy on a finite graph with a flow.

Definition 2.5. In all that follows we consider traffic plans with finite energy. Without loss of generality we
assume that all fibers satisfyZ(χω) :=

∫

R+ |χ(ω, t)|α−1
χ |χ̇(ω, t)|dt < +∞.

Definition 2.6. A traffic planχ is said to beoptimal for the irrigation problemif it has minimal cost in
TP (µ+(χ), µ−(χ)).

2.2 Main properties used in the sequel [5], [4], [2]

Since most of the properties listed below are quite intuitive, if not always easy to prove, the reader is invited
to read through quickly. They will be used in Sections 3-6.
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Convergence, existence of minima

Definition 2.7. We say that a sequence of traffic plansχn converges to a traffic planχ if there are measure-
preserving measurable mapsϕn : Ω → Ω such thatχn(ϕn(ω), t) converges toχ(ω, t) uniformly on
compact subsets ofR

+ for almost everyω ∈ Ω.

The following results were proved in [22] and [2].

Theorem 2.8. Up to a subsequence, any sequence of normal traffic plansχn with bounded energy con-
verges to a traffic planχ. In addition,µ+(χn) ⇀ µ+(χ), µ−(χn) ⇀ µ−(χ). If χn : Ω × R

+ → X is a
sequence of normal traffic plans with bounded energy converging to the traffic planχ, then

Eα(χ) ≤ lim inf Eα(χn).

Thus the problem of minimizingEα(χ) in TP(µ+, µ−) admits a solution whenever there is a feasible
solution. This solution can be taken normal (see Proposition 2.4).

In the sequel we shall set
Eα(µ+, µ−) := min

TP(µ+,µ−)
Eα(χ).

Probably the most important result supporting the passage from a discrete to a continuous theory is the fact
that measures are irrigable ifα is large enough [31]:

Proposition 2.9. Let µ+ and µ− be two positive measures supported inX, with equal mass. Then for
α > 1 − 1

N there is a constant depending only onα andN such that

Eα(µ+, µ−) ≤ C diameter(X)|µ|α.

There is a thorough study ofirrigable measuresand the link between irrigability and dimension in [12],
[13].

Stability of optima

The following lemma and propositions were proved in [31] andtheir proofs adapt immediately to traffic
plans.

Lemma 2.10. Letα ∈ (1− 1
N , 1]. If µ+

n is a sequence of probability measures onX weakly converging to
µ+, thenEα(µ+

n , µ+) → 0 whenn → ∞.

Proposition 2.11. Letα ∈ (1− 1
N , 1]. If χn is a sequence of optimal traffic plans for the irrigation problem

andχn → χ, thenχ is optimal.

Rectifiability and H1−formula

Proposition 2.12. Letχ be traffic plan with finite energy.Sχ is countably rectifiable. More precisely there
is a sequenceωn of fibers such thatSχ ⊂ ∪nχ(ωn, R+).

This result and the following representation of the energy are proven in [2] and show that the traffic plan
energy indeed is a generalization of the Gilbert energy (3).

Proposition 2.13. Letα ∈ [0, 1) andχ be a loop-free traffic plan such thatEα(χ) < ∞. Then,

Eα(χ) =

∫

RN

|x|αχdH1(x). (6)

The following operations on traffic plans will prove useful.They are detailed in [4] and [5].

Restriction

Definition 2.14. If Ω′ ⊂ Ω we call restriction ofχ to Ω′ × R
+ the traffic planχ|Ω′×R+ also notedχΩ′ .

More generally, letΩ′ ⊂ Ω andD ⊂ Ω′ × R
+ a subset of the formD = ∪ω∈Ω′{ω} × [s(ω), t(ω)]. Define

the restrictionχD of χ to D as a traffic plan byχD(ω, t) = χ(ω, t + s(ω)) if 0 ≤ t ≤ t(ω) − s(ω) and
χD(ω, t) = χ(ω, t(ω)) if t ≥ t(ω) − s(ω).

Lemma 2.15. Let D = ∪ω∈Ω{ω} × [s(ω), t(ω)]. ThenEα(χD) ≤ Eα(χ). If Ω is a disjoint union of
Ω1, . . . ,Ωl, thenEα(χ) ≤ ∑l

i=1 Eα(χ|Ωi×R+).
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Concatenation of a chain of traffic plans

Lemma 2.16. Let χ ∈ TP (µ+, µ−) and ξ ∈ TP (ν+, ν−) such thatµ− = ν+. There is a traffic plan
χ̃ ∈ TP (µ+, ν−) such that each fiber of̃χ is a concatenation of a fiber ofχ with a fiber ofξ. In addition,
Eα(χ̃) ≤ Eα(χ) + Eα(ξ).

A convex hull property

We denote byconv(E) the convex hull ofE.

Lemma 2.17.An optimal traffic planχ satisfiesSχ ⊂ conv(supp(µ−(χ))∪supp(µ+(χ))). More precisely
almost all fibers of the traffic plan stay in this convex hull.

The single path property

Definition 2.18. Letχ be a loop-free traffic plan, so thattx(ω) := χ−1(ω, ·)(x) is well defined. Letx, y in
Sχ. Define

Ω−→xy := {ω ∈ Ωχ
x ∩ Ωχ

y : tx(ω) < ty(ω)},
the set of fibers passing throughx and then throughy. The restriction ofχ to∪ω∈Ω−→xy

{ω} × [tx(ω), ty(ω)]
is denoted byχxy. It is the traffic plan made of all pieces of fibers ofχ joining x to y. Denote its support
byΓxy = Sχxy

.

Definition 2.19. A traffic planχ has thesingle path propertyif for every pair(x, y) such that|Ω−→xy| > 0,
almost all fibers inΩ−→xy coincide betweenx andy with a same arcΓxy joining x to y. We say that the traffic
plan has thestrict single path propertyif for everyx, y, either there is no fiber joiningx to y or |Ω−→xy| > 0
andall fibers inΩ−→xy coincide betweenx andy.

Proposition 2.20. (Single path property)Letα ∈ [0, 1) andχ be an optimal traffic plan. Thenχ is single
path and can be made strictly single path by restricting its fibers to]0, Tχ(ω)[ and removing a negligible
set of fibers.

If µ+ is a Dirac mass, the optimal traffic plan is an optimal pattern. In that case the above proposition
implies that

Proposition 2.21. Let χ be an optimal normal pattern. Then it has the strict single path property and for
almost everyω the functiont 7→ |χ(ω, t)|χ is nonincreasing on[0, Tχ(ω)].

Interior regularity

Theorem 2.22. Let α ∈ (1 − 1
N , 1) and letχ be an optimal traffic plan inTP(µ+, µ−). Assume that the

supports ofµ+ andµ− are at positive distance. In any closed ball not meeting the supports ofµ+ andµ−,
the traffic plan has the structure of a finite graph made of segments.

A variant for the above theorem applies when the irrigating measure is atomic.

Corollary 2.23. Let α ∈ (1 − 1
N , 1) and letχ be an optimal traffic plan such thatµ+(χ) =

∑n
i=1 miδxi

is an atomic measure. In any closed ball outside the support of µ−(χ), the traffic planµ has a finite graph
structure.

Boundary regularity

The present paper is mainly concerned with boundary regularity, namely the regularity of the traffic plan
inside the supports ofµ+ andµ−. We can summarize the already known results. In [4], it was proven that:

Theorem 2.24. (bounded branching property). Let α ∈ (0, 1). At every pointx of the support of an
optimal traffic planχ in R

N , the number of branches atx is less than a constantN (α,N) depending only
onN andα.

This result was conjectured in [33].

Proposition 2.25. Any optimal traffic planχ such thatEα(χ) < ∞ has countably many branching points.
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We can make a synthesis of the above results in the case of an optimal pattern (see [4].)

Corollary 2.26. Let χ be an optimal pattern. Thenχ can be taken normal by restricting each fiber to
[0, Tχ(ω)). All fibers have finite length andt → |χ(ω, t)|χ is positive and non increasing along the fiber.
The pattern has a tree structure (fibers which separate nevermeet again), and has countably many branch-
ing points. If one cuts the tree at any pointx, one obtains a finite number of connected components which
are themselves trees with the same structure. One of them contains the source and all other ones are optimal
patterns with sourcex.

As a further boundary regularity property Xia [33] proves that any path in the irrigation graph with flow
larger than a constant is bilipschitz, with explicit estimates on the Lipschitz constant depending onα, the
dimension and the minimal value of the flow.

The landscape function

Let us also define, as in [28], the landscape function associated to a normal traffic planχ by z(x) =

Z(χω) =
∫ T (χω)

0
|χω(t)|α−1

χ dt (χω being any fiber ofχ arriving atx).

Proposition 2.27. [28] The landscape functionz associated to the optimal irrigation ofµ+ fromδ0 is well
defined. Moreover, ifα > 1 − 1

N and µ+ has a density with respect to the Lebesgue measure which is
bounded from below onX by a positive constant, thenz is Hölder continuous with exponentβ = N(α −
(1 − 1

N )), and the Hölder constant only depends on the lower bound on the density ofµ+.

Angle laws at bifurcations

The next elementary geometric results are proved in [16], [31], [1], [5].

Lemma 2.28. Let χ be an optimal traffic plan andx a point of its support. Assume that the traffic plan
insideB(x,R) is made ofk disjoint simple paths fromx to xi ∈ ∂B(x,R), i = 1, . . . , k. Then these paths
are straight segments. Settingmi their flow and~ei = x−xi

|x−xi|
, one has

k
∑

i=1

mα
i ~ei = 0. (7)

Lemma 2.29. Let us consider the simple irrigation case where an optimal traffic plan is made of two paths
γ1 andγ2 with flow 1

2 starting aty0, coinciding up to their bifurcationy and ending respectively at points
y1 andy2. In such a situation, the pathsγ1 andγ2 are straight on the segments[y0, y] and [y, y1], [y, y2].
The half line[y0, y) is the bisector of the angle made by[y, y1] and [y, y2] and the value2θα of this angle
depends only onα.

The next lemma is an easy consequence of Lemma 2.28.

Lemma 2.30. There is a constantθmin(α) depending only onα such that for every branching pointx of
an optimal traffic plan with locally finite branching number,the angles of pairs of vertices starting fromx
are all larger thanθmin(α).

3 Curvature Bounds

In all that follows,C denotes various constants depending only on the dimensionN . Thus if C appears
at different positions in the same formula it may have different values. Letµ− be a measure onX which
is equivalent to the Lebesgue measure, i.e.c−LN ≤ µ− ≤ c+LN for some constants0 < c− < c+.
In the following we consider an optimal traffic planχ (or pattern) irrigatingµ− from a Dirac massδ0.
By Corollary 2.26,χ has a tree structure. Consider a pathγ(t) = χ(ω, t) which is a fiber ofχ and take
0 < a < b < T (γ) so that|γ(b)|χ > 0. (The notationγ = χ(ω, .) is taken for brevity.) Let us denote
Σ = γ([t0, t1]) andxi = γ(ti) all branching points of the traffic plan belonging toΣ. By Corollary 2.25,
we know that the branching points are a finite or countable set. Eachxi is the origin of a finite set of optimal
subtreesχi of χ whose root isxi. Eachχi is a restriction ofχ obtained by restricting all fibers to their part
belonging to a connected component ofχ in R

N \ {xi}. Without loss of generality we can assume that all
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of theses subtrees are indexed byI, so that we may havexj = xi for j in a finite subset ofI. Finally, let us
denote byεi the total mass irrigated byχi.

The following theorem summarizes the results proven in thissection.

Theorem 3.1. Letγ(s), s ∈ [0, T (γ)] be a fiber of an optimal traffic plan (pattern)χ irrigating a measure
µ− equivalent toLN from δ0. Let [a, b] ⊂ [0, T (γ)[ andΣ =: γ([a, b]). Letεi, i ∈ I the masses of all trees
branching fromΣ. Then

∑

i εα
i < ∞ andΣ has a bounded total curvature. As a consequence it has two

half-tangents at all points and a tangent at all points whichare not branching points.

The most important consequence is the following:

Corollary 3.2. Every branching pointx of an optimal traffic plan has a tangent cone made of a finite (and
bounded by a constant depending onα and N ) number of segments whose directionsei and massesmi

satisfy the equation(7).

Proof. It is sufficient to apply Theorem 3.1 to all the fibers of the traffic plan passing throughx, obtaining
the existence of their one-sided derivatives. This proves the existence of the full limit (and not up to
subsequences) of any blow-up atx. Consequently, it is possible to study the limit configuration by means
of the stability property of Corollary 2.11: the traffic planrestricted toB(x, r) and rescaled by a factor
r−1 converges to an optimal traffic plan for the irrigation of twoatomic measures whose masses are themi

masses of the branches (see [32]). The direction of the segments composing this discrete traffic plan are
those of the tangentsei. Hence, we can apply Lemma 2.28 and get the thesis.

The existence of tangent cones for particular blow-up sequences was proved by Xia in [32]. The first
lemmas we will prove aims at estimating

∑

i εα
i . In fact Lemma 2.28 implies in the discrete case that

each time the curveγ branches and loses a massεi, the change in its direction is of the order ofεα
i . It is

consequently natural to look for estimates on the sum
∑

i εα
i to get bounds on the curvature. Denote by

Σ a continuum, that is, a connected set with boundedH1 measure and byΣr = {x, dist(x,Σ) ≤ r} its
r− neighborhood. A proof of the next lemma can be found in a paperby Tilli and Mosconi [25], but we
provide a different one for the sake of completeness.

Lemma 3.3. There is a constantC only depending on the dimensionN such that

|Σr| ≤ C
(

H1(Σ)rN−1 + rN
)

. (8)

for any positive radiusr.

Proof. Let r < 1
2diam(Σ). We can coverΣ by a maximal disjoint set of ballsBi = B(yi, r), i ∈ J with

radiusr and centered onΣ. Then by the assumption on the diameter and the connectedness of Σ, we get
H1(Bi ∩ Σ) ≥ r, as a consequence of the fact thatΣ cannot be contained in any of these balls. Thus

Card(J)r ≤ H1(Σ). (9)

The setJ being maximal, every ballB(x, r) centered at a point inΣ meets at least oneBi. ThusΣ ⊂
⋃

i∈J Bi(yi, 2r) and thereforeΣr ⊂ ⋃

i∈J Bi(yi, 3r). This implies by (9),

|Σr| ≤ Card(J)|B(0, 1)|3NrN ≤ |B(0, 1)|3NH1(Σ)rN−1. (10)

Assume nowr ≥ 1
2diam(Σ). ThenΣr is contained in a ball centered onΣ with radius2r and one gets

|Σr| ≤ |B(0, 2)|rN .

Lemma 3.4. Letχ be a traffic plan (pattern) irrigating the measureµ− from δ0. Then for every subtreeχi

of χ with total massεi stemming atxi, the fibers ofχi are contained in a ball centered atxi and of radius

Cε
1
N

i , where the constantC depends on the upper and lower bounds of the density of the measureµ−.

Proof. Take the landscape functionz associated to the irrigation ofµ− from δ0 defined in Proposition 2.27.
Denote byxi the root ofχi and byy a point in the subtree stemming fromxi. For a pointx in the image of
a fiberγ we callt(x) the unique value such thatγ(t(x)) = x. The valuet(x) is also the geodesic distance
in the tree from the root tox. Since the multiplicityt → |γ(t)|χ is non-increasing, one has

z(y) − z(xi) =

∫ t(y)

t(xi)

|γ(t)|α−1
χ dt ≥ (t(y) − t(x))εα−1

i .

9



Thus,
t(y) − t(xi) ≤ (z(y) − z(xi))ε

1−α
i ≤ C|y − xi|βε1−α

i ,

which yields
|y − xi| ≤ t(y) − t(xi) ≤ C|y − xi|βε1−α

i , and therefore

|y − xi| ≤ Cε
1−α
1−β

i = Cε
1
N

i .

Lemma 3.5. Let Σ be a connected component of the support of an optimal traffic plan χ irrigating the
measureµ− from δ0. Denote byεi, i ∈ I, the masses of all the subtreesχi of χ stemming fromΣ, which
means that they meetΣ at their root only. Then

∑

i∈I

εα
i ≤ CH1(Σ) + C.

Proof. By Lemma 3.4 we know that the subtreeχi with origin xi and massεi irrigates a measure supported

in the ballB(xi, Cε
1
N

i ). Thus, such a support is contained inΣr for r ≥ Cε
1
N

i . By (8), we obtain

∑

Cε
1
N
i <r

εi ≤ C
(

H1(Σ)rN−1 + rN
)

and therefore
∑

r
2
≤Cε

1
N
i <r

εi ≤ C
(

H1(Σ)rN−1 + rN
)

.

DenoteE(r) = Card({i, r
2 ≤ Cε

1
N

i < r}). Then from the previous inequality,

E(r)
( r

2C

)N

≤ C
(

H1(Σ)rN−1 + rN
)

which yieldsE(r) ≤ C
(

H1(Σ)r−1 + 1
)

. By definition ofE(r), the union∪n∈ZE(2−n) = I is a disjoint
union. Thus, sinceα > 1 − 1

N ,

∑

i

εα
i ≤

∑

n

E(2−n)C

(

1

2n

)Nα

≤ CH1(Σ)
∑

n

2n(1−Nα) + C
∑

n

2−nNα ≤ CH1(Σ) + C.

As a following step, we will use a perturbation argument onχ to derive curvature estimates involving
∑

i εα
i . In the perturbation we will need the following lemma.

Lemma 3.6. LetΣ be a simple rectifiable curve fromx0 to x1 andS the segment between the same points.
SupposeL = H1(Σ) < +∞ and setΛ = H1(S). Take the mapp : Σ → S defined by

p(y) = ((L − dΣ(y, x0))/L)x0 + (dΣ(y, x0)/L)x1,

wheredΣ denotes the geodesic distance onΣ (we are actually creating a correspondence betweenΣ and
S by following the segment with constant speed given byΛ/L ≤ 1 and we will call such an application
constant speed projection). Then we have

|y − p(y)| ≤
√

L2 − Λ2

2
.

Proof. Suppose for notational simplicity thatx0 = 0 andx1 = Λe1 (i.e., we set the segmentx0x1 on the
first coordinate axis). Take a pointy ∈ Σ and setl = dΣ(y, x0), call a the first coordinate ofy, andh the
distance fromy to the axisx0x1 (see figure 2). We have|y − p(y)| =

√

h2 + (a − Λl/L)2 and we want to
estimate such a quantity. Moreover, we know

√
a2 + h2 ≤ l et

√

(Λ − a)2 + h2 ≤ L − l. Hence we have

h2 ≤ [l2 − a2] ∧ [(L − l)2 − (Λ − a)2].
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Let us suppose for simplicity thatl2 − a2 ≤ (L− l)2 − (Λ− a)2 (the other case being symmetric), and we
get

|y − p(y)|2 ≤ l2 − a2 + (a − Λl/L)2 = l2
(

1 +
Λ2

L2

)

− 2a
l

L
Λ.

We need to consider this quantity only under the additional condition l2 − a2 ≤ (L − l)2 − (Λ − a)2, i.e.
2aΛ ≥ Λ2 − L2 + 2Ll, and hence we have

|y − p(y)|2 ≤ l2
(

1 +
Λ2

L2

)

− l

L
(Λ2 − L2 + 2Ll) = l

L2 − Λ2

L
− l2

L2 − Λ2

L2
.

This last expression is maximized atl = L/2, in which case we get exactly(L2 − Λ2)/4.

y

x0 x1

h
l

a0

L − l

l
LΛ

Λ

Figure 2: Constant speed projection from the curve to the segment

Lemma 3.7. Let χ be an optimal traffic plan (pattern) irrigating the measureµ− from δ0. Let γ(s),
s ∈ [0, T (γ)] be a fiber ofχ, [a, b] ⊂ [0, T (γ)[ andΣ =: γ([a, b]). Let εi, i ∈ I the masses of all trees
branching fromΣ. Then for every monotone polygonal line(xk)k=0,...n approximatingγ with xk ∈ Σ one
has

|γ(b)|αχ
n

∑

k=1

(lk − |xk − xk−1|)
δk

≤
∑

i

εα
i

wherelk denotes the geodesic distance inΣ of xk−1 to xk andδk =: 1
2

√

l2k − |xk − xk−1|2.

Proof. Denote byx0, x1, . . . , xk, . . . , xn an ordered sequence of points such thatx0 = γ(a), xn = γ(b),
xk = γ(tk).

SetΣk = γ([tk−1, tk]) and callpk : Σk → [xk−1, xk] the constant speed projection arising from the
construction of Lemma 3.6. Finally callεk

i the masses of all subtreesχk
i stemming fromΣk. We consider

for eachk an alternativeχk to χ which consists roughly of replacing the pathΣk by the segment[xk−1, xk].
More precisely,

• All fibers of χ passing byxk−1 andxk are replaced, betweenxk−1 andxk, with their projectionpk

onto the straight line segment[xk−1, xk].

• for each fiber ofχ passing byxk−1 but not byxk there is somey onΣk at which the fiber leavesΣk.
This fiber is replaced betweenxk−1 andy by its pk-projection onto the straight line segment from
xk−1 to pk(y) followed by a straight path frompk(y) to y. The rest of the fiber is unchanged. (See
Figure 3).

• All other fibers ofχ are unchanged.

Lemma 3.6 ensures that the speed of the fibers has not increased, that all the fibers passing byxk−1

proceed, while on the segment[xk−1, xk], in the direction fromxk−1 toxk, and that the distances|y−pk(y)|
are estimated byδk.

In all that follows we shall assume that[xk−1, xk] meets the supportSχ of χ on a set with zeroH1

measure. We shall explain at the end of the proof how to get ridof this assumption, which implies
|pkγ(s)|χk

= |γ(s)|χ and simplifies the exposition. Using this fact, the energy ofχk on the segment
[xk−1, xk] is

∫ tk

tk−1

|pkγ(s)|χk
(pkγ)′(s)ds =

∫ tk

tk−1

|γ(s)|χ(pkγ)′(s)ds,
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y

pk(y) χ

χk

Figure 3: Replacing a piece of curve with its constant speed projection

where we identify for simplicity the vector(pkγ)′(s) with its scalar coordinate(pkγ)′(s). xk−xk−1

|xk−xk−1|
. Since

χ is optimal, we must haveEα(χk) ≥ Eα(χ), which yields

0 ≤
∫ tk

tk−1

|γ(s)|αχ(pkγ)′(s)ds −
∫ tk

tk−1

|γ(s)|αχ|γ′(s)|ds + δk

∑

i

(εk
i )α. (11)

Taking in consideration that|pkγ′(s)| ≤ |γ′(s)| = 1 and that|γ(s)|χ ≥ |γ(b)|χ (because by Corollary 2.26
the multiplicity is non-increasing along fibers), Equation(11) yields

|γ(b)|αχ(|xk − xk−1| − lk) +
∑

i

(εk
i )αδk ≥ 0. (12)

Summing this inequality fork ranging from 1 ton ends the proof. We are however left to explain how we
can enforce that[xk−1, xk] meetsΣk on a set with zero length. To do so we can move slightly allxk’s
in a ball with radiusǫ around their position onΣ. For almost all positions̃xk in these ballsB(xk, ǫ) the
announced property is true. Now the polygonal line(x̃k) is no more supported byΣ. We can, however,
repeat the whole above argument but we have to add to the fibersof χk small segments joiningxk to x̃k,
back and forth. Thus (12) becomes

|γ(b)|αχ(|xk − xk−1| − lk) +
∑

i

(εk
i )αδk + 2kǫ ≥ 0.

Since this construction can be made for everyǫ > 0 we get back to (12) by lettingǫ → 0.

Remark3.8. In the proof, we passed through the conditionH1([xk−1, xk] ∩ Sχ) = 0 for the sake of
exposition simplicity only. In fact, using the subadditivity of s → sα, (12) can be obtained directly even if
the multiplicity is not exactly preserved in the projection.

We shall need to define a standard approximation of a rectifiable curve by a polygonal line.

Lemma 3.9. Letγ : [0, L] → R
N be a rectifiable one to one curve parameterized by length. Then for every

a > 0 one can find a polygonal curve(xk)k, k = 0, . . . n such that|xk −xk−1| = a for all k ∈ {1, . . . , n},
x0 = γ(0), |xn − γ(L)| ≤ a, xk = γ(tk) belongs toγ([0, L]) for every0 ≤ k ≤ n, and the sequencetk
is increasing. In such a case we call the curve made by the successive segments[xk−1, xk], k = 1, . . . , n a
regular polygonal approximation toγ with stepa. Whena → 0, this polygonal curve converges uniformly
to γ.

Proof. The polygonal approximation which we shall callγn can be constructed for eacha iteratively. One
takesx0 = γ(0), thent1 is defined as the smallestt such that|γ(t)−x0| = a, t2 as the smallestt ≥ t1 such
that |γ(t) − x1| = a, and so on. The process stops atxn = γ(tn) such that the rest of the curveγ([tn, L])
is contained in the open ballB(xn, a). Thus|xn − γ(L)| < a. Let us callγa the curve we obtained. One
has by constructionH1(γa) ≤ H1(γ). By Ascoli-Arzela theoremγa converges to a rectifiable curvẽγ
uniformly. In addition,H1(γ̃) ≤ lim infa H1(γa) ≤ H1(γ). Notice that, identifying all curves with their
respective images, one has, for allx ∈ γa, d(x, γ) ≤ a, which implies that̃γ ⊂ γ (this is easily deduced
from the Hausdorff convergence of a subsequence of the sequence of compact setsγa). Thusγ̃ is a curve
whose image is contained in that ofγ, which has the same starting and arrival points and a smallerlength.
Sinceγ is one to one one obtainsγ(s) = γ̃(s) for s ∈ [0, L].

The statement of Theorem 3.1 will be proven by applying Lemmas 3.7, 3.5, and the next one.
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Lemma 3.10. Let Σ be a curve with finite length such that for every regular polygonal approximation
(xk)k,

n
∑

k=1

lk − |xk − xk−1|
δk

≤ C,

whereδk =: 1
2

√

l2k − |xk − xk−1|2 and lk is the geodesic distance inΣ from xk−1 to xk. ThenΣ has a
bounded total curvature.

Proof. Notice first that

lk − |xk − xk−1|
δk

= 2
lk − |xk − xk−1|

√

l2k − |xk − xk−1|2
= 2

(

lk − |xk − xk−1|
lk + |xk − xk−1|

)
1
2

.

Let γn =(xk)k=0...n be a regular polygonal approximation ofΣ. By applying the assumption to the polyg-
onal line(x2k)k one has

∑

k

(

l̃k − |x2k − x2(k−1)|
l̃k + |x2k − x2(k−1)|

)
1
2

≤ C,

wherel̃k denotes the geodesic distance onΣ from x2(k−1) to x2k. Seta = |xk − xk−1| and notice that
l̃k ≥ |x2k − x2k−1| + |x2k−1 − x2(k−1)| = 2a and that the functionl → l−a

l+a is nondecreasing inl for
a ≥ 0. Thus,

∑

k

(

2a − |x2k − x2(k−1)|
2a + |x2k − x2(k−1)|

)

1
2

≤ C. (13)

Consider the isosceles trianglexk−1, xk, xk+1 and call0 ≤ θk ≤ π
2 the absolute value of the angle of−−−−→xk−1xk with −−−−−−→xk−1xk+1. Thencos θ2k−1 = |x2k − x2(k−1)|/(2a) and (13) yields

∑

k odd

(

1 − cos θk

1 + cos θk

)
1
2

≤ C,

that is the same as
∑

k odd
tan

θk

2
≤ C. (14)

Analogously one can obtain
∑

k even tan θk

2 ≤ C and hence

∑

k

tan
θk

2
≤ 2C.

The total curvatureTC((xk)k) of a polygonal linexk is

n−1
∑

k=1

|nk − nk−1|

wherenk =
−−−−−→xkxk+1

|xkxk+1|
−

−−−−−→xk−1xk

|xk−1xk|
. In this case, where all the segments have the same length, it is easy to see

that |nk − nk−1| = 2 sin θk. Thus

TC((xk)k) = 2
∑

k

sin θk ≤ 4
∑

k

tan
θk

2
≤ 8C.

By Lemma 3.9 the polygonal curveγn converges uniformly toγ. Its second derivative in the distribution
sense is the measureγ′′

k = µk = 2
∑

k(sin θk)δxk
whose total mass isTC((xk)). Thus|µk| ≤ C and

its weak limit γ′′ is a measure with bounded total mass. We conclude thatγ′ has bounded variation on
[a, b].

This also ends the proof of Theorem 3.1, which follows from Lemmas 3.5, 3.7, and 3.10.
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4 An elliptic equation for traffic plans

In the previous section we have proven a regularity result onthe pathsγ of an optimal traffic planχ. The
the next step is to strengthen the result, by providing a differential equation which is satisfied byγ. We have
just proven thatγ′ is BV. In addition|γ|αχ is BV since it is monotone decreasing. Thus the product|γ|αχγ′ is
BV and its derivative is a measure. Our aim is to identify thismeasure.

Theorem 4.1. Let γ be a fiber of an optimal traffic planχ irrigating µ− from δ0. Thenγ satisfies in the
sense of distributions the elliptic equation

−(|γ(t)|αχγ′(t))′ =
∑

i∈I

εα
i δγ(ti)~νi (15)

where~νi is the tangent of the branch stemming fromγ at γ(ti) with massεi. Notice that this tangent vector
exists, thanks to the regularity result of Theorem 3.1, and that the right hand side is a vector measure with
finite mass, thanks to Lemma 3.5.

Proof. Take an arcγ, defined on a time interval]t−0 , t+0 [, of an optimal traffic planχ, and a function
φ ∈ C1

c (]t−0 , t+0 [; RN ). We want to prove thatγ satisfies (15) in weak form by testing the equation against
φ. Let us label all the curves stemming fromγ in the interval we are considering and call themγi, for i ≥ 1.
We assume thatγ and all the curvesγi are parameterized by arc length from the source. Let us also fix
K ∈ N and let(γi)i=1,...,K be a finite set of arcs going out fromγ at timeti. Thus we haveγi(ti) = γ(ti)
and limt→t+i

[γi(t)]χ = εi. We denote byεi, for i > K, the total mass of the other branches stemming
from γ. We also denote by(εi,j)j the sequence of masses entering or leavingγi. Fix two small parameters
h, δ > 0 and a functionk ∈ C1

c ([0, 1[) with k(0) = max k = 1; setR = R(γ) ∪ ⋃K
i=1 R(γi), the union of

the ranges ofγ and theK first γi’s, and consider the mappingS : R → R
N given by

S(x) =

{

φ(t) if x = γ(t);

φ(ti)k
(

t−ti

δ

)

if x = γi(t).

Then we setTh(x) = x + hS(x) for x ∈ R. For any fiberω in the traffic planχ there is a maximal
interval Iω =]t−(ω), t+(ω)[ such that we haveχ(ω, t) =: χω(t) ∈ R for any t ∈ Iω. Let us build a
new traffic planχ′ by replacing any curveχω by Th ◦ χω in ]t−(ω), t+(ω)[ and going straight between
χω(t±(ω)) andTh(χ(t±(ω))) (see Figure 4). We decompose the old traffic planχ into a traffic planχ0

which is the restriction ofχ to the domain ofγ (see definition 2.14), the traffic plansχi, which are the
restrictions ofχ to the domain ofγi, and a remaining traffic plañχ. By decomposition we mean thatχ is
the concatenation of thẽχ, χi andχ0. (See definition 2.16). The new traffic planχ′ is the concatenation of
χ′

i, i = 0, . . . ,K which are the images ofχi underTh, with the samẽχ and with an additional traffic plan
χ which corresponds to the straight line segments that we havebeen forced to add. Notice that the energies
of the considered traffic plans add forχ. The energy of the traffic planχ′ is just sub-additive xith respect to
this decomposition, since the supports of the concatenatedparts are not necessarily disjoint.

γ

Th(γ)

Figure 4: Perturbation of the networkR

SettingCφ =: ||φ||∞, it is easy to evaluate the energy ofχ by

E(χ) ≤
∑

i,j

Cφhεα
i,j +

∑

i

Cφhεα
i = hCφ

(

K
∑

i=1

Qi(δ) +

∞
∑

i=K+1

εα
i

)

,
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where we setQi(δ) =
∑

j∈J(δ)i
εα
i,j and the set of indicesJ(δ)i is the set corresponding to thej′s such

that the mass enters (or goes out from) the curveγi at a pointγi(t) with |t − ti| < δ. By Lemma 3.5 it
follows thatE(χ) < ∞. Then we evaluate the energy ofχ′

i for i = 1, . . . ,K, taking into account thatTh

is one to one forh small enough and that|γ′
i(t)| = 1,

E(χ′
i) =

∫ ti+δ

ti

|Th(γi(t))|αχi
|(Th ◦ γi)

′(t)|dt

=

∫ ti+δ

ti

|γi(t)|αχ
∣

∣

∣

∣

γ′
i(t) + h

d

dt
(S ◦ γi)(t)

∣

∣

∣

∣

dt

= E(χi) + h

∫ ti+δ

ti

|γi(t)|αχγ′
i(t) ·

d

dt
(S ◦ γi)(t) dt + O(h2)

= E(χi) + hεα
i ~νi (S(γi(ti + δ)) − S(γi(ti)))

+h

∫ ti+δ

ti

(

|γi(t)|αχγ′
i(t) − εα

i ~νi

)

· d

dt
(S ◦ γi)(t) dt + O(h2).

Thanks to Theorem 3.1, the functionγ′
i has bounded variation on[ti, ti+δ] estimated byCQi(δ). Moreover,

the functiont 7→ |γi|αχ has bounded variation and its variation is bounded byQiδ. Hence, by using also
S(γi(ti + δ)) = 0 andS(γi(ti)) = φ(ti),

E(χ′
i) ≤ E(χi) − hεα

i ~νi · φ(ti) + O(h2) + hCQi(δ)Cφ,

where the vectors~νi are the outwards tangent vectors of the branchesγi (i.e. ~νi = γ′
i(ti)). As far asχ′

0 is
concerned the computations are similar and we get

E(χ′
0) =

∫ t+
0

t−
0

|γ(t)|αχ
∣

∣

∣

∣

γ′(t) + h
d

dt
(S ◦ γ)(t)

∣

∣

∣

∣

dt

= E(χ0) + h

∫ t+
0

t−
0

|γi(t)|αχγ′
i(t) · φ′(t) dt + O(h2).

By putting all the estimates together and using the optimality of χ we get

h

∫ t+
0

t−
0

|γi(t)|αχγ′
i(t)·φ′(t) dt−h

K
∑

i=1

εα
i ~νi.φ(ti)+hCQi(δ)Cφ+O(h2)+hCφ

(

K
∑

i=1

Qi(δ) +
∞
∑

i=K+1

εα
i

)

≥ 0.

We first divide byh and leth → 0+, thus getting

∫ t+
0

t−
0

|γi(t)|αχγ′
i(t) · φ′(t) dt −

K
∑

i=1

εα
i ~νi.φ(ti) + CQi(δ)Cφ + Cφ

(

K
∑

i=1

Qi(δ) +
∞
∑

i=K+1

εα
i

)

≥ 0.

Now we letδ → 0+ and we useQi(δ) → 0, which is a consequence of the fact that the total sum of the
massesεα

i,j on the curvesγi is finite. We get

∫ t+
0

t−
0

|γi(t)|αχγ′
i(t) · φ′(t) dt −

K
∑

i=1

εα
i ~νi.φ(ti) + Cφ

∞
∑

i=K+1

εα
i ≥ 0.

Finally, we letK → ∞ and we obtain, thanks to the fact that
∑∞

i=1 εα
i < +∞ (Lemma 3.5),

∫ t+
0

t−
0

|γi(t)|αχγ′
i(t) · φ′(t) dt −

∞
∑

i=1

εα
i ~νiφ(ti) ≥ 0.

By replacingφ with −φ we get the equality, which is the desired weak version of the differential equation.
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5 Towards a counter-example

The goal of this section is to provide a counter-example to the regularity result of Theorem 3.1, when the
assumptions onµ− are weakened. These assumptions were essentially an upper and a lower bound on the
density, and in the counterexample we will get rid of both of these assumptions. We will consider a purely
atomic measureµ− (with, obviously, infinitely many atoms), thus dealing witha measure whose density is
either zero or infinite. We will build such a measure in order to prove that the corresponding optimal traffic
plan can have oscillating fibers. More precisely we will construct a traffic plan made of a single fiber which
has no half-tangent at one of its interior points and whose tangent vector is notBV . Explicit minimizers of
the branched transport energy are known only in trivial cases. Indeed, there are no easy sufficient optimality
conditions, due to the lack of convexity of the problem. Hence, building our counter-example will require
ad hocgeometric lemmas controlling the behavior of a minimizer.

Here we start with the first of these lemmas, which is actuallynatural and interesting in itself. This is
the reason why we state it in a more powerful version with respect to what we really need in the sequel.

Lemma 5.1. Suppose two measuresµ+, µ− ∈ P(RN ) are concentrated on{0} × B(0, ε) and {1} ×
B(0, ε), respectively (we identifyRN as the productR × R

N−1.) Letχ be an optimal traffic plan between
them. Then there existε0 andγ such that for everyε ≤ ε0 the traffic planχ is composed by a single segment
in the region[εγ , 1 − εγ ] × R

N−1 (γ can be chosen as any exponent smaller than1−α
2−α ).

Proof. First notice that a possible traffic plan betweenµ+ andµ− is the one where the measures collect
their masses at(0, 0) and(1, 0), respectively, and then are linked by a straight line segment, with a total
cost of1 + Cε (Proposition 2.9). ThusEα(χ) ≤ 1 + Cε. For almost everyx, the hyperplane{x} ×R

N−1

crosses the traffic plan at a countable set of pointsyi(x), i ∈ I(x). We callmi(x), i ∈ I(x) the flow ofχ at
these pointsyi(x) and denote by

∑

i∈I(x) mi(x)δyi
the associated atomic measure for everyx ∈]0, 1[. In

what followsmi(x), i ∈ I(x) ⊂ N are put in non-increasing order. Let us setA(x) =:
∑

i∈I(x) mi(x)α

and notice thatA(x) ≥ 1. We have

∫ 1

0

A(x)dx ≤ Eα(χ) ≤ 1 + Cε

and therefore, usingA(x) ≥ 1,

∫ εγ

0

A(x) ≤ 1 + Cε − (1 − εγ) = Cε + εγ .

This implies that there existsx0 ∈ [0, εγ ] such that1 ≤ A(x0) ≤ 1 + Cε1−γ . Thus

m1(x0)
α−1 = m1(x0)

α−1
∑

i

mi(x0) ≤
∑

i

mi(x0)mi(x0)
α−1 =

∑

i

mi(x0)
α ≤ 1 + Cε1−γ .

It is easily deduced from this last inequality that

m1(x0) ≥
(

1 + Cε1−γ
)− 1

1−α ≥ 1 − Cε1−γ . (16)

By the very same argument we can findx1 ∈ [1−εγ , 1] such thatm1(x1) ≥ 1−Cε1−γ . By the single path
property (Proposition 2.20) there is therefore a fiberγ in χ joiningx0 tox1 whose flow exceeds1−2Cε1−γ .
In particular, for everyx ∈ [εγ , 1 − εγ ] one hasm1(x) ≥ 1 − 2Cε1−γ .

Let us now consider all fibers that do not meet the big fiberγ for x ∈ [0, 2εγ ]. Let us callµ the total
flow of these fibers. In order to show that such fibers cannot actually exist forε small enough, we shall build
a competitor toχ. We stop all of these thin fibers as they hit the hyperplane{εγ} × R

N−1. This yields an
atomic measureµ = µ(εγ). In the competitorχL, this measure is connected by an optimal traffic planηL to
the pointy1(ε

γ) on the big fiber. Then, these fibers go up tox = 1 and are sent to their original destination
by a traffic planη′

L contained in the hyperplane{1} × R
N−1. By the convex hull property (Lemma 2.17)

the maximal distance of points ofµ(εγ) to y1(ε
γ) is less than2ε. Thus the overall energy ofηL andη′

L is
less thatCε|µ|α by Proposition 2.9. Since the process also adds a flow less or equal toµ to γ, the energy
increase due to this addition is less than((m1(x) + |µ|)α − m1(x)α) length(γ).

The energy saving due to the removal of the thin fibers betweenεγ and 2εγ is at leastεγ |µ|α. In
summary, the fact thatE(χ) ≥ E(χL) implies
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εγ |µ|α ≤ Cε|µ|α + ((m1(x) + |µ|)α − m1(x)α) length(γ).

By the concavity ofs → sα, we have(m1(x) + |µ|)α −m1(x)α ≤ m1(x)α + α|µ|m1(x)α−1. In addition,
the length ofγ is clearly less than a constant, say 2, forε small enough. Thus, sincem1(x) ≥ 1

2 for ε small
enough, we obtain from the above inequalities

εγ |µ|α ≤ C(ε|µ|α + |µ|) (17)

for ε small enough. In this case we may also useCε ≤ εγ/2 and get

εγ |µ|α ≤ 2C|µ|,

which implies, if|µ 6= 0,
εγ ≤ C|µ|1−α ≤ Cε(1−γ)(1−α).

This is not verified, for smallε, if γ < (1 − α)/(2 − α).

Remark5.2. The above value ofγ is not sharp, as we expect the above result to be true forγ = 1. This
stronger result is presented in the following theorem, evenif we won’t need it in the sequel.

Theorem 5.3. Under the same assumptions as in Lemma 5.1, there is a constant L such that the traffic plan
χ is composed by a single segment in the region[Lε, 1 − Lε] × R

N−1. (See Figure 5).

10 Lε 1 − Lε

µ+ µ−

Figure 5: Illustration of the result of Theorem 5.3. The mainpart of the traffic plan between two measures
at long distance from each other is a long segment which branches near the source and the destination, at a
distance from the source and destination proportional to their diameters.

Proof. It is sufficient to prove the result for small values ofε: from Lemma 5.1 we know that in such a case
we can find a long segment in the middle of the traffic plan. Following such a segment towardsµ+, call x+

its last point, i.e. the first branching point we meet in that direction. The traffic plan betweenµ+ andx+

must satisfy the convex hull property and be contained in a cone whose base and vertex are{0} × B(0, ε)
andx+. Moreover, since a branching atx+ occurs, it contains two directions atx+ whose angle is at least
a minimal angle depending onα (Lemma 2.30). This implies thatx+ belongs to the set of points such
that the cone to{0} × B(0, ε) has a certain minimal amplitude. This set is the union of two balls and its
diameter is proportional toε. The proportionality constantL depends consequently on the value ofα.

The rest of the paper will be devoted to the following situation:

µ+ = δx0
, µ− =

(

1

2
− ε

)

δx1
+

(

1

2
− ε

)

δx2
+ ν, (18)

wherex0, x1 andx2 are three aligned points, in that order,ν is a positive measure with total mass2ε
concentrated on the half coneTθ(x1) with vertexx1, 2θ angle, and axis the half line with direction−−→x1x0.
We shall sete1 =

−−−→x1x0

|−−−→x1x0|
. In this situation we will always consider an optimal trafficplanχ betweenµ+ and

µ−. Denote byγ1 andγ2 the two fibers ofχ irrigatingx1 andx2, respectively, and byγ0 the common part
of these two curves. By the strict single path property (Proposition 2.20) these curves are unique. We want
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to prove that ifθ andε are small enough these curves actually part atx1, i.e. they stay together up to this
point and then one of them goes on up tox2. In the sequel, for the sake of simplicity, we will takex1 = 0.

Let us consider a sequence(θh, εh) going to (0, 0), a sequence of measuresνh as above, such that
|νh| = 2εh and the corresponding optimal traffic plansχh. We fix a numberK > 1 and, if the parting point
yh of γ1 andγ2 is notx1, we setRh = |yh|. We will call y0

h the last point ofγ0 out ofB(yh,KRh) andy2
h

the last point ofγ2 in B(yh,KRh). Both of these points belong to∂B(yh,KRh). We will denote byr any
function of one or more variables which goes to zero as its arguments go to zero.

Lemma 5.4. For θh and εh sufficiently small, eitheryh = x1, or we are in the following situation (see
Figure 6):

• the direction ofy0
h − yh equalse1 + r(θh,K−1);

• both the angles between−e1 and the directions ofx1 − yh andy2
h − yh equalθα + r(θh,K−1, εh)

whereθα is defined in Lemma 2.29;

• the four pointsy0
h, y2

h, x1 = 0 andyh are approximatively on the same plane (up to distances of the
order ofRhr(εh));

• in the whole ballB(yh,KRh) the curvesγ0, γ1 andγ2 are very close, with respect to the Hausdorff
distance, to the corresponding segmentsy0

hyh, yhx1 and yhy2
h (up to a distance of the order of

Rhr(εh)).

• As a consequence of the above four properties the intersection point ȳh of γ2
h with the planeΠ

orthogonal toe1 and passing throughx1 satisfies|ȳh − x1| = 2Rh sin(θα)(1 + r(θh,K−1, εh)).

x1x2

yh

y2
h

y0
h

Rh

KRh

Figure 6: Illustration of Lemma 5.4: The traffic plan followsthe configuration of an optimal tripode in the
ball B(yh,KRh)

Proof. Let us take a subsequence such thatyh 6= x1. We shall pass to the limit in an adequate blow
up. Consider the restriction of the traffic planχh to the ballB(yh,Krh) and compose it with the map
Th : B(yh,Krh) → B(0,K) given byTh(y) = R−1

h (y − yh). This yields a blow upχ′
h of the traffic plan

χh which is optimal from a measureµ+
h to a measureµ−

h . The starting measureµ+
h contains a Dirac mass at

the pointTh(y0
h) ∈ ∂B(0,K) with mass larger or equal to1 − 2εh, while the arrival measureµ−

h contains
two Dirac masses, one atTh(x1) ∈ ∂B(0, 1) and one atTh(y2

h) ∈ ∂B(0,K), both with mass larger or
equal than1/2 − εh. Moreover,χ′

h has the property that its two main branches part at0 = Th(yh).
Up to subsequences, we get by Theorem 2.8 a limit traffic planχ′

∞ which is optimal between the
two measuresµ+

∞ = δy0 andµ−
∞ = (1/2)δy1 + (1/2)δy2 , with y0 = limh Th(y0

h) ∈ ∂B(0,K), y1 =
limh Th(x1) ∈ ∂B(0, 1) andy2 = limh Th(y2

h) ∈ ∂B(0,K). By Lemma 2.29 the limit configuration,
being optimal is such that there is one branch arriving fromy1 to 0 which is then divided into two branches
with half the mass, directed towardsy1 andy2 respectively. The angley10y2 is equal to2θα. This fixes the
relative configuration ofy0, y1, y2 and0. Up to now we only usedεh → 0. By usingθh → 0 as well, we
will get information on the position ofy0 too.

The optimality ofχh implies that the pointy0
h must belong to the convex hull ofTθh

∪ {yh}. This may
be expressed byy0

h = λyh +(1−λ)zh with zh ∈ Tθh
andλ ∈ [0, 1]. Since we havezh = |zh|(e1 + r(θh)),

wheree1 is the direction of the symmetry axis of the cone (this means:the direction of a vector in the cone
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does not differ too much from the direction ofe1), we may rewritey0
h − yh = (λ − 1)yh + t(e1 + rθh

),
with λ ∈ [0, 1] andt ≥ 0. Then we use|y0

h − yh| = K|yh| and we divide by|y0
h − yh|, obtaining

y0
h − yh

|y0
h − yh|

=
(λ − 1)yh

K|yh|
+ t′(e1 + r(θh)).

Taking the norms of the vectors, it is easy to get

(1 − 1

K
)(1 + |r(θh)|)−1 ≤ t′ ≤ (1 +

1

K
)(1 − |r(θh)|)−1,

which implies thatt′ = 1 + r(θh,K−1). Thus,

y0
h − yh

|y0
h − yh|

− e1 =
(λ − 1)yh

K|yh|
+ (t′ − 1)(e1 + r(θh)) + r(θh) = r(K−1) + r(θh,K−1) + r(θh).

This proves the first item of the Lemma. Using the uniform convergence of the blow up and the information
on the limit configuration given Lemma 2.29 yields the other four statements.

Theorem 5.5. Let us considerµ+ and µ− as in (18). If the dimensionN is 2 and ifθ and ε are small
enough then, in any optimal traffic planχ irrigating the measuresµ andν in (18), the two main branches
γ1 andγ2 actually part atx1 and the fiber fromx1 to x2 is a straight segment (see Figure 8).

Proof. We shall use Lemma 5.4 to get information on the configuration, should the thesis be false, and then
get a contradiction. Consider the curveγ2

h in its part between̄yh andx2. We want to find a contradiction
as a consequence of the fact that the curve, as it follows quite closely the segmentyhy2

h in the whole
B(yh,KRh), gets too far from the segmentx1x2. To do this, let us setvh = ȳh|ȳh|−1. Such a unit vector
is orthogonal to the vectore1 as it belongs to the planeΠ.

Now consider a point ofγ2
h which maximizes the scalar productx · vh in the region we are considering.

Let us notice that this maximal scalar product is neither realized by the pointx2, which givesx2 · vh = 0,
nor by ȳh, which givesȳh · vh = |ȳh| = Rh(2 sin(θα) + r(θh, εh)), because there is the pointy2

h which
realizesy2

h ·vh = Rh((1+K) sin(θα)+ r(θh, εh)). In particular, the maximum is strictly positive, and it is
realized at an interior pointx of the curve (or possibly a segment: in this case, just take one of the extremal
points of the segment as the pointx). Since the segment realizing the maximum cannot last for the whole
length ofγ2, we must have a change in the direction ofγ2 at the pointx, and hence a branching. Let us
suppose for a while that there is only one fiber exitingx other thanγ2. Since the mass of the departing
fiber is smaller than2εh (because we are dealing with a fiber which is neither going tox1 nor tox2), we
deduce from Lemma 5.6 that the two directions ofγ2 before and afterx are very close to each other (and
hence almost belong to a plane orthogonal tovh) and that the directionw of the departing fiber is almost
orthogonal to them. Since we are in dimension two (this is thekey point where we use it), being orthogonal
to something orthogonal tovh means being parallel tovh. Hence the unit vectorw is either close tovh or to
−vh, but we may conclude that we havew = vh+r(εh) because otherwise the three branches ofγ2 meeting
atx would point all on the same side of the plane orthogonal tovh passing throughx (by maximality ofx)
and this would contradict the angle conditions of Lemma 2.29.

On the other hand, we know, by the convex hull property (Lemma2.17) applied to the irrigation from
x to Tθh

(just take the resctriction of the traffic planχh to this third branch atx), thatw must point in the
direction of the convex hull of{x} ∪ Tθh

(see Figure 7), which implies

w = λ(−x) + µ(e1 + r(θh))

for some positive coefficientsλ, µ ≥ 0. If we take the scalar product of this relation with the vector vh − e1

we get
(vh + r(εh)) · (vh − e1) = −λ(x · vh) + λ(x · e1) + µ(e1 + r(θh)) · (vh − e1)

which gives
0 < 1 + r(εh) = −λ(x · vh) + λ(x · e1) + µ(−1 + r(θh)) ≤ 0,

where we used(x · vh) > 0 (because of maximality) and(x · e1) < 0 (becausex belongs to the half space
delimited byΠ which includesx2). This last fact is true because the curveγ2 enters such an half space, and
cannot come back afterwards: in this case it should in fact cross the planeΠ once more, to come back in
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x1x2

yh

x

w

ȳh

Figure 7: Illustration of the proof of Theorem 5.5. The branch stemming from the point maximizingx · vh

cannot be included in the convex hull ofx and the coneTθh
.

the direction ofx2, at a pointy; considering the irrigation fromx0 to Tθh
∪ {y} would give a contradiction

to the convex hull principle. In the end we got a contradiction, and we proved the thesis.
In the trickier case where more than one fiber exitsx, we can use Lemma 5.6 and replacew by the

vector we get in the statement of the Lemma. In this way we get aunit vector which shares the property of
being almost orthogonal to the directions ofγ2 (and hence almost parallel tovh, the direction being that of
vh and not of−vh as an easy consequence of the explicit formula (19) and of belonging to the convex hull
of {x} ∪ Tθh

(because it is a sum of directions which only irrigate the mass in Tθh
). The argument then

proceeds analogously.
It remains to be proved the last part of the statement only, namely that the fiber tox2 follows a straight

line path with no branching betweenx1 andx2. To prove it the strategy is very similar to what we did
before. Take a pointx on such a fiber which maximizes the scalar productx · e2, beinge2 a unit vector
orthogonal toe1 and suppose this maximum is positive (if for both possible directions ofe2 the maximum
is 0, than the curve is straight). If it is positive, it is not realized neither byx1 nor byx2. At the point (or at
the terminal point of the segment) realizing the maximum we have a branching point. We can find a convex
combinationw of the directions of the fibers branching fromx (thanks to Lemma 5.6) which is almost (up
to r(ε)) in the direction ofe2. This is easily in contradiction with the fact that such a vector must be of the
form−λx − µ(e1 + r(θh)), which follows from the convex hull principle.

This proves that the main fiber goes straight fromx1 to x2. Analogously, if we suppose anyway the
existence of a branching point in the interior of such a fiber,we get the same contradiction (an average
branching direction orthogonal toe1, which contradicts the convex hull principle).

Lemma 5.6. Let x be a branching point of an optimal traffic planχ at which: a) a main fiber arrives
with directionv1 and massm + ε and leaves with directionv2 + r(ε) and massm, b) some minor fibers
with massεi and directionsvi leave (i ≥ 3 and

∑

i≥3 εi = ε). Then there exists a unit vectorw which is
almost orthogonal tov1 andv2 (in the sensew · vi = r(ε)) and which is a linear combination with positive
coefficients of the vectors−v1 andv3, v4 . . . .

Proof. The angle optimality condition of Lemma 2.28 reads

v1(m + ε)α = v2m
α +

∑

i≥3

viε
α
i ,

which we may rewrite as

v1 − v2 = − (m + ε)α − mα

mα
v1 +

∑

i≥3

vi
εα
i

mα
. (19)

Then takew̃ equal to the right hand side of (19) andw = w̃/|w̃|. Sincew̃ = v1−v2 and(v1−v2)·(v1+v2) =
|v1|2 − |v2|2 = 0 we know thatw is orthogonal tov1 + v2. For smallε, the right hand side of (19) is small
(notice that the number of addends is uniformly bounded by a constantN(α, d). Thus we can estimate the
whole right hand side byαm−1ε + N(α, d)m−αεα). This implies that the directions ofv1, v2 andv1 + v2

are the same up to a difference ofr(ε).
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x0x1x2

Figure 8: The final result of Theorem 5.5: the main fiber passesthroughx1 and then goes straight with no
branching

6 A traffic plan with an oscillatory path

In this section we shall always takeε andθ small enough to ensure that the conclusions of Theorem 5.5
holds. This implies that the arcx2 is a straight line betweenx1 andx2.

Our counterexample will be be the following:

µ+ = δx0
, µ− = (1/2 − ε)δx1

+ (1/2 − ε)δx2
+

∞
∑

i=1

εiδzi
,

where
∑∞

i=1 εi = 2ε and the pointszi belong to the coneT =: Tθ(x1, e1) and accumulate nearx1, so
that the optimal traffic plan fromµ to ν has a part contained inT which arrives up tox1, and then goes
straight up tox2, according to the preceding lemmas. Moreover, we will choose the pointszi so that the
traffic planχ will be forced to follow those points (χ will be consequently composed by the straight line
segmentszizi+1, which will converge tox1, and by the segmentx1x2). It will be possible to choose the
points satisfying the additional criterion that they oscillate from one side ofT to the other, thus having as a
consequence that the tangent of the traffic plan atx1 does not exist.

For everyi ≥ 2, let us setAi = {zj : j > i} ∪ {x1}. We will call main fiber ofχ the one which, by
Theorem 5.5 arrives up tox1 and then proceeds tox2.

Lemma 6.1. Suppose thatAi ⊂ B(x0, r), |x1 − zi| = Ar, |x1 − zi−1| = A2r and that bothAi andzi are
contained in a cone with vertexzi−1 and angleθi satisfyingθi ≤ cεα

i . Suppose in addition that the main
fiber ofχ passes throughzi−1. Then, ifA is sufficiently large andc andεi sufficiently small, the main fiber
passes throughzi as well.

Proof. In this proof, we refer to figure 9. If we cut the irrigation at aline passing throughzi and orthogonal
to zi−1zi, thanks to the fact that the angle is small, we get that the starting measure on this line and the
arrival measure onAi have small diameter with respect to their mutual distance, and we can apply Lemma
5.1. This turns the situation into a three-point irrigationwhere the starting point iszi−1 (with mass between
1 − 2ε and1), and the two target points arezi (with massεi) and a point̃zi with mass equal to the mass
of zi−1 minusεi (i.e. almost one), which lies on a segment orthogonal tozi−1zi, at a small distance from
x1(small with respect toAr). The angle betweenzi−1zi andziz̃i may be estimated byc(A)θi, since the
distance|zi− z̃i| is comparable (up to a factor depending onA) to the distance|zi−1−x1| and all the points
are included in the small cone of amplitudeθi. By assumption this anglec(A)θi is for c small enough
smaller than the minimal angle to have branching. Indeed by Lemma 5.6 this angle isO(εa

i lpha). Thus in
the three-pointszi−, zi, z̃i configuration the optimal shape has no branching, which means that the main
fiber of the traffic plan passes throughzi.

Lemma 6.2. Let us make the following choices, according to our previousnotations (and complex notations
for points in the plane):θ is an angle sufficiently small;f : R → [−θ/2, θ/2] is a 1−Lipschitz periodic
function such asf(t) = θ/2 sin t; x0 = 1, x1 = 0, x2 = −1; zn = A−neif(nγ); α, γ > 0 andα + γ < 1;
εn = cn(γ−1)/α. Suppose moreover thatA is large enough andc small enough. Under these assumptions
there is only one optimal traffic plan fromµ+ = δx0

to µ− = (1/2ε)δx1
+ (1/2ε)δx2

+
∑∞

i=1 εiδzi
, and it

is given by a single simple curve connectingx0 to z1, z2, . . . , zn, . . . , x1 andx2 by straight line segments.
In particular, since the argument ofzn oscillates from−θ/2 to θ/2, there is no right hand side tangent at
the pointx1.
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zi

zi−1

θi
χi

Figure 9: The angle condition for passing throughzi

Proof. Lemma 6.1 proves that the main fiber of an optimal traffic plan first passes throughx1, and then
proceeds tox2. Hence, if we can verify at each step the hypotheses of Lemma 6.1, we can get by induction
thatχ passes through everyzn. We only have to estimate angles. To do this it is sufficient toestimate the
angles between the segmentszn−1zn andzn−1zk for k > n. We will use complex notations and estimate

arg

(

A−keif(kγ) − An−1eif((n−1)γ)

A−ne−if(nγ) − An−1e−if((n−1)γ)

)

.

We first simplify the common factorAn−1 and multiply by the conjugate of the denominator both the
numerator and the denominator itself. We are led to consider

arg
(

[

An−k−1eif(kγ) − eif((n−1)γ)
][

A−1eif(nγ) − eif((n−1)γ)
]

)

.

Setw = An−k−2ei(f(kγ)−f(nγ)) −A−1ei(f((n−1)γ)−f(nγ)) + 1−An−k−1ei(f(kγ)−f((n−1)γ)), which rep-
resents the product we have to estimate the argument of. It iseasy to show|w| ≥ 1 − 3A−1, and, if A
is large enough, this modulus is close to one and hence it is sufficient to estimateℑw. In fact for small
angles we havearg w ≈ ℑw/|w|. Calculating the imaginary part ofw easily gives (using the fact thatf is
1−Lipschitz continuous):

|ℑw|≤A−1(nγ−(n−1)γ)+An−k−1((kγ−nγ))+(kγ−(n−1)γ))≤2A−1(nγ−(n−1)γ)+2An−k−1(kγ−(n−1)γ).

Lemma 6.3 gives an estimate on the last term which is independent ofk and one gets using also the concavity
of n 7→ nγ ,

|ℑw| ≤ 2A−1γ(n − 1)γ−1 + 2A−1 γ

log A
(n − 1)γ−1.

This shows that the angleθn which is the amplitude of the smallest cone fromzn−1 includingTn andzn

may be estimated bynγ−1. Our assumption onεn guarantees the inequality we need to use Lemma 6.1.

Lemma 6.3. We have
max
k>n

An−k(kγ − nγ) ≤ γ

log A
nγ−1.

Proof. We estimate the maximum over allx ∈ [n,+∞[ of the functionx 7→ An−x(xγ − nγ). This
maximum exists and it is realized at an interior point because on the boundary of the domain the function
tends to zero. If we call̄x the maximum point and we differentiate we get

− log AAn−x̄(x̄γ − nγ) + γx̄γ−1An−x̄.

This implies

max
k>n

An−k(kγ − nγ) ≤ max
x≥n

An−x(xγ − nγ) = An−x̄ γ

log A
x̄γ−1 ≤ γ

log A
nγ−1,

where we used the inequalitȳx ≥ n and the fact thatx 7→ xγ−1 is decreasing, asγ < 1.
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