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Abstract. We consider a class of discrete convex functionals which satisfy a (general-

ized) coarea formula, and study their limit in the continuum.
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1. Introduction

In the past ten years, optimization methods for image processing task have made a lot of

progress, thanks to the development of combinatorial methods (maximal flow/minimal cut, and

other graph-based optimization methods — see for instance [10], and [1, 4] and the references

therein). These methods are not new, the idea of representing Ising energies (i.e., discrete approx-

imations of perimeters) on graphs and computing minimum points using maximal flows algorithms

dates back at least to the 70s [13]. However, the evolution of computers and development of new

algorithms [4], oriented towards specific applications, have contributed a lot towards the recent

increase in activity in this field. In image processing, the idea is to regularize ill-posed inverse

problems for finding sets (shapes) or partitions into labels of an image, by penalizing a discrete

variant of their perimeter. We try to consider, in this paper, the most general energies which can

be tackled by these methods, and even a little bit more: we consider discrete submodular energies,

defined on discrete subsets of a finite lattice V ⊂ hZN , h > 0, for which it is known that polyno-

mial algorithms do exist (see for instance [7, 11, 14]). We will show that, appropriately extended

into functions of general vectors in RV by means of the generalized coarea formula, these energies

are, in fact, convex. This is already known (although our setting is a bit different, as well as our

proofs which apply to other situations, including functionals defined in the continuous setting) in

discrete optimization, under the notion of Lovász’ extension [12].

We will then study the continuous limit of our energies, as the discretization step h goes to 0 (and

the number of pixels/voxels in V to infinity), providing a very simple representation formula for

the limit. In particular, it will be obvious from this formula that simple approximation procedures

only provide “crystalline” energies, as already observed for instance in [3].

To be more specific, we consider in this paper an “interaction potential” F : {0, 1}Σ → [0, +∞),

which is a nonnegative function of binary vectors of {0, 1}Σ, where Σ ⊂ ZN is a finite (small) set

of “neighbors”. We assume, in addition, that F satisfies the submodularity condition

F (u ∧ v) + F (u ∨ v) ≤ F (u) + F (v)

for any u, v ∈ {0, 1}Σ, where (u ∧ v)i := min{ui, vi} and (u ∨ v)i := max{ui, vi}. Defining, for

x ∈ RN and u a real-valued function, the vector u[x + hΣ] = (u(x + hi)i∈Σ) ∈ RΣ, we will study

the asymptotic behavior as h → 0 of functionals of the type

(1.1) Jh(E, Ω) := hN−1
∑

x∈Ih(Ω)∩hZN

F (χE [x + hΣ]),

where here, Ω is a bounded open subset of RN and E is a discrete subset of the discrete lattice

V = hZN ∩ Ω (E is also identified to the union of the cubes Qh
x = x + [0, h[N , x ∈ E, and χE is
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its characteristic function). The notation Ih(Ω) stands for the points x such that x + hΣ ⊂ Ω, so

that the sum in (1.1) involves only the nodes x ∈ hZN such that x + hΣ ⊂ Ω.

The functional (1.1) is a sort of nonlocal anisotropic discrete perimeter of E. In fact it penalizes

the boundary of E in a nonlocal way, since an interface at the boundary with a vertex x interacts

with the behavior of E on the cubes with vertices x+hΣ. The nonlocality vanishes as h → 0 since

its radius of action is given by h diam(Σ). The anisotropy is introduced by the function F , which

can weight interfaces with various orientations in different ways.

The main result of the paper concerns the asymptotic behavior of the discrete perimeters (1.1)

as h → 0 in the variational sense of Γ-convergence (see Section 2 for the definition) with respect to

the L1-topology on the family of discrete sets (that is L1 convergence of characteristic functions).

Under mild assumptions on F and Ω, we prove that (see Theorem 4.2) the discrete perimeters

Γ-converge to the continuous anisotropic perimeter which for a sufficiently regular set E (a set

with Lipschitz boundary for instance) is given by

(1.2) J(E, Ω) =

∫

∂E

F (νE · Σ) dA,

where νE is the inner normal at the boundary and (νE · Σ) = (νE · y)y∈Σ. More precisely the

class on which the Γ-limit is defined is given by the family of sets with finite perimeter in Ω. As

a consequence, for a general set E, the boundary involved in the functional (1.2) is the reduced

boundary ∂∗E, the inner normal νE is intended in a measure theoretical sense (see Section 2), and

the area measure dA has to be replaced by the (N − 1)-dimensional Hausdorff measure HN−1.

The function F appearing in (1.2) is the extension to RΣ of the submodular function F by means

of the formula

(1.3) F (u) =

∫ +∞

−∞
F (χ{u>s}) ds,

where {u > s} := {x ∈ Σ : u(x) > s}. Formula (1.3) is a coarea formula for the function F since it

relates the value F (u) to the behavior of F on the “boundary” of the level sets {u > s} (compare

with equation (2.3) which gives the classical coarea formula for functions of bounded variation).

In view of the result on dicrete perimeters, we obtain a Γ-convergence result for the functionals

Jh(·, Ω) extended to the class of piecewise constant functions u relative to the grid hZN . More

precisely we consider u of the form

u =
∑

x∈hZN

axχQh
x
, ax ∈ R

and

(1.4) Jh(u, Ω) = hN−1
∑

x∈Ih(Ω)∩hZN

F (u[x + hΣ]).

As the functional (1.1) could be thought as a discrete perimeter, the functional (1.4) could be

considered as a sort of discrete total variation of the function u. Clearly it inherits the nonlocal

and anisotropic features of the discrete perimeter. We show that the Γ-limit in the L1-topology is

given by the anisotropic total variation

(1.5) J(u, Ω) =

∫

Ω

F

(

Du

|Du| · Σ
)

d|Du|,

where u belongs to the space BV (Ω) of functions of bounded variation (see Section 2), Du/|Du| ∈
SN−1 denoting the Radon-Nikodym derivative of Du with respect to its total variation |Du|.
This Γ-convergence result is a simple consequence of the result on sets and of the fact that the
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functionals Jh satisfy the generalized coarea formula

(1.6) Jh(u, Ω) =

∫ +∞

−∞
Jh(χ{u>s}, Ω) ds,

so that the behavior of Jh on piecewise constant functions is completely determined by the discrete

perimeters for sets. We infer the result from general properties of functionals on L1(Ω) that

satisfy a coarea formula like (1.6), which we study in Section 3. This class of functionals, denoted

by GC(Ω), was investigated by Visintin [15, 16] in connection with phase transition problems.

As a consequence of our Γ-convergence result, the discrete total variations (1.4) can be used

to approximate Total Variation Minimization procedures in image denoising involving (1.5) (see

Corollary 4.3).

The paper is organized as follows. Section 2 contains the notation employed in the paper,

and some basic facts concerning sets with finite perimeters, functions of bounded variation and

Γ-convergence. In Section 3 we consider the class GC(Ω) of functionals on L1(Ω) which satisfy the

generalized coarea formula: In particular we prove that GC(Ω) is closed under Γ-convergence, and

that the limit can be recovered by the behavior on characteristic functions of Borel sets. Section

4 contains the main Γ-convergence result formulated for the discrete total variations (1.4). We

exploit the reduction to the class of discrete sets, and Subsections 4.1 and 4.2 contain the proof

of the two inequalities characterizing Γ-convergence for study the discrete perimeters.

2. Notation and preliminaries

Let A be an open subset of RN . We will say that A has a continuous boundary if ∂A can be

covered by finitely many balls B such that, in each ball, B ∩ A is the subgraph of a continuous

function (after an appropriate change of coordinates). If these functions are Lipschitz continuous,

we say that A has a Lipschitz boundary.

For any p ∈ [1, +∞[ we will denote by Lp(A) the usual space of all p-summable functions on

A, and by L∞(A) the space of measurable functions on A which are essentially bounded. Given

u, v ∈ L1(A), we set

(2.1) u ∧ v := min{u, v} and u ∨ v := max{u, v}.

In the following, we recall some basic facts concerning function of bounded variation and sets

with finite perimeter which we need in the following sections, together with some basic definitions

and results concerning Γ-convergence.

Functions of bounded variation and sets with finite perimeter. For an exhaustive treat-

ment of the subject, we refer the reader to [2].

We say that u has bounded variation in A and we write u ∈ BV (A) if u ∈ L1(A) and

(2.2) |Du|(A) = sup

{∫

A

u divϕdx : ϕ ∈ C1
c (A) , ||ϕ||∞ ≤ 1

}

< +∞.

|Du|(A) is referred to as the total variation of u.

If E ⊆ A is a Borel set, we say that E has finite perimeter in A if χE ∈ BV (A), and we set

Per(E, A) := |DχE |(A).

P er(E, A) is called the perimeter of E in A. It turns out that

Per(E, A) = HN−1(∂∗E ∩ A), and DχE = νEHN−1 ∂∗E,
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where ∂∗E denotes the reduced boundary of E, which, up to a HN−1-negligible set, coincides with

the (larger) set of points x such that there exists a unit vector νE(x) with

E − x

̺
→ {y ∈ R

N : y · νE(x) > 0} as ̺ → 0 in L1
loc(R

N ).

The unitary vector νE(x) is usually referred to as the interior normal to E at x. HN−1 denotes

the (N −1)-dimensional Hausdorff measure, which is a generalization to arbitrary sets of the usual

(N − 1)-area measure. The points of ∂∗E are also called regular points of ∂E.

If u ∈ BV (A), the following coarea formula holds:

(2.3) |Du|(A) =

∫ +∞

−∞
Per({x ∈ A : u(x) > s}, A) ds =

∫ +∞

−∞
|Dχ{u>s}|(A) ds.

Finally we recall the following compactness result (which is a variant of Rellich’s theorem). If A is

bounded and with Lipschitz boundary, and (un)n∈N is a sequence in BV (A) such that ‖un‖L1(A)+

|Dun|(A) is bounded, then there exist a subsequence (unk
)k∈N and a function u ∈ BV (A) such

that

unk
→ u in L1(A)

and

|Du|(A) ≤ lim inf
k→∞

|Dunk
|(A).

Γ-convergence. Let us recall the definition and some basic properties of De Giorgi’s Γ-convergence

in metric spaces. We refer the reader to [8, 5] for an exhaustive treatment of this subject. Let (X, d)

be a metric space. We say that a sequence Fn : X → [−∞, +∞] Γ-converges to F : X → [−∞, +∞]

(as n → ∞) if for all u ∈ X we have

(i) (Γ-lim inf inequality) for every sequence (un)n∈N converging to u in X ,

lim inf
n→∞

Fn(un) ≥ F (u);

(ii) (Γ-lim sup inequality) there exists a sequence (un)n∈N converging to u in X , such that

lim sup
n→∞

Fn(un) ≤ F (u).

The function F is called the Γ-limit of (Fn)n∈N (with respect to d). Given a family (Fh)h>0 of

functionals on X , we say that Fh Γ-converges to F as h → 0 if for every sequence hn → 0 we have

that Fhn Γ-converges to F as n → ∞.

Γ-convergence is a convergence of variational type as explained in the following Proposition.

Proposition 2.1. Assume that the family (Fh)h>0 Γ-converges to F and that there exists a

compact set K ⊆ X such that for all h > 0

inf
u∈K

Fh(u) = inf
u∈X

Fh(u).

Then F admits a minimum on X, infX Fh → minX F as h → 0, and any limit point of any

sequence (uh)h>0 such that

lim
h→0

(

Fh(uh) − inf
u∈X

Fh(u)
)

= 0

is a minimizer of F .
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3. Generalized coarea formula

In the following, let Ω ⊂ RN be an open and bounded set.

Definition 3.1. Let J : L1(Ω) → [0, +∞] be a proper functional. We say that J satisfies the

generalized coarea formula if for every u ∈ L1(Ω)

(3.1) J(u) =

∫ +∞

−∞
J(χ{u>s}) ds,

with the convention J(u) = +∞ if the map s 7→ J(χ{u>s}) is not measurable. We denote by

GC(Ω) the class of functionals satisfying (3.1).

The class GC(Ω) has been introduced by Visintin [15] and investigated, in the discrete case,

by Chambolle and Darbon [6]. In a slightly different setting, the formula (3.1) is a variant of the

extension introduced by Lovász in [12] and well-known in combinatorial and linear optimization.

An example of functional satisfying (3.1) is given by the total variation (2.2) in view of the

coarea formula (2.3). Other examples are treated in [16]:

J(u) =

∫

Ω×Ω

|u(x) − u(y)||x − y|−(N+r) dx dy, ∀r ∈ (0, 1)

and

J(u) =

∫

Ω×R+

(

ess sup
Bh(x)∩Ω

u − ess inf
Bh(x)∩Ω

u
)

h−(1+r) dx dh, ∀r ∈ (0, 1).

The next Proposition contains some elementary consequences of formula (3.1).

Proposition 3.2. Let J ∈ GC(Ω). Then for every u ∈ L1(Ω) the following facts hold:

(i) J(λu) = λJ(u) for every λ > 0;

(ii) J(u + c) = J(u) for every c ∈ R;

(iii) J(c) = 0 for every c ∈ R.

Moreover if J is convex, for every u, v ∈ L1(Ω) we have

(iv) J(u ∧ v) + J(u ∨ v) ≤ J(u) + J(v).

Proof. Let λ > 0, u ∈ L1(Ω) and c ∈ R. Then

J(λu) =

∫ +∞

−∞
J(χ{u> s

λ}) ds = λ

∫ +∞

−∞
J(χ{u>t}) dt = λJ(u)

and

J(u + c) =

∫ +∞

−∞
J(χ{u>s−c}) ds =

∫ +∞

−∞
J(χ{u>t}) dt = J(u)

so that (i) and (ii) follow.

Let us prove (iii). In view of (ii), it suffices to show that J(0) = 0. Suppose by contradiction

that J(0) > 0. Then for every u ∈ L∞(Ω) we have

(3.2) J(u) =

∫ +∞

−∞
J(χ{u>s}) ds ≥

∫ +∞

ess sup
Ω

u

J(0) ds = +∞.

By the generalized coarea formula, we deduce that J(u) = +∞ for every u ∈ L1(Ω). But this is

against the fact that J is proper, so that point (iii) is proved.
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Let us show (iv). Since we have

J(χ{u>s} ∧ χ{v>s}) + J(χ{u>s} ∨ χ{v>s}) =

∫ 2

0

J(χ{χ{u>s}∧χ{v>s}+χ{u>s}∨χ{v>s}>t}) dt

=

∫ +∞

−∞
J(χ{χ{u>s}∧χ{v>s}+χ{u>s}∨χ{v>s}>t}) dt,

by the generalized coarea formula (3.1) we get

J(χ{u>s} ∧ χ{v>s}) + J(χ{u>s} ∨ χ{v>s}) = J(χ{u>s} ∧ χ{v>s} + χ{u>s} ∨ χ{v>s})

= J(χ{u>s} + χ{v>s}).

Notice that if J is convex, by point (i) we deduce that J is subadditive. Then we obtain

(3.3) J(χ{u>s} ∧ χ{v>s}) + J(χ{u>s} ∨ χ{v>s}) ≤ J(χ{u>s}) + J(χ{v>s}).

Observe that for any s ∈ R we have {u ∧ v > s} = {u > s} ∩ {v > s} and {u ∨ v > s} = {u >

s} ∪ {v > s} so that

χ{u∧v>s} = χ{u>s} ∧ χ{v>s} and χ{u∨v>s} = χ{u>s} ∨ χ{v>s}.

We conclude by (3.3)

J(u ∧ v) + J(u ∨ v) =

∫ +∞

−∞
[J(χ{u∧v>s}) + J(χ{u∨v>s})] ds

=

∫ +∞

−∞
[J(χ{u>s} ∧ χ{v>s}) + J(χ{u>s} ∨ χ{v>s})] ds

≤
∫ +∞

−∞
J(χ{u>s}) ds +

∫ +∞

−∞
J(χ{v>s}) ds = J(u) + J(v)

so that (iv) follows and the proof is complete. �

We will need the following Lemma concerning the approximation of Lebesgue integral by means

of Riemann sums.

Lemma 3.3. Let f ∈ L1(R), t ∈]0, 1[ and let us set

sn(t) :=
1

n

∑

k∈Z

f

(

k + t

n

)

.

Then up to a subsequence we have

lim
n→∞

sn(t) =

∫ +∞

−∞
f(τ) dτ for a.e. t ∈]0, 1[.

Proof. For any n ∈ N we easily get

∫ +∞

−∞
f(τ) dτ =

1

n

∑

k∈Z

∫ 1

0

f

(

k + r

n

)

dr.
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Then for t ∈]0, 1[ we have

∫ 1

0

∣

∣

∣

∣

∫ +∞

−∞
f(τ) dτ − sn(t)

∣

∣

∣

∣

dt =

∫ 1

0

∣

∣

∣

∣

∣

∫ +∞

−∞
f(τ) dτ − 1

n

∑

k∈Z

f

(

k + t

n

)

∣

∣

∣

∣

∣

dt

=

∫ 1

0

∣

∣

∣

∣

∣

1

n

∑

k∈Z

∫ 1

0

f

(

k + r

n

)

dr − 1

n

∑

k∈Z

f

(

k + t

n

)

∣

∣

∣

∣

∣

dt

≤ 1

n

∑

k∈Z

∫ 1

0

∫ 1

0

∣

∣

∣

∣

f

(

k + r

n

)

− f

(

k + t

n

)∣

∣

∣

∣

dr dt.

But

1

n

∑

k∈Z

∫ 1

0

∫ 1

0

∣

∣

∣

∣

f

(

k + r

n

)

− f

(

k + t

n

)∣

∣

∣

∣

dr dt

≤ 1

n

∑

k∈Z

∫ 1

0

∫ 1

0

[∣

∣

∣

∣

f

(

k + r

n

)

− f

(

k + r + t

n

)∣

∣

∣

∣

+

∣

∣

∣

∣

f

(

k + r + t

n

)

− f

(

k + t

n

)∣

∣

∣

∣

]

dr dt

=

∫ 1

0

∣

∣

∣

∣

∣

∣

∣

∣

f(·) − f

(

· + t

n

)∣

∣

∣

∣

∣

∣

∣

∣

L1(R)

dt +

∫ 1

0

∣

∣

∣

∣

∣

∣
f(·) − f

(

· + r

n

)∣

∣

∣

∣

∣

∣

L1(R)
dr.

The last terms tend to zero by continuity of the translation operator in L1(R). We conclude that

sn →
∫ +∞

−∞
f(τ) dτ in L1(0, 1)

so that, up to a subsequence, pointwise almost everywhere convergence follows. �

In view of (3.1), functionals in the class GC(Ω) are completely determined by their behavior on

characteristic functions of Borel sets contained in Ω. The next result gives a sufficient condition

for the convexity of lower semicontinuous functionals in GC(Ω) in terms of the submodularity

property (iv) of the previous Proposition only on characteristic functions.

Proposition 3.4. Let J ∈ GC(Ω) be a lower semicontinuous functional such that

(3.4) J(χE∩E′) + J(χE∪E′) ≤ J(χE) + J(χE′)

for every pair of Borel sets E, E′ in Ω. Then J is convex.

Proof. Since by Proposition 3.2 J is positively one-homogeneous , it is sufficient to show that

(3.5) J(u + v) ≤ J(u) + J(v)

for any u, v ∈ L1(Ω).

We claim that the following representation formula holds for every function u which is positive,

bounded and with integer values:

(3.6) J(u) = min

{

m
∑

i=1

J(χEi) : m ≥ 1 , u =

m
∑

i=1

χEi

}

.

In order to prove (3.5), we can clearly assume that J(u) < +∞ and J(v) < +∞. Hence by (3.1)

the maps s 7→ J(χ{u>s}) and s 7→ J(χ{v>s}) belong to L1(R).

Firstly let us assume 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. For every n ∈ N, n > 0, let us set for t ∈]0, 1[

un :=
1

n

∑

k∈N

χ{u> k+t
n } and vn :=

1

n

∑

k∈N

χ{v> k+t
n }.
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By applying Lemma 3.3, we can choose t ∈]0, 1[ in such a way that

lim
n→∞

1

n

∑

k∈N

J
(

χ{u> k+t
n }
)

=

∫ 1

0

J(χ{u>s}) ds

and

lim
n→∞

1

n

∑

k∈N

J
(

χ{v> k+t
n }
)

=

∫ 1

0

J(χ{v>s}) ds.

By construction un → u and vn → v in L1(Ω). Then by positive homogeneity, and assuming the

representation formula (3.6) holds, we get

J(un + vn) = J

(

1

n

∑

k∈N

χ{u> k+t
n } + χ{v> k+t

n }

)

≤ 1

n

∑

k∈N

J
(

χ{u> k+t
n }
)

+ J
(

χ{v> k+t
n }
)

.

The right-hand side converges by construction to J(u) + J(v), and thus, by lower semicontinuity

of J , we have that (3.5) follows.

In the case m ≤ u ≤ M and m ≤ v ≤ M , one can easily show again that (3.5) holds by

considering the functions (u − m)/(M − m) and (v − m)/(M − m), and taking into account the

general properties of J .

Finally, for u, v ∈ L1(Ω) and for T > 0, let us consider uT := −T ∨u∧T and vT := −T ∨ v∧T .

Since uT → u and vT → v in L1(Ω), by the lower semicontinuity of J we obtain

J(u + v) ≤ lim inf
T→+∞

J(uT + vT ) ≤ lim inf
T→+∞

(J(uT ) + J(vT )) ≤ lim sup
T→+∞

J(uT ) + lim sup
T→+∞

J(vT )

= lim
T→+∞

∫ T

−T

J(χ{u>s}) ds + lim
T→+∞

∫ T

−T

J(χ{v>s}) ds = J(u) + J(v),

so that (3.5) follows.

In order to conclude the proof, we have to check claim (3.6). Let M := maxu. Since u is

positive and integer valued, we can write u =
∑M

i=1 χ{u≥i}. For any i ∈ {1, . . . , M} we have

∫ i

i−1

J(χ{u>s}) ds = J(χ{u≥i})

so that

J(u) =

∫ +∞

0

J(χ{u>s}) ds =
M
∑

i=1

J(χ{u≥i}).

Hence

J(u) ≥ inf

{

m
∑

i=1

J(χEi) : m ≥ 1 , u =
m
∑

i=1

χEi

}

.

In order to prove the opposite inequality let u =
∑m

i=1 χEi for some Borel set Ei ⊆ Ω and m ≥ 1.

Observe that for any r, s ∈ {1, . . . , m} with r 6= s we also have

u = χEr∩Es + χEr∪Es +
∑

i6=r
i6=s

χEi .

From (3.4) we get

J(χEr∩Es) + J(χEr∪Es) +
∑

i6=r
i6=s

J(χEi) ≤
m
∑

i=1

J(χEi).



CONTINUOUS LIMITS OF DISCRETE PERIMETERS 9

Then by induction it is easy to see that

inf

{

m
∑

i=1

J(χEi) : m ≥ 1 , u =

m
∑

i=1

χEi

}

≥ inf

{

m
∑

i=1

J(χEi) : m ≥ 1 , u =

m
∑

i=1

χEi , E1 ⊇ E2 ⊇ · · · ⊇ Em

}

=

M
∑

i=1

J(χ{u≥i}) = J(u).

Hence claim (3.6) holds true, so that the proof is concluded. �

The following Proposition deals with the stability of the class GC(Ω) with respect to the Γ-

convergence.

Proposition 3.5. Let (Jn)n∈N be a sequence of convex functionals in GC(Ω) such that there

exists a functional J̃ defined on characteristic functions of Borel sets which satisfies the following

conditions:

(a) for every Borel set E ⊆ Ω and for every sequence of Borel sets (En)n∈N contained in Ω

such that χEn → χE in L1(Ω) we have

J̃(χE) ≤ lim inf
n→∞

Jn(χEn);

(b) for every Borel set E ⊆ Ω there exists a sequence of Borel sets (En)n∈N contained in Ω

with χEn → χE in L1(Ω) and such that

lim sup
n→∞

Jn(χEn) ≤ J̃(χE).

Then setting

J(u) :=

∫ +∞

−∞
J̃(χ{u>s}) ds,

we have J ∈ GC(Ω) and the sequence (Jn)n∈N Γ-converges to J in the L1-topology.

Conversely let (Jn)n∈N be a sequence of functionals in GC(Ω) which Γ-converges to a proper

functional J : L1(Ω) → [0, +∞]. Then J ∈ GC(Ω) and its restriction J̃ to the family of charac-

teristic functions of Borel subsets of Ω satisfies conditions (a) and (b).

Remark 3.6. Notice that it follows that for convex functionals in GC(Ω), the Γ-convergence

is equivalent to the Γ-convergence on the corresponding (submodular) set functions, that is, the

restriction to characteristic functions of the original functionals. However, the last statement in

Proposition 3.5 is also true without assuming any convexity of the functions Jn. Notice that there

exist functionals in GC(Ω) which are lower semicontinuous but not convex, so that convexity

cannot be gained by relaxation. (It suffices to consider functionals of the form (4.4) with Ω and

h chosen in such a way that the summation involves only one square, and the function F is not

submodular on binary vectors.)

Proof of Proposition 3.5. Notice that J̃ is, by construction, lower semicontinuous on characteristic

functions, so that the map s 7→ J̃(χ{u>s}) is measurable for every u ∈ L1(Ω). Hence the definition

of J is well posed.

In order to prove the Γ-convergence result, we need to check Γ-lim inf and Γ-lim sup inequalities

(see Section 2). Let us start with the Γ-lim inf inequality. Let un → u in L1(Ω). Up to a

subsequence, we can assume that χ{un>s} → χ{u>s} in L1(Ω) for a.e. s ∈ R. By Fatou’s Lemma,

the generalized coarea formula (3.1) and assumption (a) we get

lim inf
n→∞

Jn(un) ≥
∫ +∞

−∞
lim inf
n→∞

Jn(χ{un>s}) ds ≥
∫ +∞

−∞
J̃(χ{u>s}) ds = J(u)

so that the Γ-lim inf inequality follows.
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Let us come to the Γ-lim sup inequality. We can clearly assume that the map s 7→ J̃(χ{u>s})

belongs to L1(R). Notice that the subspace given by (finite) linear combinations of characteristic

functions is dense with respect to the energy J . In fact, if 0 ≤ u ≤ 1, by Lemma 3.3 we can choose

t ∈]0, 1[ such that
1

m

∑

k∈N

χ{u> k+t
m } → u in L1(Ω)

and (since J̃(0) = J̃(1) = 0)

lim
m→∞

1

m

∑

k∈N

J̃
(

χ{u> k+t
m }
)

=

∫ 1

0

J̃(χ{u>s}) ds =

∫ +∞

−∞
J̃(χ{u>s}) ds.

The case m ≤ u ≤ M follows considering the function (u − m)/(M − m). Finally, for u ∈ L1(Ω),

let us set uT := −T ∨ u ∧ T → u for every T > 0. Since uT → u in L1(Ω) and J(uT ) → J(u)

as T → +∞, the density in energy follows by a diagonal argument. By general results of Γ-

convergence, it suffices to prove the Γ-lim sup inequality for u equal to a linear combination of

characteristic functions. Since J is invariant under translation, it is not restrictive to assume that

u =
∑m

k=1 akχEk
with ak ≥ 0 for every k = 1, . . . , m, and Em ⊆ Em−1 ⊆ · · · ⊆ E1. In this way

we have

J(u) =

m
∑

k=1

akJ̃(χEk
).

By condition (b), we can find Borel sets En
k such that

χEn
k
→ χEk

in L1(Ω)

as n → ∞, and

lim sup
n→∞

Jn(χEn
k
) ≤ J̃(χEk

).

Setting un :=
∑m

k=1 akχEn
k
, we have un → u in L1(Ω). Since Jn is convex and positively one-

homogeneous, and hence subadditive, we deduce

lim sup
n→∞

Jn(un) ≤
m
∑

k=1

ak lim sup
n→∞

Jn(χEn
k
) ≤

m
∑

k=1

akJ̃(χEk
) = J(u),

so that the Γ-lim sup inequality is proved.

Finally, the fact that J ∈ GC(Ω) follows since J and J̃ coincide on characteristic functions.

The proof of the first part of the Proposition is thus complete.

Let us come to the second part. Clearly J̃ satisfies condition (a). In order to prove condition

(b), let E be a Borel subset of Ω, and let un ∈ L1(Ω) be such that un → χE in L1(Ω) and

lim supn→∞ Jn(un) ≤ J̃(χE). Since for any δ ∈ (0, 1)

Jn(un) ≥
∫ 1−δ

δ

Jn(χ{un>s}) ds,

there exists sn ∈ (δ, 1 − δ) such that

(3.7) Jn(χ{un>sn}) ≤
1

1 − 2δ
Jn(un).

Let us set Eδ
n := χ{un>sn}. We have clearly that χEδ

n
→ χE in L1(Ω) and by (3.7) we deduce

lim sup
n→∞

Jn(χEδ
n
) ≤ 1

1 − 2δ
lim sup

n→∞
Jn(un) ≤ 1

1 − 2δ
J̃(χE).

Let us choose now δ = 1/m. There exists nm such that for every n ≥ nm we have

‖χ
E

1/m
n

− χE‖L1 ≤ 1/m
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and

Jn(χ
E

1/m
n

) ≤ 1

1 − 2/m
J̃(χE)

Moreover we may assume that nm ↑ ∞. If we set En := E
1/m
n for nm ≤ n < nm+1, we have that

(En)n∈N is the recovering sequence for which the Γ-lim sup inequality holds.

Finally, the fact that J ∈ GC(Ω) follows now from the first part of the Proposition, and this

concludes the proof. �

4. Discrete approximation of anisotropic total variation

Let N ≥ 1 and Σ ⊂ ZN be a finite set, and let F : {0, 1}M → [0, +∞) be a nonnegative

submodular function, i.e. F (u ∧ v) + F (u ∨ v) ≤ F (u) + F (v) for any u, v ∈ {0, 1}Σ, with

F (0) = F (χΣ) = 0. We extend F to all vectors u ∈ RΣ into a convex function by letting (see

Proposition 3.4)

(4.1) F (u) =

∫ +∞

−∞
F (χ{u>s}) ds

where {u > s} := {x ∈ Σ : u(x) > s}. We let

(4.2) ρΣ := max
x∈Σ

|x|

and we assume, in addition, the following coercivity assumption:

(A) Σ contains 0 and the canonical basis (ei)
N
i=1 of RN , and there exists c > 0 such that for

any u ∈ RΣ,

F (u) ≥ c

N
∑

i=1

|u(ei) − u(0)|.

Notice that (4.1) is a discrete version of the generalized coarea formula (3.1).

Given h > 0 and x ∈ hZN let us set

(4.3) Qh
x := x + h [0, 1[

N
.

Let Vh denote the space of functions u : RN → R such that

u =
∑

x∈hZN

u(x)χQh
x
.

Notice that we have Vh ⊆ L1
loc(R

N ).

Let Ω ⊂ RN be an open and bounded set. We denote by Vh(Ω) the restriction to Ω of the

functions in Vh. Let moreover Ih(Ω) denote the set of x ∈ RN such that x+hΣ ⊂ Ω. We consider

the functional Jh(·, Ω): L1(Ω) → [0, +∞[ defined as

(4.4) Jh(u, Ω) :=











hN−1
∑

x∈Ih(Ω)∩hZN

F (u[x + hΣ]) if u ∈ Vh(Ω)

+∞ if u ∈ L1(Ω) \ Vh(Ω),

where for any x ∈ Ih(Ω), u[x + hΣ] is the vector (u(x + hy)y∈Σ) of RΣ.

The aim of this section is to study the asymptotic behavior of the functionals Jh(·, Ω) as the

size mesh h vanishes: it is expected that they approximate some anisotropic total variation. The

following Proposition shows that the functionals Jh(·, Ω) satisfy the generalized coarea formula

(3.1).

Proposition 4.1. The functional Jh(·, Ω) is convex and belongs to GC(Ω). Moreover, there exist

C2 > C1 > 0 such that for any open sets A, B with A ⊂⊂ B ⊂⊂ Ω, and for any u ∈ Vh(Ω), we

have, if h is small enough,

(4.5) C1|Du|(A) ≤ Jh(u, B) ≤ C2|Du|(Ω) .
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Proof. From (4.1), we get that also Jh satisfies (3.1). The submodularity of F yields (3.4), hence

Jh is convex.

To show the estimate (4.5), it is enough to assume that u ∈ Vh(Ω) is a characteristic function

(the general case then follows from the coarea formula). In this case, the left hand side inequality

follows from assumption (A), while the other follows from the fact if that F (u[x + hΣ]) > 0 for

some x ∈ Ih(B) ∩ hZ
N , then u takes different values on the set x + hΣ so that its variation on

B(x, ρΣh) (where ρΣ is given by (4.2)) is at least hN−1. �

For every ν ∈ RN we set

F (ν · Σ) := F ((ν · y)y∈Σ)

The main result of the paper is the following.

Theorem 4.2. Let Ω ⊆ RN be a bounded, open and Lipschitz domain, and let Jh := Jh(·, Ω) be

defined as in (4.4) for h > 0. Then the family (Jh)h>0 Γ-converges in the L1-topology as h → 0

to the functional J : L1(Ω) → [0, +∞] given by

(4.6) J(u, Ω) =











∫

Ω

F

(

Du

|Du| · Σ
)

d|Du| if u ∈ BV (Ω)

+∞ if u ∈ L1(Ω) \ BV (Ω),

where for u ∈ BV (Ω) the function Du/|Du| stands for the Radon-Nikodym derivative of Du with

respect to its total variation |Du|.

Since J(·, Ω) satisfies the generalized coarea formula (see Proposition 3.5), we can also write

for u ∈ BV (Ω)

(4.7) J(u, Ω) =

∫ +∞

−∞
PerΣ,F ({u > s}, Ω) ds,

where for any finite-perimeter set E in Ω

(4.8) PerΣ,F (E, Ω) =

∫

∂∗E∩Ω

F (νE · Σ) dHN−1.

In particular

J(χE , Ω) = PerΣ,F (E, Ω)

for any finite-perimeter set E in Ω.

The following Corollary is a consequence of the Γ-convergence result of the previous Theorem.

Corollary 4.3. Let Ω ⊆ R
N be a bounded open set with Lipschitz boundary, g ∈ L∞(Ω), and let

uh be the solution of

(4.9) min
u∈L1(Ω)

Jh(u, Ω) + ‖u − g‖2
L2(Ω).

Then uh converges in L1(Ω) for h → 0 to the minimizer u ∈ BV (Ω) of

(4.10) min
u∈L1(Ω)

J(u, Ω) + ‖u − g‖2
L2(Ω),

where J is the Γ-limit of the family (Jh)h>0 given by (4.6).

Proof. Without loss of generality we can suppose uh ∈ Vh(Ω) for any h > 0. Moreover, as a

consequence of the submodularity property (iv) in Proposition 3.2, we have that the functional Jh

decreases by truncation. This entails that ‖uh‖∞ ≤ ‖g‖∞ for every h > 0.

Taking into account (4.5) we get that the total variation of uh is uniformly bounded. By

compactness in BV , we deduce that there exists u ∈ BV (Ω) and a sequence hk → 0 such that

uhk
→ u in L1(Ω). The convergence is indeed in every Lp for every 1 ≤ p < +∞ since (uh)h>0 is

bounded in L∞(Ω).
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The fact that the limit u is a minimizer of (4.10) is a consequence of Proposition 2.1. Since

this minimizer is, in fact, unique, we conclude that the entire family (uh)h>0 converges to u as

h → 0. �

Remark 4.4. Notice that equality (4.7) implies that the Γ-limit J(u, Ω) satisfies (4.6) for every

u ∈ BV (Ω). In fact a direct computation shows that (4.6) holds for simple functions. The

extension to the whole BV (Ω) follows by a density argument. Let u ∈ BV (Ω), and let (un)n∈N

be a sequence of simple functions converging in L1(Ω) to u and such that |Dun|(Ω) → |Du|(Ω) as

n → ∞. From Reshetnyak continuity theorem (see [2, Thm 2.39]) we deduce that

(4.11) lim
n→∞

∫

Ω

F

(

Dun

|Dun|
· Σ
)

d|Dun| =

∫

Ω

F

(

Du

|Du| · Σ
)

d|Du|.

Since |Dun|(Ω) → |Du|(Ω), by coarea formula in BV (Ω) we get, up to a subsequence, Per({un >

s}, Ω) → Per({u > s}, Ω) for a.e. s ∈ R. Using again Reshetnyak continuity theorem (applied to

the measures ν dHN−1 ∂∗{un > s}), we deduce that

lim
n→∞

PerΣ,F ({un > s}, Ω) = lim
n→∞

∫

∂∗{un>s}∩Ω

F (ν · Σ) dHN−1

=

∫

∂∗{u>s}∩Ω

F (ν · Σ) dHN−1 = PerΣ,F ({u > s}, Ω).

By the generalized coarea formula for J and the Dominated Convergence Theorem we conclude

that

lim
n→∞

J(un, Ω) = J(u, Ω)

so that in view of (4.11), the representation (4.6) is proved.

The rest of the Section is devoted to the proof of Theorem 4.2. In view of Proposition 3.5 and

of Remark 4.4, in order to study the Γ-limit of the family (Jh)h>0 we can consider the restriction

of Jh to characteristic functions of sets, and show that it Γ-converges to the anisotropic perimeter

given by (4.8).

By definition, we need to show that given any sequence hm ↓ 0, we have for any Borel set

E ⊆ Ω:

• if χEm ∈ Vhm(Ω) converges to χE in L1(Ω), then

(4.12) lim inf
m→∞

Jhm(χEm , Ω) ≥ J(χE , Ω) ;

• there exists a sequence (Em)m∈N with χEm ∈ Vhm(Ω) such that χEm → χE in L1(Ω) and

(4.13) lim sup
m→∞

Jhm(χEm , Ω) ≤ J(χE , Ω) .

We prove inequalities (4.12) and (4.13) in subsections 4.1 and 4.2 respectively. We will use the

following “continuous” variant of Jh, defined on any function and not just on piecewise constant

functions of the class Vh: we let, for any u ∈ L1(Ω),

(4.14) Jc
h(u, Ω) :=

1

h

∫

Ih(Ω)

F (u[x + hΣ]) dx.

Let Qν is the open unit cube centered in 0 with a face orthogonal to ν, and

(4.15) Iν := {x ∈ R
N : x · ν > 0}.

We have the following result:

Lemma 4.5. There holds

(4.16) F (ν · Σ) = lim
h→0

Jc
h(χIν , Qν)
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Proof. One has

Jc
h(χIν , Qν) =

1

h

∫

Ih(Qν)

F (χIν [x + hΣ]) dx.

Now, letting u(x) := ν ·x, we have, for any s ∈ R and x ∈ RN , χIν [x+hΣ] = χ{u>s}[x+ sν +hΣ],

so that we may write

(4.17) Jc
h(χIν , Qν) =

∫ 1/2

−1/2

(

1

h

∫

Ih(Qν)

F (χ{u>s}[x + sν + hΣ]) dx

)

ds

=

∫ 1/2

−1/2

(

1

h

∫

Ih(Qν)+sν

F (χ{u>s}[y + hΣ]) dy

)

ds.

Now, as soon as |s| < 1/2 − ρΣh,
∫

Ih(Qν)+sν

F (χ{u>s}[y + hΣ]) dy =

∫

Ih(Qν)

F (χ{u>s}[y + hΣ]) dy ,

and it follows from (4.17) and the co-area formula that

(4.18) Jc
h(χIν , Qν) = Jc

h(u, Qν) + ǫh

where the error ǫh ≥ 0 is

ǫh =
1

h

∫

1
2
−ρΣh<|s|< 1

2

(

∫

Ih(Qν)+sν

F (χ{u>s}[y + hΣ]) dy −
∫

Ih(Qν)

F (χ{u>s}[y + hΣ]) dy

)

ds.

One easily checks that ǫh ≤ 2(maxΣ F )ρ2
Σh → 0 as h → 0, and (4.16) follows from (4.18) and the

observation that

Jc
h(u, Qν) = F (ν · Σ)

|Ih(Qν)|
|Qν |

→ F (ν · Σ)

as h → 0. �

4.1. Γ-lim inf inequality. We prove here the inequality (4.12). First of all, we may assume

(upon extracting a subsequence) that the lim inf in (4.12) is a limit, and, also, that it is finite

(otherwise there is nothing to prove), so that in particular supm Jhm(χEm , Ω) = C < +∞. For

any A ⊂⊂ Ω, it follows from (4.5) that for any m large enough, C1|DχEm |(A) ≤ C so that (by

lower semicontinuity of the total variation) also E must have finite perimeter in Ω.

We consider the non-negative measures

µm = hN−1
m

∑

x∈Ihm (Ω)∩hmZN

F (χEm [x + hmΣ])δx ,

such that Jhm(χEm , Ω) = µm(Ω). Since they are uniformly bounded, we may also assume that

there exists a measure µ such that µm
∗
⇀ µ as measures. We therefore have

(4.19) µ(Ω) ≤ lim inf
m→∞

Jhm(χEm , Ω) ,

hence the thesis follows if we show that µ ≥ F (νE · Σ)HN−1 ∂∗E as measures.

It is therefore enough to compute the Radon-Nikodým derivative of the measure µ with respect

to HN−1 ∂∗E, and to show it is above F (νE · Σ). We know from [2, Thm. 5.52] that it is given,

for HN−1-a.e. x ∈ ∂∗E, by

lim
r→0

µ(x + rQν)

HN−1((x + rQν) ∩ ∂∗E)
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for any ν ∈ RN with unit norm, where Qν is as before the open unit cube centered in 0 with a

face orthogonal to ν. In particular, at a regular point x0 of ∂∗E we can choose ν = νE(x0) (the

inner normal to E at x0) and the limit becomes

(4.20) ℓ = lim
r→0

µ(x0 + rQν)

rN−1
.

Let us now show that ℓ ≥ F (ν · Σ). We can assume ℓ < +∞. Notice that since x0 is regular, we

also have

lim
r→0

1

rN

∫

x0+2rQν

|χIν (y − x0) − χE(y)| dy = 0.

For a.e. r > 0 (small), we have

µ(x0 + rQν) = lim
m→∞

µm(x0 + rQν) ,

and
∫

x0+2rQν

|χIν (y − x0) − χE(y)| dy = lim
m→∞

∫

x0+2rQν

|χIν (y − x0) − χEm(y)| dy .

Hence, using a diagonal argument, there exist sequences mn and rn such that hmn/rn → 0,

ℓ = lim
n→∞

µmn(x0 + rnQν)

rN−1
n

and

lim
n→∞

1

rN
n

∫

x0+2rnQν

|χIν (y − x0) − χEmn
(y)| dy = 0.

For each n, we now make the change of variable y = x0 + rnz, and we define E′
n = (Emn −

x0)/rn ⊂ (Ω − x0)/rn. It follows

(4.21) ℓ = lim
n→∞

(

hmn

rn

)N−1
∑

z∈Qν∩[(hmn/rn)ZN−x0/rn]

F (χE′
n
[z + (hmn/rn)Σ])

and

(4.22) lim
n→∞

∫

2Qν

|χIν (z) − χE′
n
(z)| dz = 0.

We let h′
n = hmn/rn (which goes to 0), and let θn = x0/hmn − [x0/hmn ] (the vector whose

coordinates are each the fractional part of the corresponding coordinate of x0/hmn). The limit

in (4.21) becomes:

(4.23) ℓ = lim
n→∞

h′N−1
n

∑

z∈Qν∩h′
n(ZN−θn)

F (χE′
n
[z + h′

nΣ]).

Letting E′′
n := E′

n + h′
nθn, we clearly still have

(4.24) lim
n→∞

∫

Qν

|χIν (z) − χE′′
n
(z)| dz = 0.

From now on, to simplify, we will denote E′′
n and h′

n by, respectively, En and hn. We consider

a basis (ν1, . . . , νN ) of RN such that each νi is orthogonal to a face of Qν , and with νN = ν. We

choose η0 > 0 (small). Writing x = sν1 + x′ = (s, x′) with x′ · ν1 = 0, we have (using Fubini’s

Theorem)

(4.25)

∫ η0

0

[

1

hn

∫ 1/2−η

1/2−η−ρΣhn

∫

[−1/2,1/2]N−1

|χIν (x) − χEn(x)| dx′ ds

]

dη

= ρΣ

∫ 1/2

1/2−η0−ρΣhn

∫

[−1/2,1/2]N−1

|χIν (x) − χEn(x)| dx′ds

which, thanks to (4.24), goes to 0.
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Hence, up to a subsequence, we may assume that for a.e. η ∈ [0, η0],

(4.26)
1

hn

∫ 1/2−η

1/2−η−ρΣhn

∫

Qν∩ν⊥
1

|χIν (sν1 + x′) − χEn(sν1 + x′)| dx′ds → 0

as n → ∞. The same holds if we replace in (4.26) ν1 with any of the νi, i = 2, . . . , N − 1, or if we

replace the interval [1/2 − η − ρΣhn, 1/2 − η] of integration in the first integral with the interval

[−1/2 + η,−1/2 + η + ρΣhn]. Let us therefore choose a η > 0 such that all the above mentioned

limits are 0, and let Qη
ν = (1 − 2η)Qν .

We now extend periodically En ∩ Qη
ν in the directions ν1, . . . , νN−1, into a set Ên ⊂ ν⊥ +

[−1/2 + η, 1/2 − η]ν, by letting x̂ ∈ Ên if and only if x̂ = x + (1 − 2η)
∑N−1

i=1 kiνi for some point

x ∈ En ∩ Qη
ν and integers ki ∈ Z. It follows from (4.23) that

(4.27) ℓ ≥ lim inf
n→∞

Jc
hn

(χÊn
, Qη

ν) ,

where Jc
hn

is as in (4.14), and (recalling (4.5)),

(4.28) sup
n∈N

|DχÊn
|(Qη

ν) ≤ sup
n∈N

|DχEn |(int(Qη
ν)) + 2N < +∞.

We claim that for any τ ∈ ν⊥, we also have

(4.29) Jc
hn

(χÊn
, Qη

ν) ≥ Jc
hn

(χÊn
, τ + Qη

ν) − ǫn

for some error ǫn → 0 which is independent on τ .

Assume to simplify that τ = sν1 for some s ∈ R. If s is (1 − 2η) times an integer, then (4.29)

is obvious. If not, we may assume without loss of generality that 0 < s < 1 − 2η. We have

Jc
hn

(χÊn
, sν1 + Qη

ν) =
1

hn

∫

Ihn (sν1+Qη
ν)

F (χÊn
[x + hnΣ]) dx.

The domain of integration is split into three parts D1 = Ihn(sν1 +Qη
ν)∩Ihn(Qη

ν), D2 = Ihn(sν1 +

Qη
ν)∩ Ihn((1− 2η)ν1 + Qη

ν), and D3 = Ihn(sν1 + Qη
ν) \ (D1 ∪D2). Since D1 and (D2 − (1− 2η)ν1)

are disjoint subsets of Ihn(Qη
ν), it follows

(4.30) Jc
hn

(χÊn
, sν1 + Qη

ν) ≤ Jc
hn

(χÊn
, Qη

ν) +
1

hn

∫

D3

F (χÊn
[x + hnΣ]) dx.

We have D3 ⊂ S+
1 ∪ ((1 − 2η)ν1 + S−

1 ), where for i = 1, . . . , N − 1,

S±
i =







x =

N
∑

j=1

xjνj :
1

2
− η − ρΣhn ≤ ±xi <

1

2
− η , |xj | <

1

2
− η ∀j 6= i







.

Let us show that (1/hn)
∫

S+
1

F (χÊn
[x + hnΣ]) dx → 0 as n → ∞. We have, using the notation

x = sν1 + x′, x′ · ν1 = 0, and the change of variable s = 1/2 − η − hnξ,

(4.31)
1

hn

∫

S+
1

F (χÊn
[x + hnΣ]) dx =

∫ ρΣ

0

∫

[−1/2+η,1/2−η]N−1

F (vn(ξ, x′)) dx′ dξ

where for each ξ, x′, vn(ξ, x′) ∈ {0, 1}Σ is the vector χÊn
[(1/2−η−hnξ)ν1 +x′+hnΣ]. We observe

that from (4.26), we have (using the same change of variable, and observing that χIν depends only

on x′
N )

∫ ρΣ

0

∫

[−1/2,1/2]N−1

|χIν (x′
N ) − χEn(1/2 − η − hnξ, x′)| dx′dξ → 0

as n → ∞. In particular, up to a subsequence, we may assume that each component of the

vector vn(ξ, x′) converges to χIν (x′
N ) as n → ∞, for a.e. (ξ, x′). Notice that these components

take only the value 0 or 1, hence, they must be equal to χIν (x′
N ) for n large enough. Since

F (0) = F (χΣ) = 0, it follows that F (vn(ξ, x′)) → 0 a.e., and since F is bounded we find (using

Lebesgue’s theorem) that the integral in the right-hand side of (4.31) goes to 0.
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In the same way, we can show that (1/hn)
∫

S−
1

F (χÊn
[x + hnΣ]) dx → 0, so that (4.29) follows

from (4.30) and the inclusion D3 ⊂ S+
1 ∪ ((1−2η)ν1 +S−

1 ). In the general case (if τ is not parallel

to ν1), we can show in the same way that (4.29) holds provided

ǫn =
1

hn

N−1
∑

i=1

∫

S−
i ∪S+

i

F (χÊn
[x + hnΣ]) dx ;

our choice of η guarantees that ǫn still goes to zero.

Let un : Qη
ν → [0, 1] be the average of χÊn

on each hyperplane orthogonal to ν, given by

un(x) :=
1

(1 − 2η)N−1

∫

Qη
ν∩ν⊥

χÊn
(x + x′) dx′ .

It is clear that un depends only on x · ν. Since
∫

Qη
ν

|un − χIν | dx ≤
∫

Qη
ν

|χÊn
− χIν | dx,

we deduce

un → χIν in L1(Qη
ν).

Notice that for a.e. x ∈ Qη
ν, the vector un[x + hnΣ] is also the average on the hyperplane through

x orthogonal to ν of the vectors χÊn
[· + hnΣ], so that, by Jensen’s inequality and using (4.29)

Jc
hn

(χÊn
, Qη

ν) ≥ Jc
hn

(un, Qη
ν) − ǫn.

Together with (4.27), it yields

(4.32) ℓ ≥ lim inf
n→∞

Jc
hn

(un, Qη
ν) .

It is clear that (4.28) also yields a uniform bound on the total variations |Dun|(Qη
ν), n ∈ N.

Let us fix ε, δ ∈]0, 1[. By the generalized coarea formula for Jc
hn

, and the coarea formula in BV

we get

C ≥ Jc
hn

(un, Qη
ν) + ε|Dun|(Qη

ν) =

∫ 1

0

[Jc
hn

(χ{un>s}, Q
η
ν) + εHN−1(∂∗{un > s} ∩ Qη

ν)] ds

≥
∫ 1−δ

δ

[Jc
hn

(χ{un>s}, Q
η
ν) + εHN−1(∂∗{un > s} ∩ Qη

ν)] ds

for some positive constant C. We deduce that there exists sn ∈]δ, 1 − δ[ such that

(4.33) Jc
hn

(un, Qη
ν) + ε|Dun|(Qη

ν) ≥ (1 − 2δ)Jc
hn

(χ{un>sn}, Q
η
ν)

and

(4.34) C ≥ ε(1 − 2δ)HN−1(∂∗{un > sn} ∩ Qη
ν).

We have

vn := χ{un>sn} → χIν in L1(Qη
ν).

By (4.34) and since un depends only on x · ν, we deduce that there exists, up to a subsequence,

an odd number M independent of n such that

∂∗{vn = 1} = Qη
ν ∩

M
⋃

k=1

(ak
nν + ν⊥)

with

−1

2
+ η < a1

n < a2
n < . . . < aM

n <
1

2
− η.

Without loss of generality, we can assume that ak
n → 0 for every k = 1, . . . , M , vn = 0 if x ·ν < a1

n

and vn = 1 if x · ν > aM
n . Indeed, if some of the points ak

n do not go to zero as n → ∞, we can

lower the energy Jc
hn

(vn, Qη
ν) by “removing” from vn the corresponding discontinuities.
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If M > 1, let us consider the function ṽn = χ{x·ν>a2
n}. Since vn ∨ ṽn is both a translate of ṽn

(of (a1
n − a2

n)ν) and of χIν (of a2
nν), for n large we have

Jc
hn

(ṽn, Qη
ν) = Jc

hn
(vn ∨ ṽn, Qη

ν) = Jc
hn

(χIν , Qη
ν).

By the submodularity property of F , we obtain setting v1
n := vn ∧ ṽn that for n large enough,

Jc
hn

(v1
n, Qη

ν) ≤ Jc
hn

(vn, Qη
ν).

If M = 3 then v1
n = χ{x·ν>a3

n} is a translate of χIν . If M > 3, then we can reiterate this argument,

replacing now a2
n with a4

n: after a finite number of steps we eventually find a translate of χIν with

energy lower than Jc
hn

(vn, Qη
ν). Hence, for n large enough,

(4.35) Jc
hn

(χIν , Qη
ν) ≤ Jc

hn
(vn, Qη

ν).

By (4.16) and a straightforward scaling argument, the left-hand side of (4.35) goes to (1 −
2η)N−1F (ν · Σ) as n → ∞. Recalling (4.32) and (4.33), we deduce

ℓ + ε sup
n∈N

|Dun|(Qη
ν) ≥ (1 − 2δ)(1 − 2η)N−1F (ν · Σ) ,

and since ε, δ and η can be chosen arbitrarily small we deduce that ℓ ≥ F (ν · Σ). It follows that

µ ≥ F (ν · Σ)HN−1 ∂∗E, which together with (4.19) yields (4.12).

4.2. Γ-lim sup inequality. Let us now show the inequality (4.13). We first show the following

generalization of the formula (4.16):

Lemma 4.6. Let A ⊂ Ω be an open set, and assume HN−1(∂Iν ∩ ∂A) = 0. Then

(4.36) lim
h→0

Jc
h(χIν , A) = HN−1(∂Iν ∩ A)F (ν · Σ) .

Proof. Let ε > 0. Let (νi)
N
i=1 be a basis of RN , with νN = ν, and let us consider the family Qε of

all cubes Q ⊂ A, of side ε, centered at the points
∑N

i=1 εkiνi for ki ∈ ZN , and such that each face

is orthogonal to some νi.

We have obviously

lim
h→0

Jc
h(χIν , A) ≥

∑

Q∈Qε

lim inf
h→0

Jc
h(χIν , Q)

while (by (4.16) and a simple scaling argument) for each Q,

lim
h→0

Jc
h(χIν , Q) = εN−1F (ν · Σ) .

Hence,

lim
h→0

Jc
h(χIν , A) ≥ HN−1



∂Iν ∩
⋃

Q∈Qε

Q



F (ν · Σ) ,

letting then ε → 0, it shows “≥” in (4.36).

To show the reverse inequality, we let, for each ε > 0, Aε =
⋃

Q∈Qε
Q, and first observe that

for any η > 0,

Jc
h(χIν , Aε) ≤

∑

Q∈Qε

Jc
h(χIν , (1 + η)Q)

as soon as h < ηε/(2ρΣ), where here (1 + η)Q denotes the cube of same center as Q, and dilated

by the factor 1 + η. Taking the limit h → 0, we find

(4.37) lim sup
h→0

Jc
h(χIν , Aε) ≤ (1+η)N−1HN−1(∂Iν∩Aε)F (ν ·Σ) ≤ HN−1(∂Iν∩A)F (ν ·Σ) + Cη .

for any η > 0. Now,

Jc
h(χIν , A) = Jc

h(χIν , Aε) +
1

h

∫

Ih(A)\Ih(Aε)

F (χIν [x + hΣ]) dx
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so that (4.36) will follow from (4.37) if we show that

(4.38)
1

h

∫

Ih(A)\Ih(Aε)

F (χIν [x + hΣ]) dx → 0

as h → 0 and ε → 0. The integrand above is zero when x is at distance larger than hρΣ to the

interface ∂Iν , and x ∈ A is out of the domain of integration as soon as it is at distance larger than

hρΣ to A \ Aε, for instance when x ∈ A2ε := {ξ ∈ A : dist(ξ, ∂A) > 2ε}. Hence, the error (4.38)

is bounded by

(4.39) (max
Σ

F )
|(A \ A2ε) ∩ (∂Iν + [−hρΣ, hρΣ]ν)|

h
.

Let G ⊂ ∂Iν be a relatively open set which contains ∂Iν ∩ ∂A. We claim that there exists δ0 > 0

small such that the projection of (A \ Aδ) ∩ (∂Iν + [−δ, δ]ν) onto ∂Iν is contained in G for any

δ < δ0: if not, one finds a sequence δn → 0 and points xn ∈ (A \ Aδn) ∩ (∂Iν + [−δn, δn]ν) which

project outside of G, but then, any limit point of this sequence should be in ∂A∩ ∂Iν but outside

G, which is not possible.

Then, if we choose ε < δ0/2
√

N , and h small enough, we have

(A \ A2ε) ∩ (∂Iν + [−hρΣ, hρΣ]ν) ⊂ G + [−hρΣ, hρΣ]ν

so that the lim sup of (4.39), as h → 0, is less than

ρΣ

(

max
Σ

F
)

HN−1(G).

Since we assumed that HN−1(∂Iν ∩ ∂A) = 0, HN−1(G) may be chosen as small as we wish so

that (4.38) holds. Hence the Lemma is proved. �

Now, we show the following estimate:

Lemma 4.7. Let A ⊂ Ω be an open set with continuous boundary, and let E ⊂ Ω be a finite-

perimeter set such that HN−1(∂∗E ∩ A \ ∂∗E ∩ A) = 0. Then,

(4.40) lim sup
h→0

Jc
h(χE , A) ≤ (2ρΣ max

Σ
F )HN−1(∂∗E ∩ A) .

Proof. Since A has a continuous boundary, for h small enough, x+hΣ contains points of Lebesgue

density of E both zero and one only if x is close enough to ∂∗E∩A, namely, dist (x, ∂∗E∩A) ≤ hρΣ.

Hence,

Jc
h(χE , A) =

1

h

∫

Ih(A)

F (χE [x + hΣ]) dx ≤ |{x ∈ A : dist (x, ∂∗E ∩ A) ≤ hρΣ}|
h

(max
Σ

F ).

By standard results on the Minkowski contents [9, Thm 3.2.39], the last fraction goes to

2ρΣHN−1(∂∗E ∩ A) as h → 0, which shows the Lemma. �

We deduce the following:

Corollary 4.8. Let Ω ⊂ RN have a continuous boundary, and let E ⊂ Ω be a set whose boundary

is made of a finite union of subsets of (N − 1)-dimensional hyperplanes. Then

lim
h→0

Jc
h(χE , Ω) =

∫

∂E∩Ω

F (νE(x) · Σ) dHN−1(x),

where νE(x) is the inner normal to E at x.

Proof. By assumption, ∂E ∩ Ω =
⋃M

i=1 Pi where Pi ⊂ (xi + ∂Iνi) for some xi ∈ R
N and νi ∈ R

N

with unit norm, moreover we assume that νi = νE on Pi (νi points towards the interior of E). (We

also assume that the Pi are “maximal”, in the sense that P i ∩ P j 6= ∅ ⇒ νi 6= νj for any i 6= j.)

Let S = Ω ∩⋃M
i=1 ∂Pi, where the ∂Pi is the relative boundary of the face inside the hyperplane

(xi + ∂Iνi): it is a (N − 2)-dimensional set, with HN−2(S) < +∞.
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We choose ε > 0 and build a finite covering (Ai)
M+2
i=1 of ∂E ∩ Ω with bounded open sets

with continuous boundary, as follows: AM+1 = {x ∈ Ω : dist (x, ∂Ω) < ε}, AM+2 = {x ∈ Ω, :

dist (x, S) < ε}, and Ai is a neighborhood of Pi \ (AM+1 ∪AM+2) which does not intersect Pj for

j 6= i. By Lemmas 4.6 and 4.7,
∣

∣

∣

∣

∣

lim
h→0

Jc
h(χE , Ω) −

M
∑

i=1

HN−1(Pi ∩ Ai)F (νi · Σ)

∣

∣

∣

∣

∣

≤ C
(

HN−1(∂E ∩ AM+1) + HN−1(∂E ∩ AM+2)
)

with C = 2ρΣ maxΣ F . Letting ε → 0 shows the Corollary. �

We are now able to show the following Proposition, which essentially shows the Γ-convergence

of Jh to J on the restricted class of polyhedral sets.

Proposition 4.9. Let Ω ⊂ RN have a continuous boundary, and let E ⊂ Ω be a set whose

boundary is made of a finite union of subsets of (N − 1)-dimensional hyperplanes. Then, there

exist sets Eh with χEh
∈ Vh(Ω), χEh

→ χE in L1(Ω) as h → 0, and

lim
h→0

Jh(χEh
, Ω) =

∫

∂E∩Ω

F (νE(x) · Σ) dHN−1(x) = J(χE , Ω) .

Proof. We have, making in (4.14) the change of variable x = z + y with z ∈ hZN and y ∈ [0, h[N ,

Jc
h(χE , Ω) =

1

hN

∫

[0,h[N



hN−1
∑

z∈(Ih(Ω)−y)∩hZN

F (χE [y + z + hΣ])



 dy

so that (by Corollary 4.8) we can choose for each h a yh ∈ [0, h[N such that

(4.41) lim sup
h→0

hN−1
∑

z∈(Ih(Ω)−yh)∩hZN

F (χE [yh + z + hΣ]) ≤ J(χE , Ω) ,

we can assume moreover that no point in yh + hZN ∩ Ω lies on ∂E.

For each ε > 0 we let Ωε = {x ∈ Ω : dist (x, ∂Ω) > ε}. We fix ε > 0, and define Eε
h as follows

(for h small enough):

χEε
h

=
∑

z∈Ωε∩hZN

χE(yh + z)χQh
z

+
∑

z∈(Ω\Ωε)∩hZN

χE(z)χQh
z

where Qh
z is the cube defined in (4.3). It is not difficult to show that χEε

h
→ χE in L1 as h → 0,

in fact, it converges locally uniformly in Ω \ ∂E. We have if h is small enough

(4.42)

Jh(χEε
h
, Ω) ≤ hN−1

∑

x∈Ih(Ωε)∩hZN

F (χEε
h
[x + hΣ]) + hN−1

∑

x∈Ih(Ω\Ω2ε)∩hZN

F (χEε
h
[x + hΣ])

≤ hN−1
∑

z∈(Ih(Ω)−yh)∩hZN

F (χE [yh + z + hΣ]) + hN−1
∑

x∈Ih(Ω\Ω2ε)∩hZN

F (χEε
h
[x + hΣ])

Now, thanks to (4.41) we get

(4.43) lim sup
h→0

Jh(χEε
h
, Ω) ≤ J(χE , Ω) + lim sup

h→0
hN−1

∑

x∈Ih(Ω\Ω2ε)∩hZN

F (χEε
h
[x + hΣ]).

In the sum, on the other hand, F (χEε
h
[x + hΣ]) is not zero only when some point of x + hΣ lies in

Eε
h and some other in Ω \Eε

h, and such x are at distance at most h(1 + ρΣ) from ∂E ∩Ω, so that

Qh
x ⊂ {ξ ∈ Ω \ Ω2ε+h

√
N : dist (ξ, ∂E ∩ Ω) ≤ h(1 +

√
N + ρΣ)}

Therefore, the sum is bounded by

|{ξ ∈ Ω \ Ω2ε+h
√

N : dist (ξ, ∂E ∩ Ω) ≤ h(1 +
√

N + ρΣ)}|
h

,
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which goes to 2(1 +
√

N + ρΣ)HN−1(∂E ∩ (Ω \ Ω2ε)) as h → 0. We deduce from (4.43) that

lim sup
h→0

Jh(χEε
h
, Ω) ≤ J(χE , Ω) + CHN−1(∂E ∩ (Ω \ Ω2ε)) .

Since HN−1(∂E ∩ (Ω \ Ω2ε)) → 0 as ε → 0, using a diagonal argument, we deduce the thesis of

the Corollary. �

Corollary 4.10. Let Ω ⊂ RN have a continuous boundary, and let E be a polyhedral set in Ω in

the previous sense. Then,

(Γ − lim
h→0

Jh(·, Ω))(χE) = J(χE , Ω) .

Proof. It follows from (4.12) (which has been shown in Subsection 4.1) and from Proposition 4.9.

�

Now, we are in a position to show that (4.13) holds.

Proposition 4.11. Let Ω be a bounded open set of RN with Lipschitz boundary, and let E ⊂ Ω

be a set with finite perimeter in Ω. Then for every h > 0 there exists Eh with χEh
∈ Vh(Ω), such

that χEh
→ χE in L1(Ω) as h → 0 and

(4.44) lim sup
h→0

Jh(χEh
, Ω) ≤ J(χE , Ω).

Proof. Since Ω is Lipschitz, we can extend E outside of Ω into a finite-perimeter subset of RN

(still denoted E) such that |DχE |(∂Ω) = 0. Then, standard approximation arguments show that

there exists a sequence of polyhedral sets Gn such that χGn converges to χE strongly in L1(RN ),

and with

lim
n→∞

|DχGn(RN )| = |DχE |(RN ) .

This can be seen, for instance, by approximating χE by smooth functions (by convolution) and

then approximating these smooth functions by piecewise linear functions, such as “P1” finite-

elements. Then, an appropriate thresholding of these functions provides the sequence Gn. The

Reshetnyak continuity Theorem (see section 2), and |DχE |(∂Ω) = 0 yield

lim
n→∞

J(χGn , Ω) = J(χE , Ω) .

By Proposition 4.9, we know that for each n there exists Gn
h converging to Gn, such that

lim suph→0 Jh(Gn
h , Ω) ≤ J(χGn , Ω). We construct the family (Eh)h>0 from the Gn

h, by a diag-

onal argument as follows. For every n there exists hn such that hn ↓ 0 as n → ∞ such that for

every h ≤ hn we have ‖χGn
h
− χGn‖L1(Ω) ≤ 1/n and Jh(χGn

h
, Ω) ≤ J(χGn , Ω) + 1/n. If we set

Eh := Gn
h for hn+1 < h ≤ hn, the result follows. �

5. Examples

Let us describe a few cases. First of all, the standard nearest-neighbor interaction on a square

grid corresponds to the situation where Σ = {(0, 0), (1, 0), (0, 1)} and, for u ∈ RΣ, F (u) = |u(1, 0)−
u(0, 0)| + |u(0, 1) − u(0, 0)|. It is obvious, in this case (as in any other case where F is a sum of

pair interactions) that the Γ-limit of Jh is the anisotropic total variation given by (1.5), in this

case,
∫

Ω |Du|1 where |p|1 = |p1| + |p2| is the 1-norm in R2.

Less trivial situations are when F cannot be reduced to a sum of pair interactions, such as, still

with the same set Σ, the functions F defined by F (0Σ) = F (1Σ) = 0, F (1Σ − u) = F (u) for any

u ∈ {0, 1}Σ, and

F

(

0

0 1

)

= 1 , F

(

1

0 0

)

= 1 , F

(

1

0 1

)

=
√

2 .
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This F can also be checked to be submodular. Now, the limit density is given by

(5.1) ν = (ν1, ν2) 7→ F

(

ν2

0 ν1

)

,

see Figure 1 for the expression of F , and where we also have plotted the shape of the “Wulff shape”

F (p · Σ) ≤ 1. Notice that in this case, we have chosen F (θ) =
√

(θ1,0 − θ0,0)2 + (θ0,1 − θ0,0)2 for

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

ν1

|ν1| + |ν2|
√

2|ν2| + |ν2 − ν1|

|ν1| + |ν2|

√
2|ν1| + |ν2 − ν1|

√
2|ν1| + |ν2 − ν1|

ν 1
=

ν 2

ν2

√
2|ν2| + |ν2 − ν1|

F (p · Σ) ≤ 1

Figure 1. Values of F given by (5.1)

θ ∈ Σ{0,1}: however, clearly, we get a limit energy which is not
∫

Ω
|Du| (which would be the Γ-limit

of u 7→ h
∑

i,j

√

(ui+1,j − ui,j)2 + (ui,j+1 − ui,j)2) but an anisotropic (crystalline) total variation.

This is of course due to the fact that the latter does not satisfy the generalized coarea formula.
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