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The reqgularity of optimal irrigation patterns

Jean-Michel Morel, Filippo Santambrogio
June 6, 2007

Abstract

A branched structure is observable in draining and irrigation systemggtrie power supply systems
and in natural objects like the blood vessels, the river basins or the tRex®nt approaches of these
networks derive their branched structure from an energy functiwhake essential feature is to favor
wide routes. Given a flow in a river, a road, a tube or a wire, the transportation cost per unit lesgth
supposed in these models to be proportionaltevith 0 < o < 1.

The aim of this paper is to prove the regularity of paths (rivers, bramche when the irrigated
measure is the Lebesgue density on a smooth open set and the irrigatiagrenes a single source. In
that case we prove that all branches of optimal irrigation trees satisijliptic equation and that their
curvature is a bounded measure. In consequence all branchirtg poihe network have a tangent cone
made of a finite number of segments, and all other points have a tangergxpiicit counterexample
disproves these regularity properties for non-Lebesgue irrigateduresa
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1 Introduction

Humans and Nature have designed many supply-demand digiribnetworks permitting to transport
goods from an initial distribution (the supply) to anothiére(demand). This is obviously the case with dis-
tribution networks such as communication networks [1&ctlc power supply, water distribution, drainage
networks [20], or gas pipelines [6]. Many observable ndtiloav networks connect a finite size volume to
a source or an outlet. Think of trees, river basins, brondyistems [23] or cardiovascular systems.

Probably the first mathematical transportation model wap@sed by Monge, and formalized by Kan-
torovitch ([24], [19]). The problem was to move a pile of sdirain a place to another with the least possible
work. In the Monge-Kantorovitch framework;t and .~ are measures dR’Y which model respectively
the supply and demand mass distributions. The solutioretptbblem is a measureon RY x RY where
(A x B) represents the amount of mass going frdnto B, and the marginal laws of are™ andy~.

The measurer is called atransport plan To evaluate the efficiency of a transport plan, a cost foncti
c: RN x RN — Ris considered whergz, y) is the cost of transporting a unit mass franto y. The cost
associated with a transference plaryjis, . ~ ¢(z,y)dn(z,y). The minimization of this functional is the
Monge-Kantorovitch problem, which has yielded a rich math#écal harvest. See the recent monographs
[177, [18], [11].

1.1 The Gilbert-Steiner problem modeling a discrete branche structure

In the Monge-Kantorovich framework, the cost of the struetachieving the transport is not modeled. In-
deed, with this formulation, the cost behaves as if everglsiparticle of sand went straight from its starting
to its ending point. In the case of real supply-demand distion problems, achieving this kind of single
particle transport would be very costly. In most transp@tanetworks, the aggregation of particles on
common routes is preferable to individual straight one [Blal structure of human-designed distribution
systems doesn’t look as a set of straight wires but ratherdilcee.

*CMLA, ENS Cachan, 61, Av. du Président Wilson 94235 Cachade&€d-rancenor el @nl a. ens- cachan. fr and
filippo@ni a. ens-cachan. fr



The first model taking into account subadditive capacitesdéutes was proposed by Gilbert [16] in
the case of communication networks. This author models ¢tvwark as a graph such that each edgge
associated with a capacity. Let f(c) denote the cost per unit length of an edge with capacitit is
assumed thaf(c) is subadditive and increasing, i.¢(a) + f(b) > f(a + b) > max(f(a), f(b)). Gilbert
then considers the problem of minimizing the cost of netwakpporting a given set of flows between
terminals. The subadditivity of the cogttranslates the fact that it is more advantageous to trah8pars
together. In the fluid mechanics context, this subaddjtiatiows from Poiseuille’s law, according to which
the resistance of a tube increases when it gets thinner (eetee[3, 10] for a study of irrigation trees in
this context). The simplest model of this kind is to tagke) = ¢* with 0 < a < 1.

Following [16], consider atomic sourcgs = Zle a;05, and sinksy™ = 2221 bjd,, With >, a; =
Zj b;, a;,b; > 0. Anirrigation graph is a weighted directed graph with a $etG) of straight edges and
afloww : E(G) — (0, 00) satisfying Kirchhoff’s law. Observe that can be written as a vector measure

G= > wleH' & (1)

e€E(G)

wheree denotes the unit vector in the directioncofind! is the one-dimensional Hausdorff measure. We
say that irrigates(u™, u™) if

dvG=pu" —put (2)
in the distributional sense. The Gilbert energyhis defined by
M*(G)= Y w(e)*H (e). (3)
e€E(G)

We call the problem of minimizing/®(G) among all finite graphs irrigatingu™, 1) the Gilbert-
Steiner problem. The Monge-Kantorovich model correspdodse limit casece = 1 and the classical
Steiner problem tax = 0. The Gilbert model was adapted to the study of optimal pigetir drainage net-
works [6, 20]. From a numerical point of view, a backtrackeaithm exploring relevant Steiner topologies
is proposed in [35] to solve a problem of water treatment netwA different algorithmic approach can be
found in [36].

1.2 Three continuous extensions of the Gilbert-Steiner prdlem

In analogy with the Monge-Kantorovich problem, the diser&ilbert-Steiner model has been recently set
in a continuous framework [31], [22] where the wells and sesrare arbitrary measures, instead of a finite
sum of Dirac masses. There were three approaches to thisadjeagon, which we shall review briefly.

Xia’'s relaxation

Let ut, 1~ be two positive Radon measures in a compact conveX'setR”" with equal mass. A vector
measurd’ on X with values inR” is called by Xia [31] aransport pathfrom p+ to p~ if there exist two
sequenceg; , u; of finite atomic measures with equal mass and a sequencetefdiriphs7; irrigating
(1, p;) such thap — u*, u; — p~ as measures ar@; — T as vector measures. The energylaf
defined by

M(T) := inf lim inf M*(G;)

71— 00

where the infimum is taken over the set of all possible appnating sequence@j, u; ,Gi}toT. Denote
M*(p*, p7) == inf{M*(T) : T is a transport path from* to x~}.

If o € (1—+,1], by Theorem 3.11in [31], the above infimum is finite and attdifte any pair(x. ™, 7). Xia
showed or conjectured in a series of papers several steuahd regularity properties of optimal transport
paths which we shall comment later on.



Maddalena-Solimini’s patterns

Maddalena and Solimini [22] gave a different (Lagrangiamyfulation in the case of a single source supply
pT = ds. They model the transportation network as a set of partiajectories, or “fibers”x(w, -), where
x(w,t) € RY represents the location of a particlec 2 at timet andy(w,0) = S. The sef2 is an abstract
probability space indexing all fibers ; it is endowed with aaswre] - | (without loss of generality one could
takeQ2 = [0, 1] endowed with the Lebesgue measure). All the fibers are redjtirstop at some timg(w)
and to satisfyy(w,0) = S for all w, i.e. all fibers start at the same rat The set of fibers is given a
structure corresponding to the intuitive notion of brarechBwo fibersv andw’ belong to the same branch
attimet if x(w,s) = x(«', s) for s < t. Then the partition of2 given by the branches at tinteyields a
time filtration. The branch ab at timet is denoted byw]; and its measure bjw];|. The energy of the set
of fibers, or “irrigation pattern” is defined by

o= f " il o

It is easily checked on discrete trees that this definiticdereds the Gilbert energy (3). The measpre
irrigated by a pattern is easily defined. For every Borel4dét RY, 1~ (A) is the measure of the set of
fibers stopping iM4, = (A) = {w, x(w,T(w)) € A}|.

Traffic plans

In [2] the pattern formalism was extended to the case wheradhrce is any Radon measure. The authors
of [2] called “traffic plan” any probability measure on the ¢ Lipschitz paths. The equivalence of all
models is proven in [21] and [4]. More precisely:

1. When the irrigated measurgs$ andyu~ are finite atomic, the traffic plan minimizers are the same as
the Gilbert finite graph minimizers.

2. For two general probability measures andy—, Xia's minimizers are also optimal traffic plans and
conversely.

3. Whenu™ = §g is a single source, optimal patterns and optimal traffic pkre equivalent notions.

Throughout the paper we shall refer to the formalism of radfans which is the slight extension of the
pattern formalism as explained above. The next sectiondbzas all definitions and recalls all properties
we shall need in the sequel. They refer mainly to [31], [32B][ [22]. The used formalism and the form
given to statements follow [2], [4] and [5].

1.3 The regularity questions in a discrete and in a continuouframework

In the discrete Gilbert setting, the irrigated mass and tthgaiting mass are finite atomic masses and the
optimal graph has no circuits and is therefore a tree, witmigefnumber of vertices joined by straight
edges. In addition, the following equilibrium equation aied at all vertices:

Zw(ei)aa’ =0 (4)
i€l
wherew(e;) ande; are the flows and directions of all edgesarriving or leaving a given vertex and all's
are oriented inwards the corresponding edge.

One of the main challenges of the continuous model is to egploe regularity of very large and
therefore virtually infinite networks. Our main goal in tipiaper is actually to prove that equation (4) still
holds in the continuous model.

This needs some explanation. Xia defined the notiomtrior [32] and boundary [33] regularity
for infinite irrigation circuits. Interior regularity is #hfact that, away from the supports of irrigated and
irrigating measures, the network keeps locally the finitacttire of the discrete case. This fact has been
proven under a variety of assumptions including the caseenthe initial measure is atomic in [4]. In such
a case the equation (4) is therefore satisfied and thereh#gdb add.

Let us now consider the much more intricate case of boundaylarity, namely theegularity of the
network inside the irrigated bodyThis is the case of river networks or of biological netwo(kfood),



where the irrigated measure is a Lebesgue measure. Fighms such a river network. Models for river
networks [27] could hardly raise the question of regulairity discrete framework. The figure illustrates
the relevance of this question when virtually infinitely mpdomanches occur.

Figure 1: From the site of US Geological Survey: the brangmatwork of the Amazon River: Is each
river's direction aBV functions? It is possible to answer positively this questiothe simplest available
model for irrigation networks. A counterexample will alsmype that the “yes’ answer depends crucially
on the fact that the irrigated measure is equivalent to thekgue measure.

When a Lebesgue measure is irrigated the network bifurcétas iafinite, countable set of branching
points. It has been proven in [33], [4] that the number of bhes at each vertex is bounded by a constant
depending only orx and the dimension of the ambient space. However, the géradiah of the equi-
librium equation (4) to the continuous framework was lefeonp Even worse, the existence of a tangent
direction for each edge was a pending result. It is a main aithis paper to prove this regularity result and
to give an equilibrium equation, which generalizes thedistructure to infinite networks.

One of these regularity issues was raised in Xia's work [32Jmely the existence of half-tangent
directions at any point of the network. We shall deduce thistence from the stronger fact that each
river's direction is locallyBV. The BV estimate will be proven in Section 3. Section 2 is devoted to a
more detailed explanation of the traffic plan model, which & the one we will refer to, and of all the
preliminary results we need for our further analysis.

For a related result concerning optimal traffic plans seg@h® in [29], where the existence of tangent
directions at branching points is proven when the dimen&dhunderL? assumptions on the irrigated
measure. The result is weaker (here we prove existence gémds at any point of the network) but the
hypotheses on the measures too (no lower bound on the démsiguired). The techniques are very
similar to [30].

After proving this BV result, Section 4 formalizes by means of a differential é#ignathe necessary
optimality conditions on the tangent directions which galizes equation (4). Th@ D E that we write in
weak form involves the BV estimate of Section 3.

Sections 5 and 6 are aimed at the construction of a counsenjgbe where the existence of a tangent
direction fails, by properly choosing an irrigated measdit@s irrigate measure won'’t of course satisfy the
assumption of Section 3, that is, it won’t be equivalent mltkbesgue measure. The explicit counterexam-
ple is a countable atomic measure.

Section 5 is devoted to some geometric lemmas that will bingireary to the example. They may be
useful in other situations too. For instance we prove thatifind;,~ have distant and small supports, then
the traffic plan consists of a single curve in a large part eftthnsportation. In Section 6 we give explicit
choices for the irrigated measures of the counter-exanmuleng use the lemmas of Section 5 to prove that
the optimal traffic plan oscillates in a cone, thus givingeaio a non differentiable point. Providing non
trivial explicit optimal traffic plans is not at all easy an@wo not know of any other similar result.

2 Preliminaries on traffic plans

2.1 Basic definitions [2]

Denote by A| = LV (A) the N-dimensional measure of a subgesf RY. Itis convenient that the supports
of the irrigated measurgs"™ andy~ are bounded ifR". Thus it is reasonable to consider paths contained



in some compact conveX-dimensional sef{ C R™. Denote by(Lip,(X),d) the space of —Lipschitz
curves inX with the metricd of uniform convergence on compact sets.

Definition 2.1. Let(2 be a measure space, its measure, being denoted hyaving finite total mass. A
(parametric) traffic plan is a Borel measurable mgp: Q@ x Rt — X such thatt — x,,(t) =: x(w, )
is constant for sufficiently largeand 1-Lipschitz for allw € Q. Without risk of ambiguity we shall call
fiber the pathy(w,-), w € Q itself and the image ilRY of y(w,-). Denote by|x| := || the total mass
transported byy.

In the original definition [2], traffic plans are defined as sww@as on the set of paths. By Skorokhod
theorem such a measure also defines a parametric traffiaytla@ $ense of the above definition. Conversely
the law of a parametric traffic plan viewed as a mag Q2 — x(w,.) € Lip,(X) is a traffic plan in the
original sense. In this paper we will deal with parametréatfic plans but omit the mention “parametric”.

Stopping time, irrigated measures, transference plan
If x : @ x RT — X is a traffic plan, define its stopping time by
T\ (w) := inf{t : x(w) is constant orjt, 0o) }.

Observe thaf, : & — R* is measurable [22, 2]. The initial and final point of a fibeare x(w, 0) and
x(w, Ty (w)). Using these maps one can associate with any trafficyplesirrigating and irrigated measure
defined by

p(X)(A) = [{w: x(w,0) € A},
1o ()(A) = fw : x(w, Ty (w)) € A}
respectively, whered is any Borel subset oR". We shall say tha irrigates the measurg(y) =

(ut(x), = (x)) and calllT P(u™, ) the set of traffic plans irrigating™ andp .

Energy of a traffic plan

Definition 2.2. Lety : Q x Rt — X be atraffic plan. Define the path classaoft RY in x as the set
O ={w:z e x(w,R)},

and the multiplicity ofy at z by |x|,, = |€2X]. We shall note5,, the support ofy, i.e. the set of points such
that|z|, > 0.

We use the conventiobf*~! = +oo whena € [0, 1).

Definition 2.3. Leta € [0, 1]. We call energy of a traffic plag : Q x RT™ — X the functional

20 = [ [ e . 0t ©

Proposition 2.4. [2] The traffic plan energy is not changed if each fiber is regraeterized by length. This
energy decreases if all loops in the fibers are eliminateaffitrplans normalized by length and loop-free
will be callednormal

It is proven in [2] that the traffic plan energy is equal to théb€rt energy on a finite graph with a flow.

Definition 2.5. In all that follows we consider traffic plans with finite engrgVithout loss of generality we
assume that all fibers satis#(x.) := [p+ [x(w, 1) X (w, t)]dt < +o0.

Definition 2.6. A traffic plany is said to beoptimal for the irrigation problenif it has minimal cost in
TPt (x), 1~ (X))-
2.2 Main properties used in the sequel [5], [4], [2]

Since most of the properties listed below are quite intejtif/not always easy to prove, the reader is invited
to read through quickly. They will be used in Sections 3-6.



Convergence, existence of minima

Definition 2.7. We say that a sequence of traffic plansconverges to a traffic plag if there are measure-
preserving measurable maps, : Q@ — Q such thaty, (¢, (w),t) converges toy(w,t) uniformly on
compact subsets & for almost everyw € Q.

The following results were proved in [22] and [2].

Theorem 2.8. Up to a subsequence, any sequence of normal traffic plansith bounded energy con-
verges to a traffic plary. In addition, u™(x,) — u(x), 1= (xn) = = (x). fFxn : Q xRT — Xisa
sequence of normal traffic plans with bounded energy comvgtg the traffic plany, then

E*(x) < liminf E*(xy).

Thus the problem of minimizing“(x) in TP(u™*, »~) admits a solution whenever there is a feasible
solution. This solution can be taken normal (see Propasiéial).
In the sequel we shall set
EuT,p7):= min E%x).
(W)= min E(x)
Probably the most important result supporting the passage & discrete to a continuous theory is the fact
that measures are irrigabledfis large enough [31]:

Proposition 2.9. Let u™ and ;~ be two positive measures supportedin with equal mass. Then for
a>1-— % there is a constant depending only @rand N such that

E*(pt,u) < C diamete(X)|u|®.

There is a thorough study ofigable measuresind the link between irrigability and dimension in [12],
[13].

Stability of optima
The following lemma and propositions were proved in [31] dmeir proofs adapt immediately to traffic
plans.

Lemma 2.10. Leta € (1 — %, 1]. If w7 is a sequence of probability measuresXmweakly converging to
pt, thenE*(ut, ut) — 0 whenn — oo.

Proposition 2.11. Leta € (1— %, 1]. If x,, is a sequence of optimal traffic plans for the irrigation plein
andy, — x, theny is optimal.

Rectifiability and H!—formula

Proposition 2.12. Let x be traffic plan with finite energy,, is countably rectifiable. More precisely there
is a sequence,, of fibers such thas, C U, x(w,,RT).

This result and the following representation of the energypaoven in [2] and show that the traffic plan
energy indeed is a generalization of the Gilbert energy (3).

Proposition 2.13. Let« € [0,1) and x be a loop-free traffic plan such th#&*(x) < co. Then,

) = [ el o). ©)

The following operations on traffic plans will prove useflihey are detailed in [4] and [5].

Restriction

Definition 2.14. If Q" C Q we call restriction ofy to ' x R the traffic plany o/ «r+ also notedyq:.

More generally, lef’ ¢ Q andD C ' x RT a subset of the formd = U,cq {w} x [s(w), t(w)]. Define
the restrictiony p of x to D as a traffic plan byxp(w,t) = x(w,t + s(w)) if 0 < t < t(w) — s(w) and

XD, 1) = x(w, t(w)) if ¢ > t(w) — s(w).

Lemma 2.15. Let D = Ugeaf{w} x [s(w),t(w)]. ThenE*(xp) < E%(x). If Q is a disjoint union of
O, thenES (y) < 1) B (X0, xp+)-



Concatenation of a chain of traffic plans

Lemma 2.16. Lety € TP(u*,n~) and¢ € TP(v*,v™) such thaty~ = vT. There is a traffic plan
x € TP(u™,v™) such that each fiber of is a concatenation of a fiber gf with a fiber of¢. In addition,
E%(x) < E*(x) + E*(§).

A convex hull property
We denote by-onv(E) the convex hull of.

Lemma 2.17. An optimal traffic plany satisfiesS, C conv(supp(u~ (x))Usupp(pt(x))). More precisely
almost all fibers of the traffic plan stay in this convex hull.

The single path property

Definition 2.18. Lety be a loop-free traffic plan, so that (w) := x ! (w, -)(z) is well defined. Let, y in
Sy. Define
Qg = {w € W NQY £ (w) < ty(w)},

the set of fibers passing througtand then throughy. The restriction ofy to Uy,ca_, {w} x [t:(w), 1, (w)]
is denoted by, It is the traffic plan made of all pieces of fibersypfoining z to y. Denote its support
byl =S, ..

Definition 2.19. A traffic plany has thesingle path propertif for every pair (=, y) such thafQz;| > 0,
almost all fibers irf2;; coincide betweem andy with a same ard™*¥ joining = toy. We say that the traffic
plan has thestrict single path property for everyz, y, either there is no fiber joining to y or || > 0

andall fibers inQ2— coincide between andy.

zy

Proposition 2.20. (Single path property)Leta € [0, 1) andx be an optimal traffic plan. Theg is single
path and can be made strictly single path by restricting e to]0, T} (w)[ and removing a negligible
set of fibers.

If T is a Dirac mass, the optimal traffic plan is an optimal patténrthat case the above proposition
implies that

Proposition 2.21. Let x be an optimal normal pattern. Then it has the strict singléhgaroperty and for
almost every the functiort — |x(w, t)|, is nonincreasing off0, T} (w)].

Interior regularity

Theorem 2.22. Leta € (1 — +,1) and lety be an optimal traffic plan ifilP(x ™, 1~ ). Assume that the
supports ofuT and .~ are at positive distance. In any closed ball not meeting thmpsrts ofu* and .,
the traffic plan has the structure of a finite graph made of sagm

A variant for the above theorem applies when the irrigatirgeure is atomic.

n

Corollary 2.23. Leta € (1 — 3;,1) and lety be an optimal traffic plan such that" () = Y7 | m;d,,
is an atomic measure. In any closed ball outside the supgqrt ¢y), the traffic planu has a finite graph
structure.

Boundary regularity

The present paper is mainly concerned with boundary reigylaamely the regularity of the traffic plan
inside the supports gf ™ andy.~. We can summarize the already known results. In [4], it wasen that:

Theorem 2.24. (bounded branching property) Leta € (0,1). At every point: of the support of an
optimal traffic plany in R™, the number of branches atis less than a constat’(«, V) depending only
on N anda.

This result was conjectured in [33].

Proposition 2.25. Any optimal traffic plany such thatE*(x) < oo has countably many branching points.



We can make a synthesis of the above results in the case otiambpattern (see [4].)

Corollary 2.26. Let x be an optimal pattern. Theg can be taken normal by restricting each fiber to
[0, T (w)). All fibers have finite length and— |x(w, t)|, iS positive and non increasing along the fiber.
The pattern has a tree structure (fibers which separate nexst again), and has countably many branch-
ing points. If one cuts the tree at any pointone obtains a finite number of connected components which
are themselves trees with the same structure. One of thetainsthe source and all other ones are optimal
patterns with source:.

As a further boundary regularity property Xia [33] proveatthny path in the irrigation graph with flow
larger than a constant is bilipschitz, with explicit esttesaon the Lipschitz constant dependingarthe
dimension and the minimal value of the flow.

The landscape function

Let us also define, as in [28], the landscape function assati® a normal traffic plary by z(z) =

Z(Xw) = OT(X”) X (t)$1dt (x. being any fiber ofy arriving atz).

Proposition 2.27. [28] The landscape function associated to the optimal irrigation @f" from § is well
defined. Moreover, ifv > 1 — % and ™ has a density with respect to the Lebesgue measure which is
bounded from below oX by a positive constant, thenis Holder continuous with exponefit= N (« —

(1 — +)), and the Holder constant only depends on the lower bound@déhsity ofi*.

Angle laws at bifurcations
The next elementary geometric results are proved in [18], [3], [5].

Lemma 2.28. Let y be an optimal traffic plan and a point of its support. Assume that the traffic plan
inside B(z, R) is made of disjoint simple paths from to =; € 0B(x, R), i = 1,..., k. Then these paths
are straight segments. Setting; their flow ande; = % one has

Z méé; = 0. 7)

Lemma 2.29. Let us consider the simple irrigation case where an optinadfit plan is made of two paths
~1 and~s with flow% starting atyg, coinciding up to their bifurcationy and ending respectively at points
y1 andys. In such a situation, the pathg and~, are straight on the segmenits, y] and [y, v1], [v, y2]-
The half line[yo, y) is the bisector of the angle made py y:] and [y, y2] and the valued,, of this angle
depends only on.

The next lemma is an easy consequence of Lemma 2.28.

Lemma 2.30. There is a constart,,;,(«) depending only om such that for every branching pointof
an optimal traffic plan with locally finite branching numbére angles of pairs of vertices starting from
are all larger thanf,,,;,, («).

3 Curvature Bounds

In all that follows, C' denotes various constants depending only on the dimen$ioiihus if C' appears
at different positions in the same formula it may have déférvalues. Lef,~ be a measure oX which

is equivalent to the Lebesgue measure, ke < p~ < ¢t LN for some constant8 < ¢~ < c¢*.

In the following we consider an optimal traffic plan (or pattern) irrigatingu~ from a Dirac massy.

By Corollary 2.26,y has a tree structure. Consider a pafh) = x(w,t) which is a fiber ofy and take

0 < a < b < T(y)so that|y(b)|, > 0. (The notationy = x(w, .) is taken for brevity.) Let us denote
Y = v([to, t1]) andx; = ~(¢;) all branching points of the traffic plan belongingXo By Corollary 2.25,
we know that the branching points are a finite or countableEsathz; is the origin of a finite set of optimal
subtreesgy; of x whose root isc;. Eachy; is a restriction ofy obtained by restricting all fibers to their part
belonging to a connected componentah RY \ {z;}. Without loss of generality we can assume that all



of theses subtrees are indexed/bgo that we may have; = x; for j in a finite subset of . Finally, let us
denote by; the total mass irrigated by;.
The following theorem summarizes the results proven ingbgion.

Theorem 3.1. Let~(s), s € [0, T(v)] be a fiber of an optimal traffic plan (patterryirrigating a measure

p~ equivalent tol fromdy. Let[a,b] C [0,T(y)[andX =: ¥([a, b]). Lete;, i € I the masses of all trees
branching fromX. Then) . e < oo andX has a bounded total curvature. As a consequence it has two
half-tangents at all points and a tangent at all points whézh not branching points.

The most important consequence is the following:

Corollary 3.2. Every branching point: of an optimal traffic plan has a tangent cone made of a finitel (an
bounded by a constant depending @rand N) number of segments whose directiegpand masses;
satisfy the equatiofir).

Proof. It is sufficient to apply Theorem 3.1 to all the fibers of thdficgplan passing through, obtaining
the existence of their one-sided derivatives. This prowesexistence of the full limit (and not up to
subsequences) of any blow-upaatConsequently, it is possible to study the limit configuratby means
of the stability property of Corollary 2.11: the traffic plaestricted toB(x,r) and rescaled by a factor
r~! converges to an optimal traffic plan for the irrigation of tatomic measures whose masses arerthe
masses of the branches (see [32]). The direction of the sggmemposing this discrete traffic plan are
those of the tangents. Hence, we can apply Lemma 2.28 and get the thesis. O

The existence of tangent cones for particular blow-up secegewas proved by Xia in [32]. The first
lemmas we will prove aims at estimatig, c®*. In fact Lemma 2.28 implies in the discrete case that
each time the curve branches and loses a massthe change in its direction is of the orderadf. It is
consequently natural to look for estimates on the SupeS* to get bounds on the curvature. Denote by
¥ a continuum, that is, a connected set with bounti@dmeasure and by” = {z,dist(z,X) < r} its
r— neighborhood. A proof of the next lemma can be found in a phapefilli and Mosconi [25], but we
provide a different one for the sake of completeness.

Lemma 3.3. There is a constant’ only depending on the dimensidhsuch that
=7 <O (HME)rV T+ (8)
for any positive radius.

Proof. Letr < idiam(X). We can cove® by a maximal disjoint set of ball®; = B(y;,r), i € J with
radiusr and centered ol. Then by the assumption on the diameter and the connectedhEs we get
HY(B; N'X) > r, as a consequence of the fact tiatannot be contained in any of these balls. Thus

CardJ)r < HY(%). 9)

The setJ being maximal, every balB(x,r) centered at a point i meets at least onB;. ThusX C
Uies Bi(yi, 2r) and therefores” C (U, ; Bi(yi, 3r). This implies by (9),
|| < Card J)|B(0,1)[3N 7Y < |B(0,1)[3NH (Z)rN L. (10)

Assume now- > Zdiam(X). ThenX" is contained in a ball centered ahwith radius2r and one gets
=7 < [B(0,2)|rY. O

Lemma 3.4. Let x be a traffic plan (pattern) irrigating the measure from §y. Then for every subtreg;
of x with total mass; stemming at:;, the fibers ofy; are contained in a ball centered at and of radius

Csﬁ, where the constartt’ depends on the upper and lower bounds of the density of theurega .

Proof. Take the landscape functiarassociated to the irrigation f~ from ¢y defined in Proposition 2.27.
Denote byx; the root ofy; and byy a point in the subtree stemming fram. For a pointz in the image of

a fibery we callt(x) the unique value such thatt(x)) = =. The valuet(z) is also the geodesic distance
in the tree from the root te. Since the multiplicityt — |v(¢)|, is non-increasing, one has

t(y)

) =) = [ ORTE ()~ e



Thus,
ty) — t;) < (2(y) = 2(@:))e} =" < Cly — ;) e},
which yields
ly — ;] < t(y) — t(x;) < Cly — x]%; ™, and therefore
ly — x| < Csil%g = Ceﬁ.
O

Lemma 3.5. Let 3 be a connected component of the support of an optimal traffic p irrigating the
measureu~ from dy. Denote by, i € I, the masses of all the subtregsof x stemming front, which
means that they me&tat their root only. Then

> e <CHI(D) +C.

i€l
Proof. By Lemma 3.4 we know that the subtrgewith origin z; and mass; irrigates a measure supported
1 1
in the ballB(z;, Ce,N'). Thus, such a support is containedtifi for » > CeN'. By (8), we obtain

Z g <C (Hl(E)rN_l + rN)
Caﬁ <r

and therefore

DenoteE(r) = Card{i, § < CeN < r}). Then from the previous inequality,

E(r) (%)N <C (HI(E)TN_l +TN)

—~

which yieldsE(r) < C (H!
union. Thus, since: > 1 —

3)r~! 4 1) . By definition of E(r), the unionU, ¢z E(27") = I is a disjoint

2|

Na
Y er <> E@2TC <i> <CH'(R)Y 2ntNel oy omNe < OHN(D)+ C. O

2 n
n n

As a following step, we will use a perturbation argumentyoto derive curvature estimates involving
; €5 In the perturbation we will need the following lemma.

Lemma 3.6. Let X be a simple rectifiable curve from, to x; and S the segment between the same points.
Supposd. = H!(¥) < +oc and setA = H(S). Take the map : X — S defined by

p(y) = (L = ds(y, x0))/L)xo + (ds(y, x0) /L)1,

wheredy, denotes the geodesic distanceXrfwe are actually creating a correspondence betwEesnd
S by following the segment with constant speed giveA iy < 1 and we will call such an application
constant speed projection). Then we have

NiEE.

ly —py)| < 5

Proof. Suppose for notational simplicity that = 0 andx; = Ae; (i.e., we set the segmengz; on the
first coordinate axis). Take a poigte X and sef = dx(y, ), call a the first coordinate of, andh the
distance fromy to the axiszox; (see figure 2). We havig — p(y)| = /A2 + (a — Al/L)? and we want to

estimate such a quantity. Moreover, we kno?2 + h2 < [ et\/(A — a)? + h2 < L — I. Hence we have

2 <12 —a®]A[(L—1)*— (A —a)?].

10



Let us suppose for simplicity thét — a? < (L —1)? — (A — a)? (the other case being symmetric), and we
get
L2 L

We need to consider this quantity only under the additionabition/? — a? < (L —1)? — (A — a)?, i.e.
2aA > A% — L? + 2L1, and hence we have

2
ly—py)> <P —a*+ (a—Al/L)?* =17 (1 + A_> — QaiA.

l L2 — A2 L2 — A2
y—p(y)QSlQ(l—i—ﬁ)—Z(AQ—L2+2LZ):Z T P

This last expression is maximizedlat L /2, in which case we get exacty.? — A?)/4. O

A

4
L

Figure 2: Constant speed projection from the curve to theneet

Lemma 3.7. Let x be an optimal traffic plan (pattern) irrigating the measure from dy. Let~v(s),
s € |0,T ()] be afiber ofy, [a,b] C [0,T(y)[ andX =: v([a,b]). Lete;, i € I the masses of all trees
branching from®. Then for every monotone polygonal li(®;)x—o...., approximatingy with z;,, € ¥ one

has
~ lp — | — xp—
|>(b)|§z(k | ]gk — <*§ :5?

k=1

wherel;, denotes the geodesic distancelmf x;_; to z; anddy =: %\/Z,E — |zg — xp_1]?

Proof. Denote byzg, x1,...,z,...,z, an ordered sequence of points such that= v(a), z, = v(b),
xy = y(tr).

SetY, = y([tk—1,tx]) and callpy, : ¥y — [rx—1, 2] the constant speed projection arising from the
construction of Lemma 3.6. Finally calf the masses of all subtreg§ stemming from>,.. We consider
for eachk an alternative,, to x which consists roughly of replacing the path by the segmentcy_1, 2]
More precisely,

o All fibers of x passing byr;_; andx; are replaced, between,_; andx;, with their projectionp;,
onto the straight line segmeft; _1, xx).

o for each fiber ofy passing byz;,_; but not byx;. there is some on X, at which the fiber leavesy.
This fiber is replaced between, _; andy by its p,-projection onto the straight line segment from
xr—1 to pi(y) followed by a straight path fromy(y) to y. The rest of the fiber is unchanged. (See
Figure 3).

e All other fibers ofy are unchanged.

Lemma 3.6 ensures that the speed of the fibers has not indrethag all the fibers passing by, 1
proceed, while on the segmdn}, 1, ], in the direction fromz;,_; to xy, and that the distancés—py. (v)|
are estimated byy,.

In all that follows we shall assume that;_1, z] meets the suppoi§,, of x on a set with zerd+*
measure. We shall explain at the end of the proof how to gebfithis assumption, which implies
lpey(s)lye = 7(s)]x and simplifies the exposition. Using this fact, the energypfon the segment

[Th—1, 2] IS
tr

/ 11 () e (P (s)ds = / () (pa)' () ds,

tre—1 th—1

11



Xk
Pr(y) X

Figure 3: Replacing a piece of curve with its constant speegbgtion

where we identify for simplicity the vectdp,~)’(s) with its scalar coordinaté.)’ (s). == Since
X is optimal, we must hav&< () > E%(x), which yields
tr ti
0= [ hORm s = [ RN E)ds+ 5 Y e an

te—1 te—1 i

Taking in consideration thap,~'(s)| < |7'(s)| = 1 and that~(s)|, > |v(b)|, (because by Corollary 2.26
the multiplicity is non-increasing along fibers), Equat{dd) yields

YOS (|2 — ze1| — ) + Y (eF)*0) > 0. (12)

Summing this inequality fok ranging from 1 ton ends the proof. We are however left to explain how we
can enforce thalry_1, 2] meetsX; on a set with zero length. To do so we can move slightlyralé

in a ball with radiuse around their position o&. For almost all positiong;, in these ballsB(zy, €) the
announced property is true. Now the polygonal ljag) is no more supported by. We can, however,
repeat the whole above argument but we have to add to the ibgrs small segments joining;, to Zy,
back and forth. Thus (12) becomes

"Y(b)|;(|$k — 1| = lp) + Z(Ef)aék + 2ke > 0.

Since this construction can be made for every 0 we get back to (12) by letting — 0. O

Remark3.8. In the proof, we passed through the conditi([z;_1,2,] N Sy) = 0 for the sake of
exposition simplicity only. In fact, using the subaddityvof s — s%, (12) can be obtained directly even if
the multiplicity is not exactly preserved in the projection

We shall need to define a standard approximation of a redéf@mbyve by a polygonal line.

Lemma 3.9. Lety : [0, L] — R¥ be a rectifiable one to one curve parameterized by lengthn Taveevery

a > 0 one can find a polygonal curvey,)x, k = 0,...n such thatx, —xp_1| =aforall k € {1,...,n},
xo = ¥(0), |2 —y(L)| < a, 2 = v(tx) belongs toy([0, L]) for every0 < k < n, and the sequendg
is increasing. In such a case we call the curve made by theesse segmentsy,_1,zx], k=1,...,na

regular polygonal approximation towith stepa. Whena — 0, this polygonal curve converges uniformly
to .

Proof. The polygonal approximation which we shall call can be constructed for eaaliteratively. One
takeszy = ~(0), thent, is defined as the smallelssuch that~(t) — xg| = a, t2 as the smallegt> ¢; such
that|y(t) — 1| = a, and so on. The process stopsat= v(t,,) such that the rest of the curvé(t,,, L])

is contained in the open ball(z,,, a). Thus|z, — vy(L)| < a. Let us cally, the curve we obtained. One
has by constructiortt*(vy,) < H!(y). By Ascoli-Arzela theoremy, converges to a rectifiable curde
uniformly. In addition,#!(¥) < liminf, H'(y,) < H!(v). Notice that, identifying all curves with their
respective images, one has, forale ~,, d(z,7v) < a, which implies thaty C ~ (this is easily deduced
from the Hausdorff convergence of a subsequence of the sequéd compact setg,). Thus4 is a curve
whose image is contained in thatpfwhich has the same starting and arrival points and a sniatigth.
Sincery is one to one one obtaings) = 4(s) for s € [0, L]. O

The statement of Theorem 3.1 will be proven by applying LesiB&, 3.5, and the next one.

12



Lemma 3.10. Let X be a curve with finite length such that for every regular polyal approximation

(k) ks .

Zlk — |z — 21| <
Ok -7
k=1

whered, =: %\/li — |zx — xk—1|? andly is the geodesic distance b from z;_; to 2. ThenX has a
bounded total curvature.

Proof. Notice first that

1
lp — |zp — p—1] _ lp — |log — Tp—1] _ (lk—|$k—$k1|)2
Ok \/lz — |£Ek — Ik_1|2 Iy + |xk - mk—l|

Letv,, =(xx)r=0...n b€ a regular polygonal approximationXf By applying the assumption to the polyg-

onal line(zsy ), one has
~ 1
Z (lk — |zor — $2(k1)|) ’ <C

3 I + |wok — To(p—1)]

wherel, denotes the geodesic distanceXfrom o, 1) t0 29;. Seta = |z — 21| and notice that
I, > |Tor — Zok—1| + |T2r—1 — T2k—1)| = 2a and that the functioh — éjr—g is nondecreasing ihfor
a > 0. Thus,

> (2a L x”’”") <c. (13)

—~ \2a+ |2k — To(k—1)]

Consider the isosceles triangtg 1, 2, 7141 and calldo < 6, < 7 the absolute value of the angle of
Tp_12% With 21251 1. Thencos Ooy, 1 = |T2r — To(x—1)|/(2a) and (13) yields

1 — cosf; 3
PR} <
Z (1+cos€k> <G

k odd

that is the same as 0
> tan Ek <C. (14)
k odd

Analogously one can obtalt, eyen tan % < C and hence
0
Z tan 7]6 < 2C.
k

The total curvaturd’C((xy)) of a polygonal linec;, is

n—1

Z Nk — ng—1]

k=1

wheren,, = kel TE-1%k n this case, where all the segments have the same lengtledsi to see

[Tk Tht1] [zk 12k "

that|nk — le_1| = 2sin 0. Thus

TC((xp)k) = 2Zsin9k < 42‘5&11% <8C.
k k

By Lemma 3.9 the polygonal curvg, converges uniformly tg. Its second derivative in the distribution
sense is the measutg = p, = 2>, (sinfy)d,, whose total mass i€C((xy)). Thus|ui| < C and
its weak limit~” is a measure with bounded total mass. We conclude+thbhas bounded variation on
[a, b]. O

This also ends the proof of Theorem 3.1, which follows fronmieas 3.5, 3.7, and 3.10.
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4  An elliptic equation for traffic plans

In the previous section we have proven a regularity resutherpathsy of an optimal traffic plany. The
the next step is to strengthen the result, by providing &ufitial equation which is satisfied hy We have
just proven that/’ is BV. In addition|+|{; is BV since it is monotone decreasing. Thus the prothigty’ is

BV and its derivative is a measure. Our aim is to identify thisasure.

Theorem 4.1. Let~y be a fiber of an optimal traffic play irrigating 1~ from dy. Then~ satisfies in the
sense of distributions the elliptic equation

(WO @) =D etdyavi (15)
iel
wherer; is the tangent of the branch stemming frorat v (¢;) with mass:;. Notice that this tangent vector
exists, thanks to the regularity result of Theorem 3.1, dvad the right hand side is a vector measure with
finite mass, thanks to Lemma 3.5.

Proof. Take an arcy, defined on a time intervgt, ,¢J [, of an optimal traffic plany, and a function

¢ € CH(ty , t$[; RY). We want to prove that satisfies (15) in weak form by testing the equation against
¢. Let us label all the curves stemming fronin the interval we are considering and call themfori > 1.

We assume that and all the curves; are parameterized by arc length from the source. Let us adso fi
K e Nand let(v;),=1,... x be afinite set of arcs going out frofnat time¢;. Thus we havey;(t;) = v(t;)
andlim, ,+[v(t)]y = ;. We denote by;, fori > K, the total mass of the other branches stemming
from ~. We also denote bfe; ;); the sequence of masses entering or leayingrix two small parameters

h, § > 0 and a functiork € C}([0, 1[) with k(0) = maxk = 1; setR = R(y) U Ufil R(~;), the union of

the ranges of; and theK first;’s, and consider the mappirfy: R — R” given by

)o@ if z=~(t);
(@) = {qﬁ(ti)k (54)  if o =(t).

Then we sefl},(z) = = + hS(x) for z € R. For any fiberw in the traffic plany there is a maximal
interval I, =]t~ (w),t"(w)[ such that we haveg(w,t) =: x,(t) € R foranyt € I,. Let us build a
new traffic plany’ by replacing any curve,, by T}, o . in |t~ (w), ¢ (w)[ and going straight between
Yo (tF (w)) and Ty, (x(t*(w))) (see Figure 4). We decompose the old traffic ptaimto a traffic plany,
which is the restriction ofy to the domain ofy (see definition 2.14), the traffic plang, which are the
restrictions ofy to the domain ofy;, and a remaining traffic plag. By decomposition we mean thgtis
the concatenation of thg, x; andx. (See definition 2.16). The new traffic plghis the concatenation of
Xi 1 =0,...,K which are the images of; under1},, with the samey and with an additional traffic plan
X which corresponds to the straight line segments that we Ihe@e forced to add. Notice that the energies
of the considered traffic plans add fgr The energy of the traffic plag’ is just sub-additive xith respect to
this decomposition, since the supports of the concateneted are not necessarily disjoint.

Figure 4: Perturbation of the network

SettingCy, =: ||¢||, it IS easy to evaluate the energypby
K o)
E(X) £ ) Cshel; + ) Cohef = hCy (Z Q0+ Y 6?) ;
1,7 [ i=1 3
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where we set); () = >_,c ;s), €5.; and the set of indiced(d); is the set corresponding to thés such
that the mass enters (or goes out from) the curvat a pointy;(t) with |t — ¢;| < §. By Lemma 3.5 it
follows thatE(Y) < oo. Then we evaluate the energy gffori = 1,..., K, taking into account thaij,
is one to one fok small enough and that;(¢)| = 1,

ti+0
B = / T (n ()1, 1 (Th 0 7)' (1) dt

i

ti+6
[ o
f,

Li

ti+o
E(x) +h / DA - (S 03 (1) dt + O(R?)

i

E(x:) + heiv; (S(vi(ts +0)) — S(%‘(ti)))

ti+o
[ (O — <87) - (S om0t + O,

i

D)+ B (S 030) (1) dr

Thanks to Theorem 3.1, the functighhas bounded variation dfy, ¢;+4] estimated by’ @, (¢). Moreover,
the functiont — |v;|$ has bounded variation and its variation is boundedXy. Hence, by using also
S(i(ti +6)) = 0andS(v;(t:)) = é(ts),

E(x}) < B(xi) — hefv; - 6(t;) + O(h*) + hCQi(5)Cy,
where the vectors; are the outwards tangent vectors of the branehése. ; = +/(t;)). As far asyj is
concerned the computations are similar and we get

¢+t

| o

0

E(xp)

v (t) + h%(s o A/)(t)‘ dt

E(xo) +h / U 01200 - ¢ () dt + O2).

to

By putting all the estimates together and using the optiyafiy we get

tg' e’}
p [ ot 0 hzsam L HRCQu)Cot O - (ZQZ > ) -
to = i=1 i=K+1
We first divide byh and leth — 07T, thus getting
t(T K [e%s)
/ [y(®)]57i(t) - ¢'(t) dt — Ze )+ CQi(8)Cy + Cy <ZQZ-(5)+ > 5g> > 0.
fo i=1 i=K+1

Now we letd — 0T and we use&);(5) — 0, which is a consequence of the fact that the total sum of the
masses;’; on the curvesy; is finite. We get

t;r K 0o
OO RO SEL R S
to i=1 i=K 41

Finally, we letK' — oo and we obtain, thanks to the fact thaf~ , ¢ < +oco (Lemma 3.5),

e

JACCIRIORACES Ze st

0

By replacingg with —¢ we get the equality, which is the desired weak version of tfierdntial equation.
O
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5 Towards a counter-example

The goal of this section is to provide a counter-example ¢orégularity result of Theorem 3.1, when the
assumptions op~— are weakened. These assumptions were essentially an ugparawer bound on the
density, and in the counterexample we will get rid of bothlefde assumptions. We will consider a purely
atomic measurg ™ (with, obviously, infinitely many atoms), thus dealing wihmeasure whose density is
either zero or infinite. We will build such a measure in oraepttove that the corresponding optimal traffic
plan can have oscillating fibers. More precisely we will donat a traffic plan made of a single fiber which
has no half-tangent at one of its interior points and whosgdat vector is noBV'. Explicit minimizers of
the branched transport energy are known only in trivial sabeleed, there are no easy sufficient optimality
conditions, due to the lack of convexity of the problem. Herwuilding our counter-example will require
ad hocgeometric lemmas controlling the behavior of a minimizer.

Here we start with the first of these lemmas, which is actuadipral and interesting in itself. This is
the reason why we state it in a more powerful version witheespp what we really need in the sequel.

Lemma 5.1. Suppose two measurgs’, u~ € P(RY) are concentrated oq0} x B(0,¢) and {1} x
B(0,¢), respectively (we identifgV as the producR x RV~1)) Lety be an optimal traffic plan between
them. Then there exisg and~ such that for every < ¢, the traffic plany is composed by a single segment
in the region[e”, 1 — &?] x R¥~! (y can be chosen as any exponent smaller thaf).

Proof. First notice that a possible traffic plan betweeh and .~ is the one where the measures collect
their masses a0, 0) and(1,0), respectively, and then are linked by a straight line segnweith a total
cost of 1 + Ce (Proposition 2.9). Thug€“(x) < 1+ Ce. For almost every:, the hyperplangz} x RV -1
crosses the traffic plan at a countable set of paj(is), i € I(z). We callm;(z),i € I(x) the flow ofy at
these pointg;(z) and denote by _, (., mi(z)d,, the associated atomic measure for everg|0, 1[. In
what followsm;(z),i € I(z) C N are put in non-increasing order. Let us sitr) =: ;) mi(2)®
and notice thatd(z) > 1. We have

1
/ A(z)dr < E*(x) <1+ Ce
0

and therefore, usingd(x) > 1,

~

/ Alz) <14 Ce—(1—-¢&")=Ce+¢&.
0
This implies that there exists, € [0,£?] such thatl < A(x) < 1+ Ce'~7. Thus

my (z9)*~ 1(xo)*™ 1Zmz xg) < Zm, xo)mi(xo)® ZmL r)* <1+ Cet.

It is easily deduced from this last inequality that

ma(z0) > (14 Cel=7) 77 > 1 - Cel. (16)

By the very same argument we can finde [1 — &7, 1] such thatn; (z1) > 1 — Ce'~7. By the single path
property (Proposition 2.20) there is therefore a fip@r x joining z( to 2; whose flow exceeds—2Ce! 7.
In particular, for everyr € [¢7,1 — ¢7] one hasn; (z) > 1 — 2Ce!™7.

Let us now consider all fibers that do not meet the big fipéor = € [0,2¢”]. Let us cally the total
flow of these fibers. In order to show that such fibers cannatdlgtexist fore small enough, we shall build
a competitor toy. We stop all of these thin fibers as they hit the hyperplgaig x RV 1. This yields an
atomic measurg = p(£7). In the competitorz,, this measure is connected by an optimal traffic plano
the pointy; (¢7) on the big fiber. Then, these fibers go uprite- 1 and are sent to their original destination
by a traffic plany; contained in the hyperpland} x RN~ By the convex hull property (Lemma 2.17)
the maximal distance of points gfc”) to y; (7) is less tharRe. Thus the overall energy of; andn’, is
less thatC=|u|“ by Proposition 2.9. Since the process also adds a flow lesguait €01 to v, the energy
increase due to this addition is less tHém; (x) + |p|)* — mq(2)®) length(y).

The energy saving due to the removal of the thin fibers betwéeand 2:" is at least="|u|. In
summary, the fact that (x) > E(xr) implies
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Mpl* < Celp|™ + ((ma(2) + [u))™ = ma(2)?) length(y).

By the concavity of — s%, we have(m (x) + |u|)®* —mq (2)* < mq(2)* + alu|m: (z)*~L. In addition,
the length ofy is clearly less than a constant, say 2,4d@mall enough. Thus, sinee; (z) > % for e small
enough, we obtain from the above inequalities

Mpl* < Clelpl™ + ul) an

for e small enough. In this case we may also G%e< ¢7/2 and get
7 ul* < 2Cul,

which implies, if| # 0,
e < Clul < Ce(1="0-a)

This is not verified, for smal, if v < (1 — a)/(2 — ). O

Remark5.2 The above value of is not sharp, as we expect the above result to be true fer1. This
stronger result is presented in the following theorem, éfse1e@ won't need it in the sequel.

Theorem 5.3. Under the same assumptions as in Lemma 5.1, there is a codssach that the traffic plan
X is composed by a single segment in the redion 1 — Le] x RN ~L. (See Figure 5).

0 Le 1—Le 1

Figure 5: lllustration of the result of Theorem 5.3. The maamt of the traffic plan between two measures
at long distance from each other is a long segment which bhemngear the source and the destination, at a
distance from the source and destination proportionaldw thameters.

Proof. Itis sufficient to prove the result for small valuessoffrom Lemma 5.1 we know that in such a case
we can find a long segment in the middle of the traffic plan.dwalhg such a segment towards, call z™

its last point, i.e. the first branching point we meet in tha¢ction. The traffic plan betweem™ andz™
must satisfy the convex hull property and be contained inreeaghose base and vertex 48 x B(0, ¢)
andx™. Moreover, since a branchingat occurs, it contains two directions at whose angle is at least
a minimal angle depending am (Lemma 2.30). This implies that™ belongs to the set of points such
that the cone td0} x B(0,¢) has a certain minimal amplitude. This set is the union of tatlsband its
diameter is proportional te. The proportionality constart depends consequently on the valuexof O

The rest of the paper will be devoted to the following sitoati

1 1
ut =064, p = (5 — 5) 0z, + (5 - 5) 0z, + 7, (18)

wherexy, z1; and z, are three aligned points, in that orderjs a positive measure with total ma2s
concentrated on the half coffg(z1) with vertexz;, 20 angle, and axis the half line with directianx.
We shall set; = 2120, |n this situation we will always consider an optimal trafflany betweern:™ and

|z1z0]
1~ . Denote byy; and~, the two fibers ofy irrigating -y andxs, respectively, and by, the common part
of these two curves. By the strict single path property (Bsitipn 2.20) these curves are unique. We want
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to prove that if¢ ande are small enough these curves actually pant;at.e. they stay together up to this
point and then one of them goes on upcto In the sequel, for the sake of simplicity, we will take = 0.

Let us consider a sequen¢®,, ;) going to (0,0), a sequence of measures as above, such that
|vn| = 2¢p, and the corresponding optimal traffic plaps. We fix a numbelk” > 1 and, if the parting point
yn, of v1 andys is notzy, we setR;, = |y,|. We will call y? the last point ofy® out of B(ys,, K R;,) andy?
the last point ofy, in B(y;, K Ry,). Both of these points belong &8 (y;,, K Ry,). We will denote by any
function of one or more variables which goes to zero as itsragnts go to zero.

Lemma 5.4. For 8, and¢;, sufficiently small, eithey;, = x1, or we are in the following situation (see
Figure 6):

e the direction ofy} — v, equalse; + r(6y, K~1);

e both the angles betweere; and the directions of; — y, andy? — yj, equald, + r(0,, K1 ep)
wheref,, is defined in Lemma 2.29;

e the four pointsy?, v, z; = 0 andy;, are approximatively on the same plane (up to distances of the
order of Ry r(ep));

e in the whole ballB(y;,, K R;,) the curves)®, 4! and~? are very close, with respect to the Hausdorff
distance, to the corresponding segmeylgm, ypx1 and yhy% (up to a distance of the order of

RhT(f-:h)).

e As a consequence of the above four properties the inteosepidint g, of 7 with the planell
orthogonal toe; and passing through satisfiegi, — 21| = 2Ry, sin(0,) (1 + 7(0n, K1, ¢1)).

Figure 6: lllustration of Lemma 5.4: The traffic plan followee configuration of an optimal tripode in the
ball B(yn, KRy,)

Proof. Let us take a subsequence such that# z;. We shall pass to the limit in an adequate blow
up. Consider the restriction of the traffic plan to the ball B(y, Krj,) and compose it with the map
Ty : B(yn, Kry) — B(0, K) given byTy(y) = R;l(y — yp). This yields a blow upy;, of the traffic plan
xn» Which is optimal from a measuye to a measurg,, . The starting measuge’ contains a Dirac mass at
the pointT},(yY)) € 0B(0, K) with mass larger or equal to— 2z, while the arrival measurg; contains
two Dirac masses, one &, (z;) € 9B(0,1) and one afl;,(y7) € dB(0, K), both with mass larger or
equal tharl /2 — ;. Moreover,x), has the property that its two main branches paftatT}, (yp ).

Up to subsequences, we get by Theorem 2.8 a limit traffic glanwhich is optimal between the
two measures}, = 0 andpy, = (1/2)8,0 + (1/2)d,2, with y° = lim,, T}, (y)) € 9B(0,K), y* =
limp, Ty, (z1) € 0B(0,1) andy? = lim, Ty (y3) € 0B(0,K). By Lemma 2.29 the limit configuration,
being optimal is such that there is one branch arriving fgdrto 0 which is then divided into two branches
with half the mass, directed towargls andy? respectively. The anglg'0y? is equal ta26,,. This fixes the
relative configuration of°, y*, y? and0. Up to now we only used; — 0. By usingf;, — 0 as well, we
will get information on the position af° too.

The optimality ofy, implies that the poing? must belong to the convex hull @, U {y5,}. This may
be expressed by = Ayp, + (1 — \)zp, with 2z, € Tp, andX € [0, 1]. Since we have;, = |zp,|(e1 +7(6r)),
wheree; is the direction of the symmetry axis of the cone (this me#msdirection of a vector in the cone
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does not differ too much from the direction ef), we may rewriteyg —yn = (A= Dyp + tler +719,),
with A € [0,1] andt > 0. Then we usey)) — y,| = K |y,| and we divide byy? — y5|, obtaining

0
Yn—Yn _ A=Dyn
= +t'(er +7r(0y)).
|y2 _yh| K‘yh| ( 1 ( L))

Taking the norms of the vectors, it is easy to get
(L= ) @)™ <t < (14 )0~ [r(6n)])
K h >~ >~ K h )
which implies that’ = 1 + r(6,,, K~ 1). Thus,

0
Yn — Yn ()‘ - l)yh / —1 1
———e=——F——+{ —1)(er +7(0n) +7(0n) =r(K" ") +r(0n, K ") +1r(0h).
] O R e+ ) r(6n) = r(K ) + (O, KT £ r(6n)
This proves the first item of the Lemma. Using the uniform @gence of the blow up and the information
on the limit configuration given Lemma 2.29 yields the ottmrfstatements. O

Theorem 5.5. Let us considep™ and .~ as in (18). If the dimensionV is 2 and if§ and e are small
enough then, in any optimal traffic planirrigating the measureg and v in (18), the two main branches
~1 and~, actually part atz; and the fiber fronx; to x5 is a straight segment (see Figure 8).

Proof. We shall use Lemma 5.4 to get information on the configurasbould the thesis be false, and then
get a contradiction. Consider the curygin its part betweem;, andz,. We want to find a contradiction
as a consequence of the fact that the curve, as it follows quitsely the segment,y? in the whole
B(yn, KR},), gets too far from the segmentz,. To do this, let us set, = #,|y,|~*. Such a unit vector
is orthogonal to the vectear, as it belongs to the plarié.

Now consider a point of? which maximizes the scalar product v, in the region we are considering.
Let us notice that this maximal scalar product is neithelized by the pointzs, which giveszs - v, = 0,
nor by g, which givesy, - v, = |gn| = Rn(2sin(6,) + r(0n,cp)), because there is the poigt which
realizesy; - vy, = Rp((1+ K) sin(6a) +7(0r,r)). In particular, the maximum is strictly positive, and it is
realized at an interior point of the curve (or possibly a segment: in this case, just takeobthe extremal
points of the segment as the poitjt Since the segment realizing the maximum cannot last fomthole
length of+,, we must have a change in the directiomgfat the pointx, and hence a branching. Let us
suppose for a while that there is only one fiber exitingther thamy,. Since the mass of the departing
fiber is smaller thar2e;, (because we are dealing with a fiber which is neither going;toor to z), we
deduce from Lemma 5.6 that the two directionsygtbefore and aftex: are very close to each other (and
hence almost belong to a plane orthogonalpand that the directiom of the departing fiber is almost
orthogonal to them. Since we are in dimension two (this ikehyepoint where we use it), being orthogonal
to something orthogonal tg, means being parallel tg,. Hence the unit vectar is either close ta;, or to
—up,, but we may conclude that we have= vj, +r(e;, ) because otherwise the three brancheg oheeting
atz would point all on the same side of the plane orthogona},tpassing through (by maximality ofz)
and this would contradict the angle conditions of Lemma 2.29

On the other hand, we know, by the convex hull property (Ler2Ma) applied to the irrigation from
x 10 T, (just take the resctriction of the traffic plap, to this third branch at), thatw must point in the
direction of the convex hull ofz} U T}, (see Figure 7), which implies

w = M=) + p(er +7(0n))

for some positive coefficients, p > 0. If we take the scalar product of this relation with the veetp— e;
we get
(vn +7(en)) - (vn —e1) = =A@ - vp) + M@ - e1) + p(er +7(0n)) - (vn —€1)
which gives
0<1+4+r(ey)==Az-vp)+Ax-e1)+pu(—14+7r(0)) <0,

where we usedz - v;,) > 0 (because of maximality) an@ - e;) < 0 (because: belongs to the half space
delimited byIT which includest,). This last fact is true because the cusgeenters such an half space, and
cannot come back afterwards: in this case it should in famtscthe planél once more, to come back in
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Figure 7: lllustration of the proof of Theorem 5.5. The brastemming from the point maximizing- vy,
cannot be included in the convex hull.ofand the conéy, .

the direction ofz,, at a pointy; considering the irrigation frone, to Ty, U {y} would give a contradiction
to the convex hull principle. In the end we got a contradittiand we proved the thesis.

In the trickier case where more than one fiber exitsve can use Lemma 5.6 and replaceby the
vector we get in the statement of the Lemma. In this way we geiitavector which shares the property of
being almost orthogonal to the directionsygf(and hence almost parallel tg, the direction being that of
vy, and not of—vy, as an easy consequence of the explicit formula (19) and ohelig to the convex hull
of {x} U Ty, (because it is a sum of directions which only irrigate the sriagl}, ). The argument then
proceeds analogously.

It remains to be proved the last part of the statement onipaiyathat the fiber ta:, follows a straight
line path with no branching between andx,. To prove it the strategy is very similar to what we did
before. Take a point on such a fiber which maximizes the scalar producks, beinges a unit vector
orthogonal tee; and suppose this maximum is positive (if for both possibteations ofe; the maximum
is 0, than the curve is straight). If it is positive, it is not read neither byr; nor byz,. At the point (or at
the terminal point of the segment) realizing the maximum aeeha branching point. We can find a convex
combinationw of the directions of the fibers branching fraim(thanks to Lemma 5.6) which is almost (up
to r(¢)) in the direction ofe,. This is easily in contradiction with the fact that such ateeeust be of the
form —Az — p(e1 + r(6y)), which follows from the convex hull principle.

This proves that the main fiber goes straight fromto 5. Analogously, if we suppose anyway the
existence of a branching point in the interior of such a filne,get the same contradiction (an average
branching direction orthogonal tq, which contradicts the convex hull principle). O

Lemma 5.6. Let x be a branching point of an optimal traffic plap at which: a) a main fiber arrives
with directionv; and massn + ¢ and leaves with direction, + r(¢) and massn, b) some minor fibers
with mass:; and directionsy; leave ¢ > 3 and)_,.,¢; = ). Then there exists a unit vectorwhich is
almost orthogonal t; andv, (in the sensev - v; = r(g)) and which is a linear combination with positive
coefficients of the vectorsv; andwvs, vy .. ..

Proof. The angle optimality condition of Lemma 2.28 reads

vi(m+e)* = vam® + E Ve,
i>3

which we may rewrite as
(m+¢e)* —m* ef
U1*’U2:*—U1+Zvi$- (19)

m(Jl
i>3

Then take equal to the right hand side of (19) amd= w/|w|. Sincew = v —v, and(vy —vs2)-(v1+ve) =
|v1]? — |v2|? = 0 we know thatw is orthogonal ta); + ve. For small, the right hand side of (19) is small
(notice that the number of addends is uniformly bounded byrst@ntV («, d). Thus we can estimate the
whole right hand side bym~1e + N(a, d)m~“c®). This implies that the directions of , v, andv; + v,
are the same up to a differencerdt). O
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X2 Z1 ‘f/ i)

Figure 8: The final result of Theorem 5.5: the main fiber pats®sighz; and then goes straight with no
branching

6 A traffic plan with an oscillatory path

In this section we shall always takeand small enough to ensure that the conclusions of Theorem 5.5
holds. This implies that the ang, is a straight line between, andz;.
Our counterexample will be be the following:

P =00y, = (1/2 = €)00, + (1/2 = )00y, + Y _ i,
=1

whered"° e; = 2¢ and the points; belong to the cond” =: Ty(z1,e;) and accumulate near;, so
that the optimal traffic plan fromu to v has a part contained i which arrives up tar;, and then goes
straight up tozs, according to the preceding lemmas. Moreover, we will ckabg pointsz; so that the
traffic plany will be forced to follow those pointsy( will be consequently composed by the straight line
segments; z; 11, which will converge tar;, and by the segment,; z5). It will be possible to choose the
points satisfying the additional criterion that they dsté from one side df” to the other, thus having as a
consequence that the tangent of the traffic plam atoes not exist.

For everyi > 2, letus setd; = {z; : j > i} U {z1}. We will call main fiber ofy the one which, by
Theorem 5.5 arrives up te, and then proceeds 1g,.

Lemma 6.1. Suppose thatl; C B(zo,r), |71 — 2| = Ar, |v1 — 2;_1| = A%r and that both4; and z; are
contained in a cone with vertex_; and anglef; satisfyingd; < cc$. Suppose in addition that the main
fiber of xy passes through;_;. Then, ifA is sufficiently large and ande; sufficiently small, the main fiber
passes through; as well.

Proof. In this proof, we refer to figure 9. If we cut the irrigation afrge passing through; and orthogonal
to z;_1z;, thanks to the fact that the angle is small, we get that theéirsjameasure on this line and the
arrival measure od; have small diameter with respect to their mutual distancd vee can apply Lemma
5.1. This turns the situation into a three-point irrigatwimere the starting point is_; (with mass between
1 — 2¢ and1), and the two target points arg (with masss;) and a point; with mass equal to the mass
of z;_1 minuseg; (i.e. almost one), which lies on a segment orthogonal tqz;, at a small distance from
x1(small with respect toAr). The angle between,_; z; and z;Z; may be estimated by(A)6;, since the
distancdz; — Z;| is comparable (up to a factor dependingA)to the distancéz; _; — 1| and all the points
are included in the small cone of amplitude By assumption this angle(A)6; is for ¢ small enough
smaller than the minimal angle to have branching. Indeedéwia 5.6 this angle i©(c¢Ipha). Thus in
the three-points;_, z;, Z; configuration the optimal shape has no branching, which m#zat the main
fiber of the traffic plan passes through O

Lemma 6.2. Let us make the following choices, according to our previmtations (and complex notations
for points in the plane)d is an angle sufficiently smallf : R — [—6/2,60/2] is a 1—Lipschitz periodic
function such ag'(t) = 0/2sint; xg = 1,21 =0, 20 = —1; 2z, = Aetf(): o v > 0anda + v < 1;

e, = enY~D/®_ Suppose moreover thatis large enough and small enough. Under these assumptions
there is only one optimal traffic plan from™ = 6,, to = = (1/2¢)d,, + (1/26)8,, + Y oy €i02,, and it

is given by a single simple curve connectingto z1, zo,..., z,,..., 1 andz, by straight line segments.
In particular, since the argument af, oscillates from—6/2 to 6/2, there is no right hand side tangent at
the pointz;.
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Figure 9: The angle condition for passing through

Proof. Lemma 6.1 proves that the main fiber of an optimal traffic plast flasses through;, and then
proceeds ta. Hence, if we can verify at each step the hypotheses of Leminav can get by induction
that y passes through every,. We only have to estimate angles. To do this it is sufficierdgtimate the
angles between the segments ; z,, andz, 1z for k > n. We will use complex notations and estimate

A—keif(k7) _ gn—1,if((n—1)7)
arg (A—ne—if(nw) _ An—le—if((n—l)"’)>

We first simplify the common factod™~!' and multiply by the conjugate of the denominator both the
numerator and the denominator itself. We are led to consider

arg ([Anfkfleif(k”) — (=] [A 2 () _ eif((nﬂ)”)}) ,

Setw = A" k—2i(F(K)—f(n7)) _ A=1ci(f(n=1)")=f(n7)) 1 1 — gn—k=1i(f(")=F((n=1)")) which rep-
resents the product we have to estimate the argument of.etsg to showw| > 1 — 3471, and, if A
is large enough, this modulus is close to one and hence fifffisient to estimate3w. In fact for small
angles we haverg w ~ Sw/|w|. Calculating the imaginary part af easily gives (using the fact thdtis
1—Lipschitz continuous):

|Sw| < A~ (nI—(n-1) AR (K=" )k —(n—1)7)) < 24 (V—(n—1)7) +2A™ L (K —(n—1)").

Lemma 6.3 gives an estimate on the last term which is indeggerad and one gets using also the concavity
ofn+—n?,

ISw| < 247y (n — 1)1 + 2A‘1logA(n —1)L
This shows that the anglg, which is the amplitude of the smallest cone fram_; includingT;,, and z,
may be estimated by”~!. Our assumption on, guarantees the inequality we need to use Lemma @1.

Lemma 6.3. We have 5
An—k K —n) < ’y—l-
o AT =) S At
Proof. We estimate the maximum over all € [n,+oo[ of the functionz — A" %(zY — n7Y). This
maximum exists and it is realized at an interior point beeaurs the boundary of the domain the function
tends to zero. If we calt the maximum point and we differentiate we get

—log AA" (37 —nY) + 4z LAMTE,

This implies
max A" F (kY —n?) < max A" %(z7 —n?) = A g1 < Ln'yfl,
k>n ~ z>n log A “logA
where we used the inequality> n and the fact that — 27 ~! is decreasing, ag < 1. O
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