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Let (Y n ) be a sequence of i.i.d. real valued random variables. Reflected random walk (X n ) is defined recursively by

In this note, we study recurrence of this process, extending a previous criterion. This is obtained by determining an invariant measure of the embedded process of reflections.

Introduction

Reflected random walk was described and studied by Feller [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]; apparently, it was first considered by von Schelling [START_REF] Schelling | Über die Verteilung der Kopplungswerte in gekreuzten Fernmeldekabeln großer Länge[END_REF] in the context of telephone networks.

Let (Y n ) n≥0 be a sequence of i.i.d. real valued random variables, and let S n = Y 1 +. . .+Y n be the classical associated random walk. Reflected random walk is obtained by considering a non-negative initial random variable X 0 independent of the Y n and considering X 0 -S n , n = 0, 1, ..., as long as this is non-negative. When it becomes negative, we change sign and continue from the new (reflected) point by subtracting Y n+1 , Y n+2 , ..., until the next reflection, and so on. Thus, we consider the Markov chain X n given by X n+1 = |X n -Y n+1 |. We are interested in recurrence of this process on its essential (i.e., maximal irreducible) classes.

We start by considering the situation when Y n ≥ 0 (of course excluding the trivial case Y n ≡ 0), so that the increments of (X n ) are non-positive except possibly at the moments of reflection. In this case, Feller [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF] and Knight [START_REF] Knight | On the absolute difference chains[END_REF] have computed an invariant measure for the process when the Y n are non-lattice random variables, while Boudiba [START_REF] Boudiba | La chaîne de Feller X n+1 = |X n -Y n+1 | où les (Y n ) n≥1 sont indépendantes et identiquement distribuées[END_REF], [START_REF] Boudiba | La chaîne de Feller X n+1 = |X n -Y n+1 | et les chaînes associées[END_REF] has provided such a measure when the Y n are lattice variables. Leguesdron [START_REF] Leguesdron | Marche aléatoire sur le semi-groupe des contractions de R d . Cas de la marche aléatoire sur R + avec choc élastique en zéro[END_REF], Boudiba [START_REF] Boudiba | La chaîne de Feller X n+1 = |X n -Y n+1 | et les chaînes associées[END_REF] and Benda [START_REF] Benda | Schwach kontraktive dynamische Systeme[END_REF] have also studied its uniqueness (up to constant factors). When that invariant measure has finite total mass -which holds if and only if E(Y 1 ) < ∞ -the process is (topologically) recurrent: with probability 1, it returns infinitely often to each open set that is charged by the invariant measure.

Our main result is that reflected random walk is still recurrent when Y n ≥ 0 and ∞ 0 Pr[Y 1 ≥ t] 2 dt < ∞ ; see §3 for the case when the Y n are lattice random variables, and §4 for the non-lattice case. The result is based on considering the process of reflections, that is, reflected random walk observed at the instances of reflection, see §2. We determine an invariant measure for the latter. The above "quadratic tail" condition holds if and only if that measure is finite. This holds, in particular, when E(Y

1/2 1 ) < ∞.
Subsequently, in §5, we also consider the case when the Y n may assume negative as well as positive values. Reflected random walk is of interest when lim sup n S n = ∞ almost surely. Let Y 1 = Y + 1 -Y - 1 be the decomposition into positive and negative part. If E(Y - 1 ) < E(Y + 1 ) then the situation is similar to the case when Y 1 ≥ 0 a.s., and we get recurrence when E Y + 1 < ∞ . If the Y n are centered, that is, 0 < E(Y - 1 ) = E(Y + 1 ), then we get recurrence under the moment condition E Y + 1 3 < ∞ , which turns out to be almost sharp.

Our methods are based on interesting and useful work of M. Benda in his PhD thesis [START_REF] Benda | Schwach kontraktive dynamische Systeme[END_REF] (in German) and the two subsequent preprints [START_REF] Benda | Contractive stochastic dynamical systems[END_REF], [START_REF] Benda | A reflected random walk on the half line[END_REF] which have remained unpublished. For this reason, we outline those results in the Appendix ( §6).

The process of reflections

In this and the next two sections, we suppose always that (Y n ) is a sequence of i.i.d, non-constant, non-negative random variables. Let µ be the (common) distribution of Y n , a non-degenerate probability measure on [0 , ∞) , and F (x) = F µ (x) = µ([0 , x]) the associated distribution function (x ≥ 0). Denote by µ (n) its n-th convolution power, the distribution of S n , with µ (0) = δ 0 . Since S n → ∞ almost surely, the potential

(2.1) U = ∞ n=0 µ (n) defines a Radon measure on [0 , ∞) , that is, U(B) < ∞ if B is a bounded Borel set.
Now consider the sequence of stopping times (r(k)) k≥0 , where r(0) = 0, and r(k) (k > 0) is the time of the k-th reflection:

(2.2) r(k + 1) = inf n > r(k) : X n = -(X n-1 -Y n ) = inf n > r(k) : (Y r(k)+1 + . . . + Y n-1 + Y n ) ≥ X r(k) .
Once more because S n → ∞, each r(k) is finite almost surely. We call the embedded process R k = X r(k) the process of reflections.

(2.3) Lemma. The process of reflections is a Markov chain with transition probabilities given as follows

: if B ⊂ [0 , ∞) is a Borel set, then q(0, B) = µ(B) and q(x, B) = [0 , x) µ(B + x -w) U(dw) , if x > 0 . Proof. It is clear that (R k ) is a (time-homogeneous) Markov chain. We compute q(x, B) = Pr[R 1 ∈ B | R 0 = x] = ∞ n=1 Pr[r(1) = n , S n -x ∈ B] = ∞ n=1 Pr[S n-1 < x , S n -x ∈ B] = ∞ n=1 [0 , x) Pr[Y n + w -x ∈ B] µ (n-1) (dw) = [0 , x) µ(B + x -w) U(dw) ,
as proposed.

It is an instructive exercise, relying on the fact that supp(µ) ⊂ [0 , ∞), to show directly that q(•, •) is stochastic. Now the idea is the following: if the embedded process of reflections is recurrent, then also the original reflected Markov chain must be recurrent.

The lattice case

We start with the discrete case, which is instructive and has to be treated separately anyway. Here we suppose that there is κ > 0 such that supp(µ) ⊂ κ • N 0 , and we may assume without loss of generality that κ = 1. (By N 0 we denote the non-negative integers.)

The one-step transition probabilities of (X n ) are

(3.1) p(x, y) =      µ(x) , if y = 0 , µ(x + y) , if x < y , µ(x -y) + µ(x + y) , if x ≥ y > 0 . We write p (n) (x, y) = Pr[X n = y | X 0 = x] for the n-step transition probabilities. Set d = gcd supp(µ) and N = sup supp(µ) .
If the reflected Markov chain starts in a deterministic point X 0 = x 0 ∈ [0 , ∞), then (X n ) evolves within the state space

S(x 0 ) = {kd ± x 0 : k ∈ Z} ∩ [0 , ∞) .
Recall that an essential class of a denumberable Markov chain is a subset C of the state space which is irreducible and absorbing: if x ∈ C then p (n) (x, y) > 0 for some n if and only if y ∈ C. The next lemma follows from [START_REF] Boudiba | La chaîne de Feller X n+1 = |X n -Y n+1 | et les chaînes associées[END_REF] when the starting point x 0 is rational, and when it is irrational, it is immediately seen to be true as well.

(3.2) Lemma. The reflected random walk (X n ) starting at x 0 is absorbed after finitely many steps by the essential class

C(x 0 ) = S(x 0 ) ∩ [0 , N] .
When we speak of recurrence of (X n ) with starting point x 0 then we mean recurrence on C(x 0 ). This is known to be independent of x 0 [START_REF] Boudiba | La chaîne de Feller X n+1 = |X n -Y n+1 | et les chaînes associées[END_REF].

If

N = ∞ then C(x 0 ) = S(x 0 ). Also, if supp(µ) is finite then C(x 0
) is finite and carries a unique invariant probability measure. An invariant measure ν (not necessarily with finite total mass) exists always. Its formula is due to [START_REF] Boudiba | La chaîne de Feller X n+1 = |X n -Y n+1 | où les (Y n ) n≥1 sont indépendantes et identiquement distribuées[END_REF], where only x 0 ∈ Z is considered, but it can be adapted to the present situation with arbitrary starting point as follows. Set

(3.3) ν(0) = 1 -µ(0) 2 and ν(x) = µ(x) 2 + µ (x , ∞) , if x > 0 .
Here, we mean of course µ(x) = µ({x}), so that µ(x) = 0 when x ∈ [0 , ∞) \ N 0 . Then the invariant measure ν x 0 on C(x 0 ) is given by the restriction of ν to that essential class: if B ⊂ C(x 0 ) then ν x 0 (B) = x∈B ν(x) .

(3.4) Corollary. The reflected random walk starting at x 0 is positive recurrent on C(x 0 ) if and only if the first moment n n µ(n) of Y k is finite.

If the reflected random walk is (positive or null) recurrent on C(x 0 ), then it follows of course from the basic theory of denumerable Markov chains that ν x 0 is the unique invariant measure (up to multiplication with constants).

We now consider the process of reflections.

(3.5) Lemma. The set C(x 0 ) is also the unique essential class for (R k ) starting at x 0 .

Proof. Since C(x 0 ) is the only essential class for (X n ), we only need to verify that it is an irreducible class for (R k ). We have to show that for x, y ∈ C(x 0 ), it occurs with positive probability that (X n ), starting at x, reaches y at some reflection time r(k).

There is m ∈ supp µ such that m ≥ y. Then also my ∈ C(x 0 ), and there is n such that p (n) (x, my) > 0. But from my, the reflected random walk can reach y (the reflection of -y) in a single step with positive probability µ(m), and this occurs at a reflection time.

Our simple new contribution is the following.

(3.6) Theorem. Set ρ(0) = 1 -µ(0) 2 and ρ(x) = ∞ k=1 µ(x) 2 + µ (x , x + k) + µ(x + k) 2 µ(k) , if x > 0 .
Then the restriction ρ x 0 of ρ to C(x 0 ) is an invariant measure for the process of reflections (R k ) on C(x 0 ). It is unique (up to multiplication by a constant), if ν x 0 is the unique invariant measure (up to multiplication by a constant) for the reflected random walk (X n ) on C(x 0 ).

Proof. We first show that ρ x 0 is invariant. The index x 0 will be ommitted whenever this does not obscure the arguments. Also, note that by its definition, ρ ≡ 0 on S(x 0 ) \ C(x 0 ), so that we can think of ρ x 0 as a measure on the whole of S(x 0 ) with no mass outside C(x 0 ) . Consider the signed measure A defined by A(x) = δ 0 (x)µ(x) for x ≥ 0. Then we have the convolution formula A * U = U * A = δ 0 , that is

(3.7) n j=0 A(j) U(n -j) = δ 0 (n) .
Now we verify that for each real x ∈ (0 , N] ,

(3.8) ρ(x) = ∞ k=0 A(k) ν(x + k) .
Indeed, the last sum is equal to

1 -µ(0) ν(x) - ∞ k=1 µ(k) ν(x + k) = ∞ k=1 µ(k) ν(x) -ν(x + k) ,
which is equal to ρ(x). We remark here that the sum in (3.8) is absolutely convergent, since ν(•) ≤ 1. Combining (3.8) with the inversion formula (3.7), we get

∞ k=0 U(k) ρ(x + k) = ∞ k=0 U(k) ∞ l=0 A(l) ν(x + k + l) = ∞ n=0 ν(x + n) n k=0 U(k) A(n -k) = ∞ n=0 ν(x + n) δ 0 (n) , that is, (3.9) ν(x) = ∞ k=0 U(k) ρ(x + k) , x > 0 .
If σ is any measure on C(x 0 ) then we write

E σ (•) = w∈C(x 0 ) σ(w)E w (•) ,
where E w (•) denotes expectation when the starting point is X 0 = w. We claim that

(3.10) ν(x) = E ρx 0   r(1)-1 j=0 1 x (X j )   , if x ∈ C(x 0 ) .
Indeed, if x = 0 then the right hand side of (3.10) is ρ(0) = ν(0), since the reflected random walk can reach the state 0 before the first reflection only when it starts at 0, in which case r(1) = 1. If x > 0, x ∈ C(x 0 ) then the reflected walk starting from w ∈ C(x 0 ) can reach x before the first reflection only if w = x + k for some k ∈ N 0 such that k = S j for some j ≥ 0. We compute

E x+k   r(1)-1 j=0 1 x (X j )   = E x+k ∞ n=1 1 n r(1) n-1 j=0 1 x (X j ) = ∞ j=0 Pr[X j = x, r(1) > j | X 0 = x + k] = ∞ j=0 Pr[x = x + k -S j ] = U(k) .
Therefore

E ρx 0   r(1)-1 j=0 1 x (X j )   = ∞ k=0 ρ(x + k) U(k) = ν(x) , if x > 0 ,
as proposed. From (3.10), we infer that

w ν(w) p(w, x) = E ρx 0   r(1) j=1 1 x (X j )   .
Now ν satisfies w ν(w) p(w, x) = ν(x), and applying (3.10) once more, we obtain

E ρx 0 1 x (X 0 ) = E ρx 0 1 x (X r ) .
The left hand side is ρ(x), while the right hand side is w ρ(w)q(w, x), where q(•, •) is the transition kernel of the process of reflections. Thus, ρ x 0 is invariant for (R k ) on the state space C(x 0 ).

We now prove uniqueness. In view of Lemma 3.5, this is of course obvious by the basic theory of denumerable Markov chains, when ρ x 0 (C(x 0 )) < ∞, but this is not supposed in our statement.

So let ρ be another invariant measure for (R k ) on C(x 0 ) , again considered on S(x 0 ) with zero mass outside C(x 0 ) . Using the formula of Lemma 2.3 for the transition probabilities of (R k ), we get for y

∈ C(x 0 ) ρ(y) = w∈C(x 0 ) ρ(w) k∈N 0 :0≤k<w U(k) µ(w + y -k) = ∞ k=0 w∈C(x 0 ):w>k U(k) ρ(w) µ(w + y -k)
To have a non-zero contribution in the last double sum, w + y has to be integer, d must divide both k and w + y, and x = wk ∈ C(x 0 ) . Therefore we can rewrite

ρ(y) = ∞ k=0 x∈C(x 0 ):x>0 U(k) ρ(x + k) µ(x + y) . Now let x ∈ C(x 0 ) , x > 0. Again, there is m ∈ supp(µ) with x ≤ m, and y = m -x ∈ C(x 0 ) . Therefore ∞ k=0 U(k) ρ(x + k) ≤ ρ(y) µ(m) < ∞ for each x ∈ C(x 0 ) with x > 0. This allows us to define a new measure ν on C(x 0 ) by ν(0) = ρ(0), if 0 ∈ C(x 0 ), and ν(x) = ∞ k=0 U(k) ρ(x + k) , if x > 0 ,
and a straightforward exercise shows that it is legitimate to apply the inversion formula (3.7) to deduce that

ρ(x) = ∞ k=0 A(k) ν(x + k) , if x > 0 ,
The same computations as that lead to (3.9) and (3.10) show that

ν(x) = E ρx 0   r(1)-1 j=0 1 x (X j )  
is an invariant measure for (X n ) on C(x 0 ). By uniqueness of the latter, ν = c • ν x 0 for some c > 0. Therefore ρ = c • ρ x 0 .

(3.11) Corollary. The total mass of ρ x 0 is finite for some (equivalently, every) starting point x 0 if and only if

(3.12) ∞ k=0 1 -F µ (k) 2 < ∞ .
Proof. We write

H(x) = 1 -F µ (x). For real α ≥ 0, let Σ(α) = ∞ k=0 ρ(α + kd). Let α 0 be the unique number in (0 , d] such that x 0 -α 0 is an integer multiple of d. If α 0 = d or α 0 = d/2 we have ρ C(x 0 ) = ρ(0)δ 0 C(x 0 ) + Σ(α 0 ) , while otherwise ρ(C(x 0 )) = Σ(α 0 ) + Σ(d -α 0 )
. Thus, we prove that for any α ∈ (0 , d], we have Σ(α) < ∞ if and only if (3.12) holds. Recalling that µ

(x) = 0 if x is not a multiple of d, we compute Σ(α) = Σ 0 (α) + Σ 1 (α), where Σ 0 (α) = ∞ k=0 ∞ m=1 µ(α + kd) -µ(α + kd + md) 2 µ(md)
is always finite, and

Σ 1 (α) = ∞ k=0 ∞ m=1 H(α + kd) -H(α + kd + md) µ(md) = ∞ m=1 m-1 k=0 H(α + kd) µ(md) = ∞ k=0 H(α + kd) ∞ m=k+1 µ(md) = ∞ k=0 H(α + kd) H(kd) . Since H(•) is decreasing, on one hand Σ 1 (α) ≤ ∞ k=0 H(kd) 2 = 1 d ∞ k=0 1 -F µ (k) 2 ,
and on the other hand

Σ 1 (α) ≥ ∞ k=0 H (k + 1)d 2 = 1 d ∞ k=0 1 -F µ (k) 2 -H(0) 2 .
Thus, Σ 1 (α) and the sum in (3.12) are finite, resp. infinite, simultaneously.

The following is now immediate.

(3.13) Theorem. Suppose that the "quadratic tail" condition (3.12) holds. Then the process of reflections (R k ) is positive recurrent on C(x 0 ) for each starting point x 0 ≥ 0.

If in addition E(Y 1 ) = k≥0 k µ(k) < ∞, then the reflected random walk (X n ) is also positive recurrent on C x 0 , while it is null recurrent when E(Y 1 ) = ∞.
Finally, it is easy to relate the "quadratic tail" condition with a moment condition.

(3.14) Lemma. If E √ Y 1 = k≥0 √ k µ(k) < ∞ , then (3.12) holds.
Proof. We use the Cauchy-Schwarz inequality:

∞ k=n+1 µ(k) 2 ≤ ∞ k=n+1 µ(k) √ k ∞ k=n+1 µ(k)/ √ k ≤ E Y 1 ∞ k=n+1 µ(k)/ √ k .
Therefore,

∞ n=0 1 -F µ (n) 2 ≤ E Y 1 ∞ n=0 ∞ k=n+1 µ(k)/ √ k = E Y 1 2 ,
which is finite.

The non-lattice case

We now consider the case when supp(µ) ⊂ [0 , ∞), but there is no κ > 0 such that supp(µ) ⊂ κ • N 0 . Again, denote N = sup supp(µ), and set

C = [0 , N] if N < ∞, resp. C = [0 , ∞), if N = ∞.
The transition probabilities of the reflected random walk are

p(x, B) = µ({y : |x -y| ∈ B}) ,
where B ⊂ [0 , ∞) is a Borel set. For the following, we need to specify in more detail the probability space on which we are working. This is the product space (Ω, Pr) = C N , µ N , where Y n is the n-th projection. It will be convenient to write X x n for the reflected walk starting at x ≥ 0, so that X x 0 = x and X x n+1 = |X x n -Y n+1 | as in the Introduction. We also write X x k,n (n ≥ k) for the reflected walk starting at time k at x, so that X x n = X x 0,n . Note that we always have

(4.1) |X x k,n+1 -X y k,n+1 | ≤ |X x k,n -X y k,n | .
The following is due to [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF], [START_REF] Knight | On the absolute difference chains[END_REF] and [START_REF] Leguesdron | Marche aléatoire sur le semi-groupe des contractions de R d . Cas de la marche aléatoire sur R + avec choc élastique en zéro[END_REF]. 

B ⊂ C, there is n such that p (n) (x, B) = Pr[X n ∈ B | X 0 = x] > 0 . (c) The measure ν on C given by ν(dx) = 1 -F µ (x) dx ,
where dx is Lebesgue measure, is an invariant measure for p(•, •).

From (4.1), one deduces the following.

(4.3) Lemma. Pr[X x n → ∞] ∈ {0 , 1}
, and the value is the same for each starting point x.

Proof. By (4.1), the event [X x n → ∞] is in the tail σ-algebra of the (Y n ). If Pr[X x n → ∞] = 1
, then we call the reflected random walk transient. We now state two important results that were proved in [START_REF] Leguesdron | Marche aléatoire sur le semi-groupe des contractions de R d . Cas de la marche aléatoire sur R + avec choc élastique en zéro[END_REF] in the case when E(Y 1 ) < ∞, and in the general case in [START_REF] Benda | Schwach kontraktive dynamische Systeme[END_REF].

(4.4) Proposition. In the non-lattice case, reflected random walk is locally contractive: for every bounded interval I ⊂ C and all x, y ∈ C,

lim n→∞ 1 I (X x n ) |X x n -X y n | = 0 almost surely. If Pr[X x n → ∞] = 0, then one even has lim n→∞ |X x n -X y n | = 0 almost surely.
Of course, also reflected random walk started at time k is locally contractive for each k ≥ 0. The proof of Proposition 4.4 is outlined in the Appendix.

For ω ∈ Ω, let L x (ω) be the set of (finite) accumulation points of the sequence X x n (ω). In the transient case, L x (•) is almost surely empty. Otherwise, contractivity implies that there is a set L ⊂ C, the attractor of the process, such that (4.5)

Pr[L x (•) = L for all x ∈ C] = 1 .
Thus, for any x ∈ C, every open set that interesects L is visited infinitely often by (X x n ) with probability 1. In other words, the attractor L is topologically recurrent, so that it is justified to call the random walk recurrent when Pr[X x n → ∞] = 0. Proposition 4.4 has the following important consequence, see the Appendix. Thus, we have topological recurrence on the whole of C . Now, ν is invariant even in the transient case. If E(Y 1 ) < ∞ then ν(C) < ∞ , and we have recurrence by [START_REF] Leguesdron | Marche aléatoire sur le semi-groupe des contractions de R d . Cas de la marche aléatoire sur R + avec choc élastique en zéro[END_REF]. As in the lattice case, we want to extend this recurrence criterion. Here is the continuous analogue of Theorem 3.6 regarding the process of reflections of §2, with a rather similar proof.

(4.7) Theorem. In the non-lattice case, the measure ρ on C, given by

ρ(dx) = [0 , ∞) µ (x , x + y] µ(dy) dx
is an invariant measure for the process of reflections (R k ). It is unique (up to multiplication with constants), if the measure ν is the unique invariant measure for the reflected random walk (up to multiplication with constants).

Proof. We use once more the convolution identity A * U = U * A = δ 0 , where A = δ 0µ. For any Radon measure M on R, we denote by M its reflection: M(B) = M(-B) for Borel sets B ⊂ R. We write again H(x) = 1 -F µ (x) for the density of ν with respect to Lebesgue measure, and h(x) for the density of ρ. Then

h(x) = [0 , ∞) H(x) -H(x + y) µ(dy) = H(x) -μ * H(x) = Ǎ * H(x) ,
that is, ρ = Ǎ * ν. Therefore with the same computations as above,

ν(B) = Ǔ * ρ(B) = E ρ   r(1)-1 j=0 1 B (X j )   ,
where of course we intend E ρ = E w (•) ρ(dw). Now invariance of ν for the reflected random walk implies invariance of ρ for the process of reflections precisely as in the proof of Theorem 3.6.

For proving uniqueness, let ρ be an invariant (Radon) measure for (R k ). Once we can prove that the convolution ν = Ǔ * ρ, restricted to [0 , ∞), defines a Radon measure (i.e., is finite on compact sets), we can proceed as before: ν is invariant for (X n ), whence ν = c • ν for some c > 0, and ρ 

= Ǎ * ν = c • Ǎ * ν = c • ρ. If N < ∞
µ * f (x) = [0 , ∞) f (v -x) µ(dv) defines a continuous function. If x ∈ [0 , a] then f (v -x) = 1 for all v ∈ [M -b + x , M + b + x] ⊃ [M -b + a , M + b]. Therefore µ * f(x) ≥ µ [M -b + a , M + b] > 0 for each x ∈ [0 , a] .
Using this, the invariance of ρ for (R k ), the formula of Lemma 2.3, and Fubini's theorem, we now compute the finite number

[0 , ∞) f (x) ρ(dx) = [0 , ∞) [0 , ∞) f (y) q(x, dy) ρ(dx) = [0 , ∞) [0 , ∞) [0 , x) f (y + w -x) U(dw) µ(dy) ρ(dx) = [0 , ∞) [0 , ∞) [w , ∞) f (y + w -x) ρ(dx) U(dw) µ(dy) = [0 , ∞) [0 , ∞) [0 , ∞) f (y -x) [δ -w * ρ](dx) U(dw) µ(dy) = [0 , ∞) [0 , ∞) µ * f (x) [δ -w * ρ](dx) U(dw) = [0 , ∞) µ * f(x) [ Ǔ * ρ](dx) ≥ µ [M -b + a , M + b] Ǔ * ρ [0 , a] . Therefore Ǔ * ρ [0 , a] is finite for each a > 0.
The following is now obtained precisely as in the lattice case. 

(4.9) [0 , ∞) 1 -F µ (x) 2 dx < ∞ .
This holds, in particular, when

E √ Y 1 = [0 , ∞) √ x µ(dx) < ∞ .
We now want to deduce recurrence of reflected random walk. This is not as straightforward as in the case of Markov chains with a denumerable state space. 

J(ε) = (a + ε , b -ε), Pr ∃ ε > 0 : ∞ n=0 1 J(ε) (X x n ) = ∞ ∈ {0, 1} .
Proof. Each of the countably many events

lim n→∞ 1 [0 , m] (X x k,n ) |X x k,n -X ȳ k,n | = 0 ⊂ Ω ,
where x, ȳ ∈ C are rational and k, m ∈ N 0 , has probability 1. Let Ω 0 be their intersection, so that Pr(Ω 0 ) = 1. Consider the event

A x J = Ω 0 ∩ 0<ε<(b-a)/2 B x J(ε) , where B x J(ε) = ∞ n=0 1 J(ε) (X x n ) = ∞ .
We claim that A x J does not depend on x. Let y ∈ C. If ω ∈ A x J then there is ε ∈ (0 , b-a 2 ) such that ω ∈ B x J(ε) . There are rational numbers x, ȳ ∈ C such that |x -x| < ε/4 and |y -ȳ| < ε/4. Since ω ∈ Ω 0 , we have

1 J X x n (ω) X x n (ω) -X ȳ n (ω)| < ε/4 for all sufficiently large n. Since |X x n -X x n | ≤ |x -x| and |X y n -X ȳ n | ≤ |y -ȳ|, we get that X y n (ω) ∈ J(ε/4) whenever X x n (ω) ∈ J(ε). Therefore, A x J ⊂ A y J
, and exchanging the role of x and y, we see that A J = A x J is the same for all x. Now, we claim that A J is in the tail σ-algebra of the (Y n ) n≥1 . Let ω ∈ A J and ω ∈ Ω such that for some

k ∈ N, Y n (ω) = Y n (ω) for n > k. Then clearly ω ∈ Ω 0 . Set u = Y k (ω) and v = Y k (ω). Then we have X x n (ω) = X u k,n (ω) and X x n (ω) = X v k,n ( 
ω) for all n ≥ k. Now the same "ε/4"-argument as above implies that ω ∈ A J .

Therefore Pr(A J ) ∈ {0 , 1} by the 0-1 law of Kolmogorov.

(4.11) Theorem. Suppose that the "quadratic tail" condition (4.9) holds. Then, for every starting point x > 0, the reflected random walk (X x n ) is topologically recurrent: for every bounded, open interval J ⊂ C,

Pr ∞ n=0 1 J (X x n ) = ∞ = 1 . If in addition E(Y 1 ) = [0 , ∞) x µ(dx) < ∞, then (X x n ) is positive recurrent, while it is null recurrent when E(Y 1 ) = ∞.
Proof. We write (R x n ) for the process of reflections starting at x ∈ C, and define

M x n = 1 n n-1 k=0 1 J(ε) (R x k ) and M x = lim sup n→∞ M x n ,
where ε > 0 is chosen such that J(ε) is non-empty. The measure ρ of Theorem 4.7 is supported by the whole of C, and ρ(C) < ∞ by assumption. We have

[0 , ∞) Ω M x n d Pr ρ(dx) = ρ J(ε)
Since ρ(C) < ∞ by assumption and 0 ≤ M n ≤ 1, we may apply the "lim sup"-variant of the Lemma of Fatou to obtain

[0 , ∞) Ω M x d Pr ρ(dx) ≥ ρ J(ε) .
Therefore there must be x ∈ C such that

Ω M x d Pr ≥ 3ρ J(ε) 4ρ(C) . Consequently, 0 < Pr[M x ≥ c] ≤ Pr ∞ n=0 1 J(ε) (X x n ) = ∞ , where c = ρ J(ε) 2ρ(C) > 0 .
Proposition 4.10 now yields that

Pr ∃ ε > 0 : ∞ n=0 1 J(ε) (X x n ) = ∞ = 1 ,
and the result follows.

Note that we should be careful in stating that the process of reflections itself is topologically recurrent on C when it has a finite invariant Radon measure. Indeed, it is by no means clear that it inherits local contractivity, or even the property to be Fellerian, from reflected random walk.

General reflected random walk

In this section, we drop the restriction that the random variables Y n are non-negative. Thus, the "ordinary" random walk S n = Y 1 + • • • + Y n may visit the positive as well as the negative half-axis. Again, µ will denote the distribution of each of the Y n . In the lattice case, we suppose without loss of generality that supp(µ) ⊂ Z, and that the group generated by supp(µ) is the whole of Z. In the non-lattice case, the closed group generated by supp(µ) is R.

We start with a simple observation ( [START_REF] Benda | A reflected random walk on the half line[END_REF] has a more complicated proof).

( 

Pr[ |S n+1 | ∈ B | S n = x] = µ(-x + B) + µ(-x -B) -µ(-x) δ 0 (B) = Pr[ |S n+1 | ∈ B | S n = -x] ,
and we see that |S n | has the same transition probabilities as the reflected random walk governed by µ.

Recall the classical result that when E(|Y 1 |) < ∞ and E(Y 1 ) = 0 then S n is recurrent; see Chung and Fuchs [START_REF] Chung | On the distribution of values of sums of random variables[END_REF]. So if µ is symmetric and has finite first moment then reflected random walk is recurrent.

In general, we should exclude that S n → -∞, since in that case there are only finitely many reflections, and reflected random walk tends to +∞ almost surely.

Let

Y + n = max{Y n , 0} and Y - n = max{-Y n , 0}, so that Y n = Y + n -Y - n .
The following is well-known.

(5.2) Lemma. If (a) E(Y - 1 ) < E(Y + 1 ) ≤ ∞ , or if (b) 0 < E(Y - 1 ) = E(Y + 1 ) < ∞ , then lim sup S n = ∞ almost
surely, so that there are infinitely many reflections.

We note that Proposition 4.4 is also valid here, since its proof (see the Appendix) does not require non-negativity of Y n . Also, when the Y n may assume both positive and negative values with positive probability, then the essential class, resp. classes, on which reflected random walk evolves is/are unbounded. In the non-lattice case this is C = [0 , ∞), and X x n is locally contractive. In the sequel, we assume that lim sup S n = ∞ almost surely. Then the (non-strictly) ascending ladder epochs

ℓ(0) = 0 , ℓ(k + 1) = inf{n > ℓ(k) : S n ≥ S ℓ(k) }
are all almost surely finite, and the random variables ℓ(k + 1)ℓ(k) are i.i.d. We can consider the embedded random walk S ℓ(k) , k ≥ 0, which tends to ∞ almost surely. Its increments Y k = S ℓ(k) -S ℓ(k-1) , k ≥ 1, are i.i.d. non-negative random variables with distribution denoted µ. Furthermore, if X x k denotes the reflected random walk associated with the sequence (Y k ), while X x n is our original reflected random walk associated with (Y n ), then X

x k = X x ℓ(k) , since no reflection can occur between times ℓ(k) and ℓ(k + 1).

(5.3) Lemma. [START_REF] Benda | Schwach kontraktive dynamische Systeme[END_REF] The embedded reflected random walk X x k is recurrent if and only the original reflected random walk is recurrent.

Proof. Since both processes are locally contractive, each of the two processes is transient if and only if it tends to +∞ almost surely: in the lattice case this is clear, and in the non-lattice case it follows from local contractivity. If lim n X x n = ∞ then clearly also

lim k X x ℓ(k) = ∞ a.s. Conversely, suppose that lim k X x k → ∞ a.s. If ℓ(k) ≤ n < ℓ(k + 1) then X x n ≥ X x ℓ(k) .
(Here, k is random, depending on n and ω ∈ Ω, and when n → ∞ then k → ∞ a.s.) Therefore, also lim n X x n = ∞ a.s.

As long as lim sup S n = ∞ , we can consider the reflection times as in (2.2) for the case of non-negative Y n . The observation that there is no reflection between times ℓ(k) and ℓ(k + 1) yields the following.

(5.4) Lemma. The reflection times for (X x n ) and (X x k ) are the same, so that reflected random walk and embedded reflected random walk have the same process of reflections. In particular, if the latter has a finite invariant measure, resp., if it is non-transient, then (X x n ) is (topologically) recurrent on its essential class(es).

We can now deduce the following.

(5.5) Theorem. Reflected random walk (X x n ) is (topologically) recurrent on its essential class(es), if

(a) E(Y - 1 ) < E(Y + 1 ) and E Y + 1 < ∞ , or if (b) 0 < E(Y - 1 ) = E(Y + 1 ) and E Y + 1 3 < ∞ .
Proof. We show that in each case the assumptions imply that E Y 1 < ∞. Then we can apply Lemma 3.14, resp. Corollary 4.8 to deduce recurrence of (X x k ). This in turn yields recurrence of (X x n ) by Lemma 5.4. (a) Under the first set of assumptions,

E Y 1 = E Y 1 + . . . + Y ℓ(1) ≤ E Y + 1 + . . . + Y + ℓ(1) ≤ E Y + 1 + . . . + Y + ℓ(1) = E Y + 1 • E ℓ(1)
by Wald's identity. Thus, we now are left with proving

E ℓ(1) < ∞ . If E(Y + 1 ) < ∞, then E(|Y 1 |) < ∞ and E(Y 1
) > 0 by assumption, and in this case it is well known that E ℓ(1) < ∞ ; see e.g. [START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF]Thm. 2 

in §XII.2, p. 396-397]. If E(Y + 1 ) = ∞ then there is M > 0 such that Y (M ) n = min{Y n , M} (which has finite first moment) satisfies E(Y (M ) n ) = E(Y (M ) 1 ) > 0 . The first increasing ladder epoch ℓ (M ) (1) associated with S (M ) n = Y (M ) 1 + . . . + Y (M ) n
has finite expectation by what we just said, and ℓ(1) ≤ ℓ (M ) (1). Thus, ℓ(1) is integrable.

(b) If the Y n are centered, non-zero and E (Y + 1 ) 1+a < ∞ , where a > 0, then E (Y 1 ) a < ∞ , as was shown by Chow and Lai [START_REF] Chow | Moments of ladder variables for driftless random walks[END_REF]. In our case, a = 1/2.

In conclusion, we discuss sharpness of the sufficient recurrence conditions E

√ Y 1 3 < ∞ in the centered case, resp E √ Y 1 < ∞ in the case when Y 1 ≥ 0.
(5.6) Example. Define a symmetric probability measure µ on Z by

µ(0) = 0 , µ(k) = µ(-k) = c/k 1+a (k = 0) ,
where a > 0 and c is the proper normalizing constant. 

µ(t) = 1 + A √ t (log t) b 1 + o(t) as t → 0 . By (5.8), 1 -µ(t) = (1 -u) 1 -µ + (t) 1 -µ -(t) .
We deduce

µ(t) = 1 + 1 -µ 0 (0) |A| 2 t (log t) 2b 1 + o(t) as t → 0 .
The function 1 1µ(t) is integrable near 0. By Lemma 5.1, the associated reflected random walk is transient. But then also the embedded reflected random walk associated with S ℓ(n) is transient by Lemma 5.3. This is the reflected random walk governed by µ.

Appendix: local contractivity

Here, we come back to propositions 4.4 and 4.6. They arise as special cases of two main results in the PhD thesis of Benda [START_REF] Benda | Schwach kontraktive dynamische Systeme[END_REF] and of the contents of the two papers [START_REF] Benda | Contractive stochastic dynamical systems[END_REF] and [START_REF] Benda | A reflected random walk on the half line[END_REF], which were accepted for publication but remained unpublished. For this reason, we give an outline, resp. published references for their proofs. In [START_REF] Benda | Contractive stochastic dynamical systems[END_REF], this is placed in the following more general context. Let (X, d) be a proper metric space (i.e., closed balls are compact), and let G be the monoid of all continuous mappings X → X. It carries the topology of uniform convergence on compact sets. Now let µ be a regular probability measure on G, and let (F n ) n≥1 be a sequence of i.i.d. G-valued random variables (functions) with common distribution µ. The measure µ gives rise to the stochastic iterated function system (SFS) X x n defined by (6.1) X x 0 = x ∈ X , and X x n = F n (X x n-1 ) , n ≥ 1 . In the setting of the above Sections 2-4, we have X = [0 , ∞) with the standard distance, and F n (x) = |x -Y n |, so that the measure µ is the image of the distribution µ of the Y n in §2 under the mapping [0 , ∞) → G , y → g y , where g y (x) = |x -y|. (6.2) Definition. The SFS is called locally contractive, if for all x ∈ X and every compact

K ⊂ X, 1 K (X x n ) • sup y∈K d(X x n , X y n ) → 0 almost surely, as n → ∞ .
This notion was first introduced by Babillot, Bougerol and Elie [START_REF] Babillot | The random difference equation X n = A n X n-1 + B n in the critical case[END_REF] and was later exploited systematically by Benda, who (in personal comunication) also gives credit to unpublished work of his late PhD advisor Kellerer, compare with the posthumous publication [START_REF] Kellerer | Random dynamical systems on ordered topological spaces[END_REF].

Using Kolomogorov's 0-1 law (and properness of X), one gets a general variant of Lemma 4.3.

(6.3) Lemma. For a locally contractive SFS of contractions, either Pr[d(X x n , x) → ∞] = 0 for all x ∈ X , or Pr[d(X x n , x) → ∞] = 1 for all x ∈ X .
Proof. Let B(r) , r ∈ N be the open balls in X with radius r and fixed center o ∈ X. It has compact closure by properness of X. Consider (6.4)

X x m,n = F n • F n-1 • . . . • F m+1 (x) for n > m, so that X x n = X x 0,n .
Then local contractivity implies that for each x ∈ X, we have Pr(Ω 0 ) = 1 for the event Ω 0 of all ω ∈ Ω with (6.5) lim

n→∞ 1 B(r) X x n (ω) • sup y∈B(r) d X x m,n (ω), X y m,n (ω) = 0 for each r ∈ N , m ∈ N 0 .
Clearly, Ω 0 is invariant with respect to the shift of the sequence (F n ). Now let ω ∈ Ω 0 be such that the sequence X x n (ω) n≥0 accumulates at some w ∈ X. Fix m and set v = X x m (ω). Then also X v m,n (ω) n≥m accumulates at w. Now let y ∈ X be arbitrary. Then there is r such that v, w, y ∈ B(r). Therefore also X y m,n (ω) n≥m accumulates at w. In particular, the fact that X x n (ω) n≥0 accumulates at some point does not depend on the initial trajectory, i.e., on the specific realization of F 1 , . . . , F m . We infer that the set

ω ∈ Ω 0 : X x n (ω) n≥0 accumulates in X is a tail event of (F n ) n≥1 . On its complement in Ω 0 , we have d(X x n , x) → ∞ . If d(X x n ,
x) → ∞ almost surely, then we call the SFS transient. What has been said about the attractor in (4.5) for reflected random walk is true in general. For ω ∈ Ω, let L x (ω) be the set of accumulation points of X x n (ω) in X. A straightforward extension of the argument used in the last proof (using again properness of X) yields the following. (6.6) Lemma. For any non-transient, locally contractive SFS, there is a set L ⊂ X -the attractor -such that Pr

[L x (•) = L for all x ∈ C] = 1 , Thus, (X x n ) is (topologically) recurrent on L when Pr[d(X x n , x) → ∞] = 0.
(6.7) Proposition. For a recurrent locally contractive SFS, there is a unique invariant Radon measure ν on X up to multiplication with constants, and supp(ν) = L. This is contained in [START_REF] Benda | Schwach kontraktive dynamische Systeme[END_REF] and [START_REF] Benda | Contractive stochastic dynamical systems[END_REF]. The proof of the existence of such a measure supported by L is rather straightforward, compare with the old survey by Foguel [START_REF] Foguel | The ergodic theory of positive operators on continuous functions[END_REF]. (One first constructs an excessive measure supported by L via a ratio limit argument, an then uses recurrence to obtain that it has to be invariant.) For a proof of uniqueness that is available in print, see Brofferio [7,Thm. 3], who considers only SFS of affine mappings, but the argument carries over to general locally contractive SFS without changes.

Let us now consider a more specific class of SFS: within G, we consider the closed submonoid L of all contractions of X, i.e., mappings f : X → X with Lipschitz constant L(f ) ≤ 1. We suppose that the probability measure µ that governs the SFS is supported by L, that is, each random function F n of (6.1) satisfies L(F n ) ≤ 1. In this case, one does not need local contractivity in order to obtain Lemma 6.3; this follows directly from properness of X and the inequality d(X x n X y n ) ≤ d(x, y) . Let S( µ) be the closed sub-semigroup of L generated by supp( µ). The following key result of [START_REF] Benda | Schwach kontraktive dynamische Systeme[END_REF] is inspired by [START_REF] Knight | On the absolute difference chains[END_REF]Thm. 2.2], where reflected random walk with E(Y n ) < ∞ is studied. 

D n (x, y) = d(X x n , X y n ) → 0 almost surely, as n → ∞ .
Proof. Since D n+1 (x, y) ≤ D n (x, y), the limit D ∞ (x, y) = lim n D n (x, y) exists and is between 0 and d(x, y). We set w(x, y) = E D ∞ (x, y) . First of all, we claim that (6.9) lim m→∞ w(X x m , X y m ) = D ∞ (x, y) almost surely.

To see this, consider X x m,n as in (6.4). Then D m,∞ (x, y) = lim n d(X x m,n , X y m,n ) has the same distribution as D ∞ (x, y), whence E D m,∞ (x, y) = w(x, y). Therefore, we also have (ii) By the second hypothesis, there is x 0 ∈ X which can be approximated uniformly on compact sets by functions of the form f k • ... • f 1 , where f j ∈ supp( µ). Therefore, given r there is k ∈ N such that Pr(C k,r ) > 0 , where C k,r = sup We conclude that on A r , there is a (random) sequence (n ℓ ) such that w(X x n ℓ , X y n ℓ ) ≤ D n ℓ (x, y)δ .

Passing to the limit on both sides, we see that (6.9) is violated on A r , since δ > 0. Therefore Pr(A r ) = 0 for each r. Proof. In the transient case, X x n can visit any compact K only finitely often, whence 1 K (X x n ) → 0 a.s. In the non-transient case, we use the fact that by properness, X has a dense, countable subset Y . Proposition 6.8 implies that with probability 1, we have lim n D n (x, w) = 0 for all w ∈ Y . If K ⊂ X is compact and ε > 0 then there is a finite W ⊂ Y such that d(y, W ) < ε for every y ∈ K. Therefore Proof of Proposition 4.4. Reflected random walk is an SFS of contractions, since L(g y ) = 1 for the function g y (x) = |x -y|. [START_REF] Leguesdron | Marche aléatoire sur le semi-groupe des contractions de R d . Cas de la marche aléatoire sur R + avec choc élastique en zéro[END_REF]Prop. 2] shows that the constant function x → 0 is contained in the semigroup S( µ), where µ is the law of the increments Y n and µ its image in the semigroup L of contractions of X = [0 , ∞) under the mapping y → g y , g y (x) = |x -y|. Note that this statement and its proof in [START_REF] Leguesdron | Marche aléatoire sur le semi-groupe des contractions de R d . Cas de la marche aléatoire sur R + avec choc élastique en zéro[END_REF] are completely deterministic, regarding topological properties of the set supp(µ) ⊂ [0 , ∞) , and do not rely on any moment condition.

Proof of Proposition 4.6. If reflected random walk is recurrent, then we know from Proposition 6.7 that there is a unique invariant Radon measure up to multiplication with constants, and its support is the attractor L. On the other hand, we already have the invariant measure ν given in Lemma 4.2.c, and its support is C.

( 4 . 2 )

 42 Lemma. (a) The reflected random walk with any starting point is absorbed after finitely many steps by the interval C. (b) It is topologically irreducible on C, that is, for every x ∈ C and open set

( 4 . 6 )

 46 Proposition. In the recurrent case, L = C , and the measure ν defined in Lemma 4.2.c is the unique invariant Radon measure for p(•, •) up to multiplication with constants.

  then ρ has finite mass, since it must be concentrated on [0 , N] by Lemma 4.2. Let U N be the restriction of U to [0 , N]. It is also a finite measure, and on [0 , N], we have Ǔ * ρ = ǓN * ρ, which is again finite. Now suppose that N = ∞. Let a > 0. Then supp(µ) contains an element M > a. Choose b such that a < b < M. Now let f be a compactly supported, continuous function on R, supported within [0 , ∞), such that f ≡ 1 on [Mb , M + b]. Then the convolution

( 4 . 8 )

 48 Corollary. The invariant measure ρ of the process of reflections has finite mass if and only if

( 4 .

 4 10) Proposition. Let J = (a, b) ⊂ C be a bounded, open interval. Then, setting

( 6 . 8 )

 68 Proposition. If (i) the SFS of contractions is non-transient, and (ii) the semigroup S( µ) ⊂ L contains a constant function, then

E

  D m,∞ (X x m , X y m ) | F 1 , . . . , F m = w(X x m , X y m ) . On the other hand, D m,∞ (X x m , X y m ) = D ∞ (x, y), and the bounded martingaleE D ∞ (x, y)|F 1 , . . . , F m m≥1converges almost surely to D ∞ (x, y). The proposed statement (6.9) follows.Now let ε > 0 be arbitrary, and fix x, y ∈ X. We have to show that the event A = [D ∞ (x, y) ≥ ε] has probability 0.(i) By non-transience, Prr∈N m∈N n≥m [X x n , X y n ∈ B(r)] = 1 .On A, we have D n (x, y) ≥ ε for all n. Therefore we need to show that Pr(A r ) = 0 for each r ∈ N, whereA r = m∈N n≥m [X x n , X y n ∈ B(r) , D n (x, y) ≥ ε] .

  u k , x 0 ) ≤ ε/4 . On C k,r we have D ∞ (u, v) ≤ D k (u, v) ≤ ε/2 for all u, v ∈ B(r). Therefore, setting δ = Pr(C k,r ) • (ε/2), we have for all u, v ∈ B(r) with d(u, v) ≥ ε that w(u, v) = E 1 C k,r D ∞ (u, v) + E 1 X\C k,r D ∞ (u, v) ≤ Pr(C k,r ) • (ε/2) + 1 -Pr(C k,r ) • d(u, v) ≤ d(u, v)δ .

( 6 . 10 )

 610 Corollary. If the semigroup S( µ) ⊂ L contains a constant function, then the SFS is locally contractive.

  sup y∈K D n (x, y) ≤ max w∈W D n (x, w) → 0 a.s. +ε , since D n (x, y) ≤ D n (x, w) + D n (w, y) ≤ D n (x, w) + d(w, y).

  If µ is symmetric, then also |S n | is a Markov chain. Indeed, for a Borel set B ⊂ [0 , ∞),

.1) Lemma. If µ is symmetric, then reflected random walk is (topologically) recurrent if and only if the random walk S n is recurrent.

Proof.

  surely, a well-known fact, see e.g. [10, Thm. 1 in §XII.2, p. 395]. Consequently, the ascending and descending ladder epochs are again a.s. finite. Therefore the probability measures µ + and µ -= μ+ (the laws of S t ± (1) ) are well defined. By the uniqueness theorem of Wiener-Hopf-factorization [10, Thm. 1 in §XII.3, p. 401], it follows that µ -= μ× and that the distribution of the first (non-strictly) ascending ladder random variable is µ = µ 0 .Proof of Proposition 5.7. Let µ be the symmetric measure associated with µ 0 according to (5.10) in Lemma 5.9. Then its characteristic function µ(t), given by (5.8), is nonnegative real. A well-known criterion says that the random walk S n associated with µ is transient if and only if (the real part of) 1 1µ(t) is integrable in a neighbourhood of 0. Returning to µ, it is a standard exercise (see[START_REF] Feller | An Introduction to Probability Theory and its Applications[END_REF] Ex. 12 in Ch. XVII, Section 12]) to show that there is A ∈ C , A = 0 such that its characteristic function satisfies

Then it is known that the associated symmetric random walk S n on Z is recurrent if and only if a ≥ 1, see Spitzer [17, p. 87]. By Lemma 5.1, the associated reflected random walk is also recurrent, but when 1 ≤ a ≤ 3/2 then condition (b) of Theorem 5.5 does not hold.

almost

Nevertheless, we can also show that in general, the sufficient condition E Y 1 < ∞ for recurrence of reflected random walk with non-negative increments Y n is very close to being sharp. (We write Y n because we shall represent this as an embedded random walk in the next example.)

(5.7) Proposition. Let µ 0 be a probability measure on N 0 such that µ 0 (n) ≥ µ 0 (n + 1) for all n ≥ 0 and

, where b > 1/2 and c > 0. Then the associated reflected random walk on N 0 is transient.

Note that µ 0 has finite moment of order 1 2ε for every ε > 0, while the moment of order 1 2 is infinite. The proof needs some preparation. Let (Y n ) be i.i.d. random variables with values in Z that have finite first moment and are non-constant and centered, and let µ be their common distribution. The first strictly ascending and strictly descending ladder epochs of the random walk

respectively. They are almost surely finite. Let µ + be the distribution of S t + (1) and µ - the distribution of S t - [START_REF] Babillot | The random difference equation X n = A n X n-1 + B n in the critical case[END_REF] , and -as aboveµ the distribution of Y 1 = S ℓ(1) . We denote the characteristic function associated with any probability measure σ on R by σ(t) , t ∈ R. Then, following Feller [10, (3.11) in §XII.3], Wiener-Hopf-factorization tells us that (5.8)

(Recall that * is convolution.) (5.9) Lemma. Let µ 0 be a probability measure on N 0 such that µ 0 (n) ≥ µ 0 (n + 1) for all n ≥ 0. Then there is a symmetric probability measure µ on Z such that that the associated first (non-strictly) ascending ladder random variable has distribution µ 0 .

Proof. We decompose µ 0 = µ 0 (0) • δ 0 + 1µ 0 (0) • µ × , where µ × is supported by N (i.e., µ × (0) = 0). If µ 0 is the law of the first strictly ascending ladder random variable associated with some symmetric measure µ, then by (5.8) we must have µ -= μ× , the reflection of µ × at 0, and (5.10)

We define µ in this way. The monotonicity assumption on µ 0 implies that µ is a probability measure: indeed, it is straightforward to show that µ(k) ≥ 0 for each k ∈ Z.

The measure µ of (5.10) is non-degenerate and symmetric. If it induces a recurrent random walk (S n ), then the ascending and descending ladder epochs are a.s. finite. If (S n ) is transient, then |S n | → ∞ almost surely, but it cannot be Pr[S n → ∞] > 0 since in that case this probaility had to be 1 Kolmogorov's 0-1-law, while symmetry would yield Pr[S n → -∞] = Pr[S n → ∞] ≤ 1/2. Therefore lim inf S n = -∞ and lim sup S n = +∞