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TRANSPORTATION-INFORMATION INEQUALITIES FOR MARKOV

PROCESSES (II) : RELATIONS WITH OTHER FUNCTIONAL

INEQUALITIES

ARNAUD GUILLIN, CHRISTIAN LÉONARD, FENG-YU WANG, AND LIMING WU

Abstract. We continue our investigation on the transportation-information inequalities
WpI for a symmetric markov process, introduced and studied in [13]. We prove that WpI

implies the usual transportation inequalities WpH , then the corresponding concentration
inequalities for the invariant measure µ. We give also a direct proof that the spectral gap
in the space of Lipschitz functions for a diffusion process implies W1I (a result due to
[13]) and a Cheeger type’s isoperimetric inequality. Finally we exhibit relations between
transportation-information inequalities and a family of functional inequalities (such as
Φ-log Sobolev or Φ-Sobolev).

keywords: Wasserstein distance; entropy; Fisher information; transport-information in-
equality; deviation inequality.

MSC 2000: 60E15, 60K35; 60G60.

1. Introduction

Let (X , d) be a complete and separable metric space (say Polish) and µ a given prob-
ability measure on (X ,B) where B is the Borel σ-field. Let (Xt)t≥0 be a µ-symmetric
ergodic conservative Markov process valued in X , with transition semigroup (Pt) (which
is symmetric on L2(µ)), and Dirichlet form (E(·, ·), D(E)) where D(E) is the domain of E
in L2(µ) := L2(X ,B, µ). Here the ergodicity means simply : for g ∈ D(E), E(g, g) = 0 iff
g = c.

For 1 ≤ p < +∞ fixed and for any probability measure ν on X (written as ν ∈ M1(X )),
consider

(i): Lp-Wasserstein distance between ν and µ:

Wp(ν, µ) := inf
π∈C(ν,µ)

∫∫

E2

dp(x, y)π(dx, dy) (1.1)

where C(ν, µ) are the set of all couplings of (ν, µ), i.e., probability measures π on
E × E such that π(A × E) = ν(A) and π(X × A) = µ(A) for all A ∈ B.

(ii): Relative entropy or Kullback’s information of ν w.r.t. µ

H(ν|µ) :=

{

∫

dν
dµ log dν

dµdµ, if ν ≪ µ;

+∞, otherwise.
(1.2) def-entropy-a

(iii): The Fisher information of ν w.r.t. µ:
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I(ν|µ) :=

{

E(
√

f,
√

f). if ν = fµ,
√

f ∈ D(E),

+∞ otherwise.
(1.3) Fisher

The usual transport inequalities WpH, introduced and studied by K. Marton [16] and
M. Talagrand [18] mean that

Wp(ν, µ)2 ≤ 2CH(ν|µ), ∀ν ∈ M1(X ). (WpH(C))

Its study is very active: see Bobkov-Götze [4], Otto-Villani [17], Bobkov-Gentil-Ledoux
[3], Djellout-Guillin-Wu [10] and references therein. Furthermore Gozlan-Léonard [12]
consider the following generalized transportation cost from ν to µ:

TV(ν, µ) := sup{ν(u) − µ(v); (u, v) ∈ V}
(µ(u) :=

∫

E udµ) where V is some given family of (u, v) ∈ (bB)2 so that

(A1) u ≤ v for all (u, v) ∈ V (or equivalently TV(ν, ν) ≤ 0 for all ν ∈ M1(X ));
(A2) For all ν1, ν2 ∈ M1(X ), there exists (u, v) ∈ V such that

∫

u dν1 −
∫

v dν2 ≥ 0 (or
equivalently TV(ν1, ν2) ≥ 0 for all ν1, ν2 ∈ M1(X )).

And they introduced the following generalization of WpH: for some convex, non-decreasing
and left continuous function α on R

+,

α(TV(ν, µ)) ≤ 2CH(ν|µ), ∀ν ∈ M1(X ) (α−TVH(C))

and they established its equivalence with some concentration inequality of the underlying
measure µ and of the i.i.d. sequences of common law µ.

Recall that TV(ν, µ) = Wp(ν, µ)2 iff V = V(p, d), the family of all couples (u, v) of real
bounded measurable functions on X such that

u(x) − v(y) ≤ dp(x, y), ∀x, y ∈ E. (1.4) A31

Guillin-Leonard-Wu-Yao [13] propose a new transport-information inequality, adapted
to Markov processes (and in particular to consider deviation inequalities for integral func-
tionals of Markov processes)

Wp(ν, µ)2 ≤ 4C2I(ν|µ), ∀ν ∈ M1(X ) (WpI(C))

or the more general

α (TV(ν, µ)) ≤ I(ν|µ), ∀ν ∈ M1(X ). (α−TVI)

Using large deviations techniques they prove the following characterization:

thm-GLWY Theorem 1.1. ([13]) Let ((Xt)t≥0, Pµ) be the µ-symmetric and ergodic Markov associated
with the Dirichlet form (E , D(E)), α : R

+ → [0,+∞] a left-continuous non-decreasing
convex function with α(0) = 0, and V as above.

The following properties are equivalent:

(a): µ satisfies the transport-information inequality (α−TVI).
(b): For all (u, v) ∈ V and all λ ≥ 0

λmax(L + λu) := sup
g∈D(E):µ(g2)=1

[

λ

∫

ug2dµ − E(g, g)

]

≤ λµ(v) + α∗(λ) (1.5) L2bound

where L is the generator of (Pt) on L2(X , µ) and

α∗(λ) = sup
r≥0

{λr − α(r)},∀λ ≥ 0
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is the semi-Legendre transformation of α.
(c): For any initial measure ν = fµ with f ∈ L2(µ) and for all (u, v) ∈ V

Pν

(

1

t

∫ t

0
u(Xs)ds ≥ µ(v) + r

)

≤ ‖f‖2e
−tα(r), ∀t, r > 0. (1.6) thmA11a

Remarks 1.2. The meaning of the deviation inequality characterization (1.6) of α−WpI
is clear in the ergodic behavior of the Markov process (Xt), as well as (1.5) in the study of
the Schrödinger operator L+ u. That is one more reason why α−TVI inequality is useful.

Remarks 1.3. If V is some family of (u, u) ∈ (bB)2, (1.6) becomes a deviation inequality of
the empirical (time) mean from its space mean µ(u) for the observable u so that (u, u) ∈ V.
Notice that if V = {(u, u);u ∈ bB, ‖u‖Lip ≤ 1} then TV(ν, µ) = W1(ν, µ), and W1I(C)
is equivalent to the Gaussian deviation inequality (1.6) with α(r) = r2/(4C2) for the
Lipschitzian observable u with Lipschitzian coefficient ‖u‖Lip ≤ 1, which generalizes the
well known Hoeffding’s inequality in the i.i.d. case.

Three criteria for W1I(C) are established in [13]: spectral gap in L2(µ); spectral gap
in the space of Lipschitz functions and a very general Lyapunov function criterion if
V = {(u, u); |u| ≤ φ} where φ > 0 is some fixed weight funtion. And it is also shown that
on a Riemannian manifold X equipped with the Riemannian metric d, the log-Sobolev
inequality

H(ν|µ) ≤ 2CI(ν|µ), ∀ν ∈ M1(X ). (HI(C))

implies W2I(C), which in turn implies the Poincaré inequality

V arµ(g) ≤ cPE(g, g), ∀g ∈ L2(µ)
⋂

D(E) (P (C))

where V arµ(g) = µ(g2) − µ(g)2 is the variance. Furthermore W2I(C) =⇒ HI(C ′) once
if the Ricci-Bakry-Emery curvature of µ is bounded from below.

We organize this paper around the four questions below:

(i): Investigate the relations between WpI with WpH. That is the objective of §2.
(ii): Prove that the spectral gap in the space of Lipschitz functions implies a Cheeger

type’s isoperimetric inequality, which is stronger than W1I. That is the purpose
of §3. We will also establish deviation inequalities under natural quantities such
as the variance of the test function, refining [13].

(iii): In §4 we study relations between (α−W2I) and the β-log-Sobolev inequality:

β ◦ µ(g2 log g2) ≤ E(g, g), µ(g2) = 1, g ∈ D(E), (1.7) Phi

where β is a positive increasing function. This inequality was connected in [24] to
the well developed F -Sobolev inequality introduced in [21], so that known criteria
for the later can be applied directly to (1.7).

(iv): Finally we present in §5 applications of Φ-Sobolev inequality

‖g2‖Φ ≤ C1E(g, g) + C2µ(g2)

in transportation-information inequalities α−TVI and then in the concentration

phenomena of 1
t

∫ t
0 u(Xs)ds under integrability conditions on u.
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2. WpI implies WpH on a Riemannian manifold

Recall (cf. Villani [19]) the well known Kantorovitch’s dual characterization :

W p
p (ν, µ) = sup

(u,v)∈V(p,d)

∫

udν −
∫

vdµ (2.1) A32

where V(p, d) is given in (1.4), and Kantorovitch-Robinstein’s identity

W1(ν, µ) = sup
‖u‖Lip≤1

∫

ud(ν − µ). (2.2) A33

Throughout this section X is a connected complete Riemannian manifold equipped with
the Riemannian metric d, and µ = e−V dx/Z (Z being the normalization constant assumed
to be finite) with V ∈ C1(X ), and (E , D(E)) is the closure of

E(g, g) :=

∫

E
|∇g|2dµ(x), g ∈ C∞

0 (X )

where ∇ is the gradient on X , and C∞
0 (X ) is the space of infinitely differentiable functions

on X with compact support. In such case our Fisher information of fµ with 0 < f ∈ C1(X )
w.r.t. µ becomes

I(fµ|µ) =
1

4

∫ |∇f |2
f

dµ =
1

4

∫

|∇ log f |2dµ.

2.1. W1I(C) =⇒ W1H(C).

thm21 Theorem 2.1. Assume that µ satisfies W1I(C). Then

W1(ν, µ)2 ≤ 2CH(ν|µ), ∀ν ∈ M1(X )

i.e., µ satisfies W1H(C).

Proof. By Bobkov-Götze’s criterion [4] for W1H(C), it is enough to show that for any
bounded g ∈ C1(X ) with |∇g| ≤ 1 and λ ≥ 0,

∫

eλ(g−µ(g))dµ ≤ eλ2C2/2. (2.3) thm21b

To this end we may assume that µ(g) = 0. Consider

Z(λ) =

∫

eλgdµ, µλ :=
eλg

Z(λ)
µ.

We have by Kantorovitch’s identity (2.2)

d

dλ
log Z(λ) = µλ(g) ≤ W1(µλ, µ)

but by W1I(C),

W1(µλ, µ) ≤ 2C
√

I(µλ|µ) = Cλ

√

∫

|∇g|2dµλ ≤ Cλ.

Thus

log Z(λ) ≤
∫ λ

0
Ctdt =

Cλ2

2

the desired control (2.3). �

The implication “W1I(C) =⇒ W1H(C)” is strict, as shown by the following simple
counter-example ([10]).
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Example 2.2. Let X = [−2,−1]
⋃

[1, 2] and µ(dx) = (1[−2,−1] +1[1,2])dx/2. The Dirichlet
form (E , D(E)) is given by

E(f, f) =

∫

f ′2dµ(x), ∀f ∈ D(E) = H1(X )

where H1(X ) is the space of those functions f ∈ L2(µ) so that f ′ ∈ L2(µ) (in the distribu-
tion sense). It corresponds to the reflecting Brownian Motion in X , which is not ergodic.
But W1I(C) implies always the ergodicity. Thus µ does not satisfy W1I(C). However µ
satisfies W1H(C) by the Gaussian integrability criterion in [10].

The argument above can be extended to more general transportation information in-
equality α−W1I:

prop21 Proposition 2.3. Let α : R
+ → [0,+∞] be a left-continuous non-decreasing convex func-

tion with α(0) = 0. Assume that µ satisfies α−W1I. Then µ satisfies

α̃(W1(ν, µ)) ≤ H(ν|µ), ∀ν ∈ M1(X ) (α̃ − W1H) prop21a

where α̃(r) = 2

∫ r

0

√

α(s)ds. In particular for any Lipschitzian function g with ‖g‖Lip ≤ 1,

µ(g > µ(g) + r) ≤ e−α̃(r), ∀r > 0.

Proof. By Gozlan-Léonard’s criterion [12] for α̃−W1H, it is enough to show that for any
bounded g ∈ C1(X ) with |∇g| ≤ 1 and λ ≥ 0,

∫

eλ(g−µ(g))dµ ≤ eα̃∗(λ), ∀λ ≥ 0 (2.4) prop21c

which implies the last concentration inequality in this Proposition by Chebychev’s inequal-
ity. To show (2.4) we may assume that µ(g) = 0. Let Z(λ) and µλ be as in the previous
proof of Theorem 2.1, we have

d

dλ
log Z(λ) = µλ(g) ≤ W1(µλ, µ).

But by the assumed α−W1I,

W1(µλ, µ) ≤ α−1 (I(µλ|µ)) = α−1

(

λ2

4

∫

|∇g|2dµλ

)

≤ α−1(λ2/4)

where α−1(t) := inf{t ≥ 0; α(r) > t}, t ≥ 0. Thus

log Z(λ) ≤
∫ λ

0
α−1(t2/4)dt =: h(λ).

Now by Fenchel-Legendre theorem, h = (h∗)∗, but

h∗(r) = sup
λ≥0

(λr − h(λ)) = 2

∫ r

0

√

α(s)ds,

which completes the proof of the desired control (2.4). �
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2.2. W2I(C) =⇒ W2H(C).

thm22 Theorem 2.4. Assume that µ satisfies W2I(C). Then

W2(ν, µ)2 ≤ 2CH(ν|µ), ∀ν ∈ M1(X )

i.e., µ satisfies W2H(C).

Proof. We shall use the method of Hamilton-Jacobi equation due to Bobkov-Gentil-Ledoux
[3]. Consider the inf-convolution

Qtg(x) := inf
y∈E

(g(y) +
1

2t
d2(x, y))

which is viscosity solution of the Hamilton-Jacobi equation

∂tQtg +
1

2
|∇Qtg|2 = 0. (2.5) HJequ

By Bobkov-Götze’s criterion [4] for W2H(C), it is enough to show that for any g ∈ C1
b (X ),

∫

eQ1g/Cdµ ≤ eµ(g)/C . (2.6) thm22b

To this end we may and will assume that µ(g) = 0. Let λ = λ(t) = κt where κ > 0 will
be determined later and consider

Z(t) =

∫

eλQtgdµ, µt :=
eλQtg

Z(t)
µ.

We have

d

dt
log Z(t) =

1

Z(t)

∫

[

λ′(t)Qtf + λ(t)∂tQtg
]

eλQtgdµ

= κ

∫

Qtgdµt −
λ

2

∫

|∇Qtg|2dµt

= κ

∫

Qtgdµt −
2

λ
I(µt|µ).

But by Kantorovitch’s identity (2.1),

∫

Qtgdµt ≤
1

2t
W 2

2 (µt, µ) (2.7) thm22c

and the assumed W2I(C) gives W 2
2 (µt, µ) ≤ 4C2I(µt|µ). Thus for every t > 0,

d

dt
log Z(t) ≤

(

2κC2

t
− 2

κt

)

I(µt|µ)

Putting κ = 1/C, we obtain d
dt log Z(t) ≤ 0 for all t > 0, which implies by the continuity

of log Z(t) on R
+ that

∫

eQ1g/Cdµ = Z(1) ≤ Z(0) = 1

the desired (2.6). �

Remarks 2.5. The proof above is adapted from that of Bobkov-Gentil-Ledoux [3] for the
implication HI(C) =⇒ W2H(C), originally established by Otto-Villani [17].
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Remarks 2.6. We have thus established in this section

HI(C) ⇒ W2I(C) ⇒ W2H(C).

It was also established in [13] that under a lower bound of the Ricci-Bakry-Emery curvature
of µ that W2I implies back to HI, and with additional conditions on this lower bound
that W2H implies back HI. It is then a natural question to know if the condition on
the lower bound of the Ricci-Bakry-Emery curvature is also necessary to get the reverse
implication. A partial answer was provided in [7] where an example of a real probability
measure, with infinite lower bounded curvature, was shown to verify W2H but not HI.
Inspired by this example, we furnish here an example where W1I holds (using Lyapunov

conditions of [13, Section 5]) but not HI. Let then consider dµ(x) = e−V (x)dx, where V
is symmetric C2 (at least) and given for large x by

V (x) = x4 + 4x3 sin2(x) + xβ.

Consider also the natural reversible process associated to this measure given by generator

Lf = f ′′ − V ′f ′. Using W (x) = eax4

, by easy calculus, one sees that LW ≤ −cx4W + b
(for some positive b and c) if β > 2. This Lyapunov condition also implies a Poincaré
inequality (see [1] for example), so that using a slight modification of [13, Lem. 5.7], we
get that W1I holds and also W2H by [7]. Remark now that if β < 3 then V/V ′2 is not
bounded, which is a known necessary condition for HI to hold (see [7]). Unfortunatly, we
are not up to now able to prove that W2I holds.

3. W1I and the isoperimetric inequality of Cheeger’s type

by means of the spectral gap in CLip

In this section we return to the general Polish space case (X , d). We assume that µ
charges all non-empty open subsets of X .

Let CLip be the space of all real functions g on X which are Lipschitz-continuous, i.e.,

‖g‖Lip := supx 6=y
|f(x)−f(y)|

d(x,y) < +∞. We assume that there is an algebra A ⊂ CLip
⋂

D2(L)

(here D2(L) is the domain of the generator L in L2(µ) associated with (E , D(E))), which
is a form core for (E , D(E)). Hence the carré-du-champs operator

Γ(f, g) :=
1

2
(L(fg) − fLg − gLf) , ∀f, g ∈ A

admits a unique continuous extension Γ : D(E) × D(E) → L1(X , µ). Throughout this
section we assume that Γ is a differentiation, that is, for all (hk)1≤k≤n ⊂ A, g ∈ A and
F ∈ C1

b (Rn),

Γ(F (h1, · · · , hn), g) =

n
∑

i=1

∂iF (h1, · · · , hn)Γ(hi, g)

(this can be extended to D(E)).

thm31 Theorem 3.1. Assume that
∫

d2(x, x0)dµ(x) < +∞ for some (or all) x0 ∈ E and Γ is
a differentiation. Suppose that there is a form core D ⊂ CLip

⋂

D2(L) of (E , D(E)) such
that 1 ∈ D and

W1(ν, µ) = sup
g∈D:‖g‖Lip≤1

{
∫

gd(ν − µ)}, ∀ν with I(ν|µ) < +∞ (3.1) thm31a

and

√

Γ(g, g) ≤ σ‖g‖Lip, µ − a.s., ∀g ∈ CLip

⋂

D2(L) (3.2) thm31b
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and for some constant C > 0 and for any g ∈ D with µ(g) = 0, there is G ∈ CLip
⋂

D2(L)
so that

− LG = g, ‖G‖Lip ≤ C‖g‖Lip. (3.3) thm31c

Then the Poincaré inequality holds with cP ≤ C, and the following isoperimetric inequality
of Cheeger’s type

W1(fµ, µ) ≤ σC

∫

√

Γ(f, f)dµ, 0 ≤ f ∈ D(E), µ(f) = 1 (3.4) thm31d

holds true. In particular,

W1(ν, µ)2 ≤ 4(σC)2I(ν|µ), ∀ν ∈ M1(X ). (3.5) thm31e

Furthermore for any observable g with ‖g‖Lip = 1,

∫

gd(ν − µ) ≤ 2

√

I(ν|µ)

[

V (g)

2
+ 2(σC)2

√

cP I(ν|µ)

]

(3.6) thm31f

and for any t, r, δ > 0,

Pβ

(

1

t

∫ t

0
g(Xs)ds > µ(g) + r

)

≤ ‖dβ

dµ
‖2 exp



−t
r2

(1 + δ)V (g) +
√

[(1 + δ)V (g)]2 + 8cP (σC)4

δV (g) r2





(3.7) thm31g

where V (g) := limt→∞
1
t V arPµ

(

∫ t
0 g(Xs)ds

)

= 2
∫∞
0 〈g − µ(g), Ptg〉µdt is the asymptotic

variance of g.

Proof. Under the Lipschitzian spectral gap condition (3.3), it is noted in [13] that the
Poincaré inequality holds with cP ≤ C.

For both (3.4) and (3.5) we may assume that ν = fµ with f ∈ D(E), f ≥ ε > 0. For
any g ∈ D with ‖g‖Lip ≤ 1 and µ(g) = 0, letting G := (−L)−1g be the unique solution of
the Poisson equation with µ(G) = 0, we have

∫

gdν −
∫

gdµ = 〈g, f〉µ = E(G, f) =

∫

Γ(G, f)dµ ≤ ‖
√

Γ(G,G)‖∞
∫

√

Γ(f, f)dµ.

Taking the supremum over all such g and observing ‖
√

Γ(G,G)‖∞ ≤ σ‖G‖Lip ≤ σC we
obtain (3.4). Furthermore by Cauchy-Schwarz and the fact that Γ is a differentiation, we
have

∫

√

Γ(f, f)dµ ≤
√

∫

Γ(f, f)

f
dµ

√

∫

fdµ = 2
√

I(ν|µ)

where (3.5) follows from (3.4).
For (3.6) writing f = h2, we have

∫

gdν −
∫

gdµ =

∫

Γ(G, f)dµ = 2

∫

hΓ(G,h)dµ

≤ 2

√

∫

Γ(h, h)dµ ·
∫

Γ(G,G)h2dµ.
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Using the inequality in [13, Theorem 3.1]
∫

Γ(G,G)h2dµ −
∫

Γ(G,G)dµ ≤ ‖Γ(G,G)‖∞‖h2µ − µ‖TV ≤ (σC)2
√

4cP I(ν|µ)

and noting that V (g) = 2〈(−L)−1g, g〉µ = 2E(G,G) = 2
∫

Γ(G,G)dµ, we obtain

∫

gdν −
∫

gdµ ≤ 2

√

I(ν|µ)

[

V (g)

2
+ 2(σC)2

√

cP I(ν|µ)

]

which is (3.6). Using 2I3/2 ≤ εI + I2/ε in (3.6), we obtain (3.7) by Theorem 1.1. �

Remarks 3.2. The W1I(σC) inequality (3.5) is due to Guillin and al. [13], but the
method therein is based on the Lyons-Meyer-Zheng forward-backward martingale decom-
position. The argument here is simpler and direct, and yields the stronger Cheeger type’s
isoperimetric inequality (3.4).

Remarks 3.3. Letting δ be close to 0, we see that (3.7) is sharp for small r by the central
limit theorem.

Set CLip,0 = {g ∈ CLip,0; µ(g) = 0}. Under the Lipschitzian spectral gap condition
(3.3), the Poisson operator (−L)−1 : CLip,0 → CLip,0 is a well defined bounded linear
operator w.r.t. the Lipschitzian norm, and the best constant C in (3.3) is the Lipschitzian
norm ‖(−L)−1‖Lip and will be denoted by cLip,P (the index P is referred to Poincaré).

We now present four examples for illustrating usefulness of Theorem 3.1.

Example 3.4. (Ornstein-Uhlenbeck process) Consider the Ornstein-Uhlenbeck pro-

cess dXt =
√

2dBt − σ−2Xtdt on X = R where σ > 0 and Bt is the standard Brownian
motion on R. Its unique invariant measure is µ = N (0, σ2). For f ∈ C∞

b (R), from the

explicit solution Xt = e−σ−2t
(

X0 +
∫ t
0 eσ−2s

√
2dBs

)

, we see that (Ptf)′ = e−σ−2tPtf
′.

Hence cLip,P = ‖(−L)−1‖Lip = σ2. Therefore µ satisfies W1I(C) with C = cLip = σ2 by
Theorem 3.1.

Furthermore C = cLip = σ2 is also the best constant in W1I(C). Indeed W1I(C) =⇒
W1H(C) and the best constant in W1H(C) of µ is C = σ2. In other words Theorem 3.1
produces the exact best constant C in W1I(C) for this example.

Example 3.5. (Reflected Brownian Motion) Consider the reflected Brownian Mo-
tion XD

t on the interval X = [0,D] (D > 0) equipped with the usual Euclidean metric,
whose generator is given by Lf = f ′′ with Neumann boundary condition at 0,D. The
unique invariant measure µ is the uniform law on [0,D]. For every g ∈ C2

b ([0,D]) with
∫ D
0 g(x)dx = 0, the solution G of the Poisson equation −LG = g satisfies

G′(x) = −
∫ x

0
g(t)dt, x ∈ [0,D].

It is now easy to see that cLip,P = sup‖g‖Lip=1 ‖G′‖∞ is attained with g(x) = x−D/2 and

then cLip,P = D2/8. Thus by Theorem 3.1, the optimal constant CW1I for this process
satisfies CW1I ≤ cLip = D2/8. In comparison recall that the best Poincaré constant
cP = D2/π2.

Since W1I(C) =⇒ W1H(C) and the best constant of W1H(C) for the uniform law µ
on [0,D] is D2/12, so we obtain

D2

12
≤ cW1I ≤ D2

8
.

We do not know the exact value of cW1I for this simple example.
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Example 3.6. Let X be a compact connected Riemannian manifold of dimension n with
empty or convex boundary. Assume that the Ricci curvature is nonnegative and its diam-
eter is D. Consider the Brownian Motion (with reflection in the presence of the boundary)
generated by the Laplacian operator ∆.

In [30] it is shown that cLip,P = ‖(−∆)−1‖Lip ≤ D2/8 (the latest quantity is exactly
cLip,P for the reflected Brownian Motion on the interval [0,D]). Thus by Theorem 3.1,
W1I(C) holds with C = D2/8.

See [30] for more examples for which cLip,P is estimated.

Example 3.7. (One-dimensional diffusions) Now let us consider the one-dimensional
diffusion with values in the interval (x0, y0) generated by

Lf = a(x)f ′′ + b(x)f ′, f ∈ C∞
0 (x0, y0)

where a, b are continuous such that a(x) > 0 for all x ∈ (x0, y0). Let ((Xt)0≤t<τ , Px) be
the martingale solution associated with L and initial position x, where τ is the explosion
time. With a fixec c ∈ (x0, y0),

s′(x) := exp

(

−
∫ x

c

b(t)

a(t)
dt

)

, m′(x) :=
1

a(x)
exp

(∫ x

c

b(t)

a(t)
dt

)

are respectively the derivatives of Feller’s scale and speed functions. Assume that

Z :=

∫ y0

x0

m′(x) dx < +∞ (3.8) D1

and let µ(dx) = m′(x)dx/Z. It is well known that (L, C∞
0 (x0, y0)) is symmetric on L2(µ).

Assume also that
∫ y0

c
s′(x) dx

∫ x

c
m′(x) dx =

∫ c

x0

s′(x)

∫ c

x
m′(x) dx = +∞ (3.9) D2

which, in the Feller’s classification, means that x0, y0 are no accessible or equivalently
τ = ∞, Px-a.s. In this case by the L1-uniqueness in [25], the Dirichlet form

D(E) =

{

f ∈ AC(x0, y0)
⋂

L2(µ);

∫ y0

x0

(f ′)2dµ < +∞
}

,

E(f, f) =

∫ y0

x0

(f ′)2dµ, f ∈ D(E)

is associated with (Xt), where AC(x0, y0) is the space of absolutely continuous functions
on (x0, y0).

Fix some ρ ∈ C1(x0, y0) such that ρ ∈ L2(µ) and ρ′(x) > 0 everywhere, consider the
metric dρ(x, y) = |ρ(x) − ρ(y)|. A function f on (x0, y0) is Lipschitz with respect to dρ

(written as f ∈ CLip(ρ)) if and only if f ∈ AC(x0, y0) and

‖f‖Lip(ρ) = sup
x0<x<y<y0

|f(y) − f(x)|
ρ(y) − ρ(x)

= ‖f ′

ρ′
‖∞.

The argument below is borrowed from [11]. Assume that

C(ρ) := sup
x∈(x0,y0)

1

ρ′(x)

∫ y0

x
[ρ(t) − µ(ρ)]m′(t) dt < +∞. (3.10) C-rho

For every g ∈ CLip(ρ) with µ(g) = 0, then f(x) =
∫ x
c dy

∫ y0

y g(t)m′(t) dt − A (in C2) solves

− (af ′′ + bf ′) = g. (3.11) cor44a
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It is obvious that

‖f‖Lip(ρ) = sup
x∈(x0,y0)

1

ρ′(x)

∫ y0

x
g(t)m′(t) dt.

An elementary exercise (as done in [11]) shows that the last quantity is always not greater
than C(ρ)‖g‖Lip(ρ). Thus f ∈ L2(µ) (for ρ ∈ L2(µ)). By Ito’s formula, f ∈ D2(L). With

the constant A so that µ(f) = 0, f given above is the unique solution in L2(µ) with zero
mean of (3.11) by the ergodicity of (Xt). We see also that C(ρ) is the best constant by
taking g = ρ − µ(ρ). In other words condition (3.3) is verified with the best constant
C = cLip,P = C(ρ). Hence from Theorem 3.1, we get

cor44 Corollary 3.8. Let a, b : (x0, y0) → R be continuous such that a(x) > 0 for all x and

conditions (3.8) (3.9) be satisfied. Assume (3.10) and σ := supx∈(x0,y0)

√

a(x)ρ′(x) < +∞.

Then µ satisfies W1I(σC(ρ)) on ((x0, y0), dρ). In particular for

ρa(x) =

∫ x

c

1
√

a(t)
dt

(dρa is the metric associated with the carré-du-champs operator of the diffusion), if C(ρa) <
+∞, then µ satisfies W1I(C(ρa)) on ((x0, y0), dρa).

Remarks 3.9. The quantity C(ρ) in (3.10) is not innocent: Chen-Wang’s variational

formula for the spectral gap λ1 says that ([8, 23]): λ1 = sup
ρ

1

C(ρ)
.

4. Functional inequalities and W2I inequalities

Throughout this section we consider the framework of Section 2, i.e. X is a connected
complete Riemannian manifold M with µ(dx) := e−V (x)dx/Z for some V ∈ C(M) with

Z :=
∫

M e−V (x)dx < ∞. Recall that in [17, 13] was proven the fact that a logarithmic
Sobolev inequality implies W2I, and that (using HWI inequalities) under a lower bounded
curvature, the converse was also true. We extend here this assertion for α−W2I inequal-
ities.

T4.1 Theorem 4.1. (1) Let β ∈ C([0,∞)) be increasing with β(0) = 0 such that

γ(r) :=
1

2

∫ r

0

ds
√

β(s)
< ∞, r > 0.

Then the following β-log-Sobolev inequality

β ◦ µ(g2 log g2) ≤ µ(|∇g|2), g ∈ C1
b (M), µ(g2) = 1, (4.1) P1

implies

α(W2(ν, µ)) ≤ I(ν|µ), ν ∈ M1(X ) (4.2) AA

for α(s) := β ◦ γ−1(s), s ≥ 0.
(2) Assume that Ric + HessV ≥ −K for some K ≥ 0. Then (4.2) implies (4.1) for

β(r) := inf
{

s > 0 : 2
√

2sα−1(s) + K(α−1(s))2 ≥ r
}

, r ≥ 0.

Proof. (1) According to [24, Theorem 2.2], (4.1) implies

W2(fµ, µ) ≤ γ ◦ µ(f log f), f ≥ 0, µ(f) = 1. (4.3) TP

Then (4.2) follows from (4.3) and (4.1). For readers’ convenience, we include below a brief
proof of (4.3), inspired by the seminal work [17] pushed further in [22].
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Since a continuous function can be uniformly approximated by smooth ones, we may
and do assume that V is smooth. Let Pt be the diffusion semigroup generated by L :=
∆ − ∇V.∇. Then Pt is symmetric in L2(µ). For fixed f > 0 with µ(f) = 1, let µt =
(Ptf)µ, t > 0. According to [22, page 176] for p = 2 (see also [17] under a curvature
condition), we have

d+

dt

{

− W2(µ, µt)
}

:= lim sup
s↓0

W2(µ, µt) − W2(µ, µt+s)

s
≤ 2µ

(∣

∣∇
√

Ptf
∣

∣

2)1/2
. (4.4) W2.1

Let

γ(r) =
1

2

∫ r

0

ds
√

β(s)
, r > 0.

It suffices to prove for the case that γ(r) < ∞ for r > 0. By (4.1) we have

d

dt
γ ◦ µ(Ptf log Ptf) = 4γ′ ◦ µ(Ptf log Ptf)µ

(∣

∣∇
√

Ptf
∣

∣

2)

=
2µ
(∣

∣∇√
Ptf
∣

∣

2)

√

β ◦ µ(Ptf log Ptf)
≥ 2µ

(∣

∣∇
√

Ptf
∣

∣

2)1/2
.

Combining this with (4.4) we obtain

d+

dt

{

− W2(µ, µt)
}

≤ d

dt
γ ◦ µ(Ptf log Ptf),

which implies (4.3) by noting that Ptf → µ(f) = 1 as t → ∞.
(2) By the HWI inequality (see [17, 3]), we have

µ(g2 log g2) ≤ 2(e2Kt − 1)

K
µ(|∇g|2) +

Ke2Kt

e2Kt − 1
W2(g

2µ, µ)2, µ(g2) = 1, t > 0.

Combining this with (4.2) we obtain

µ(g2 log g2) ≤ inf
t>0

{2(e2Kt − 1)

K
µ(|∇g|2) +

Ke2Kt

e2Kt − 1
[α−1

(

µ(|∇g|2)
)

]2
}

.

Taking t > 0 such that

e2Kt = 1 + K
α−1(µ(|∇g|2))
√

2µ(|∇g|2)
,

we obtain

µ(g2 log g2) ≤ 2
√

2µ(|∇g|2)α−1(µ(|∇g|2)) + K[α−1(µ(|∇g|2))]2.
This completes the proof. �

Let us give a natural family of examples, namely when β is a power function.

C4.2 Corollary 4.2. For any δ ∈ [1, 2),

µ(g2 log g2)δ ≤ Cµ(|∇g|2), g ∈ C1
b (X ), µ(g2) = 1

implies

W2(ν, µ)2 ≤ C2/δ

(2 − δ)2
I(ν|µ)(2−δ)/δ .
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Inversely if Ric + HessV is bounded below, then

W2(ν, µ)2 ≤ CI(ν|µ)(2−δ)/δ

implies

µ(g2 log g2)δ ≤ C ′µ(|∇g|2), g ∈ C1
b (X ), µ(g2) = 1

for some C ′ > 0.

Proof. For β(r) := rδ/C we have γ(r) =
√

C
2−δr

(2−δ)/2 so that

β ◦ γ−1(s) =
1

C

(2 − δ√
C

s
)2δ/(2−δ)

=
(2 − δ)2δ/(2−δ)

C2/(2−δ)
s2δ/(2−δ).

Then the first assertion follows from Theorem 4.1(1).

Next, for α(r) = r2δ/(2−δ)C−δ/(2−δ), we have α−1(s) =
√

Cs(2−δ)/2δ . Since 2 − δ ≤ 1,
Theorem 4.1(2) implies

µ(g2 log g2) ≤ 2
√

2Cµ(|∇g|2)1/δ + KCµ(|∇g|2)(2−δ)/δ , µ(g2) = 1. (4.5) W*

Since 2 − δ ≤ 1, this implies

µ(g2 log g2) ≤ C ′µ(|∇g|2)1/δ , µ(g2) = 1, µ(|∇g|2) ≥ 1 (4.6) W*2

for some C ′ > 0. Moreover, since δ ≥ 1, (4.5) implies the defective log-Sobolev inequality

µ(g2 log g2) ≤ C1µ(|∇g|2) + C2, µ(g2) = 1

for some C1, C2 > 0, which in particular implies that the spectrum of L := ∆ + ∇V is
discrete (see e.g. [21, 27]), and hence the Poincaré inequality holds since λ0 = 0 is the
simple eigenvalue due to the connection of the manifold. Thus, the strict log-Sobolev
inequality

µ(g2 log g2) ≤ C ′µ(|∇g|2), µ(g2) = 1

for some constant C ′ > 0. The proof is then completed by combining this with (4.6). �

Example 4.3. Let Ric be bounded below, and ρo the Riemannian distance function to a
fixed point o ∈ E. Let V ∈ C(X ) such that V − aρθ

o is bounded for some a > 0 and θ ≥ 2.

Then (4.2) holds for α(r) = Cr2(θ−1) for some C > 0, i.e.

CW2(ν, µ)2(θ−1) ≤ I(ν|µ), ν ∈ M1(X ). (4.7) W*3

The power 2(θ−1) is sharp, i.e. the above inequality does not hold if this power is replaced
by any larger number, as seen from Proposition 2.3.

Indeed, by [21, Corollaries 2.5 and 3.3], we have

µ(g2 log2(θ−1)/θ(g2 + 1)) ≤ C1µ(|∇g|2) + C2, µ(g2) = 1

holds for some C1, C2 > 0. By Jensen’s inequality we obtain

µ(g2 log g2)2(θ−1)/θ ≤ µ(g2 log(g2 + 1))2(θ−1)/θ ≤ C1µ(|∇g|2) + C2, µ(g2) = 1.

Combining this with the log-Sobolev inequality as in the proof of Corollary 4.2, we obtain

µ(g2 log g2)2(θ−1)/θ ≤ µ(g2 log(g2 + 1))2(θ−1)/θ ≤ C ′µ(|∇g|2), µ(g2) = 1

for some constant C ′ > 0. According to Corollary 4.2, this implies (4.7).
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5. Φ-Sobolev inequality and concentration inequality

for unbounded observables under integrability condition

Let Φ : R
+ → [0,+∞] be a convex, increasing and left continuous function with Φ(0) =

0, such that

lim
r→+∞

Φ(r)

r
= +∞. (5.1) 51

Consider the Orlicz space LΦ(µ) of those measurable functions g on X so that its gauge
norm

NΦ(g) := inf{c > 0;

∫

Φ(|g|/c)dµ ≤ 1}

is finite, where the convention inf ∅ := +∞ is used. The Orlicz norm of g is defined by

‖g‖Φ := sup{
∫

gu dµ; NΨ(u) ≤ 1}

where

Ψ(r) := sup
λ≥0

(λr − Φ(λ)), r ≥ 0 (5.2)

is the convex conjugation of Φ. The so called (defective) Φ-Sobolev inequality says that
for some two nonnegative constants C1, C2 ≥ 0

‖g2‖Φ ≤ C1E(g, g) + C2µ(g2), ∀g ∈ D(E), µ(g2) = 1. (5.3) 52

Under the assumption of the Poincaré inequality with the best constant CP , (5.3) can be
transformed into the following tight version

‖(g − µ(g))2‖Φ ≤ (C1 + C2CP )E(g, g), ∀g ∈ D(E) (5.4) 53

called sometimes Orlicz-Poincaré inequality.

thm51 Theorem 5.1. Assume the Φ-Sobolev inequality (5.3) and the Poincaré inequality with
constant CP . Then

(a): for any µ-probability density f ,

‖f − 1‖Φ ≤
√

C ′
1I(fµ|µ)2 + C ′

2I(fµ|µ) (5.5) thm51a

where C ′
1 = (C1 + 2C2CP )C1, C

′
2 = (C1 + 2C2CP ) · 4C2; or equivalently for any

observable u ∈ LΨ(µ) (Ψ being the convex conjugation of Φ given above) so that
NΨ(u) ≤ 1 and for all t, r > 0,

Pν

(

1

t

∫ t

0
u(Xs)ds > µ(u) + r

)

≤ ‖dν

dµ
‖2 exp

(

−t ·
√

4C ′
1r

2 + (C ′
2)

2 − C ′
2

2C ′
1

)

. (5.6) thm51b

(b): for any µ-probability density f ,

sup
u∈bB:NΨ(u2)≤1

∫

(f − 1)udµ ≤
√

2(C1 + 4C2CP )I(fµ|µ) (5.7) thm51c

or equivalently for any u ∈ L1(µ) such that u2 ∈ LΨ(µ),
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Pν

(

1

t

∫ t

0
u(Xs)ds > µ(u) + r

)

≤ ‖dν

dµ
‖2 exp

(

−t
r2

2(C1 + 4C2CP )‖u2‖Ψ

)

, ∀t, r > 0.

(5.8) thm51d

(c): More generally for any p ∈ [1,+∞), there is a constant κ > 0 depending only
of p,C1, C2, CP such that for any µ-probability density f ,

αp

(

sup
u∈bB:NΨ(u2)≤1

∫

(f − 1)udµ

)

≤ I(fµ|µ) (5.9) thm51e

where αp(r) = (1 + r2/κ)p/2 − 1; or equivalently for any u ∈ L1(µ) such that
NΨ(|u|p) ≤ 1,

Pν

(

1

t

∫ t

0
u(Xs)ds > µ(u) + r

)

≤ ‖dν

dµ
‖2 exp

(

−t[1 + r2/κ)p/2 − 1]
)

, ∀t, r > 0. (5.10) thm51f

As there are numerous practical criteria for the Φ-Sobolev inequality (see e.g. [8, 14,

23]), this theorem is very useful and gives different concentration behaviors for 1
t

∫ t
0 u(Xs)ds,

according to the integrability condition |u|p ∈ LΨ(µ) where p ∈ [1,+∞).
This result generalizes the sharp concentration inequality under the log-Sobolev inequal-

ity in Wu [26]. For applications of Φ-Sobolev inequalities in large deviations see Wu and
Yao [29].

Remarks 5.2. As the l.h.s. of (5.5), (5.7) and (5.9) are the transportation cost TV(fµ, µ),
with V = {(u, u); u ∈ bB, NΨ(|u|p) ≤ 1}, p = 1, 2, p ≥ 1 respectively, so they are the
transportation-information inequality. In this point of view, the equivalence between (5.5)
and (5.6) in part (a), that between (5.7) and (5.8) in part (b) and that between (5.9) and
(5.10) in part (c) are all immediate from Theorem 1.1 (the passage from bounded u to
general u in the concentration inequalities (5.6), (5.8) and (5.10) can be realized easily by
dominated convergence).

Remarks 5.3. The concentration inequalities (5.6), (5.8) and (5.10) are all sharp in order.
Indeed consider the Ornstein-Uhlenbeck process on R generated by Lf = f ′′ − xf ′: the
Φ-Sobolev inequality (Xt) holds with Φ(r) = (1 + r) log(1 + r) and µ = N (0, 1). Consider

u(x) := |x|2/p where p ≥ 1. Then up ∈ LΨ(µ), and 1
t

∫ t
0 u(Xs)ds = 1

t

∫ t
0 |Xs|pds possess

exactly the concentration behaviors exhibited by the r.h.s. of (5.10) for large deviation
value r, and for small deviation value r of order 1/

√
t if t is large enough (by the central

limit theorem).

Proof of Theorem 5.1. As explained in the previous remarks, (5.6) (resp. (5.8); (5.10)) is
equivalent to (5.5)(resp. (5.7), (5.9)), all by Theorem 1.1.
It is not surprising that the proof relies on the ideas first used in [5], establishing criterions
for W1H under integrability criteria. Note also that the reader may easily adapt the proof
to use conditions on F -Sobolev inequalities (equivalent to some Orlicz-Poincaré inequality)
and integrability on u (rather than Orlicz norm of u).
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(a) For (5.5) we may assume that I(fµ|µ) is finite, i.e.,
√

f ∈ D(E) (and then I(fµ|µ) =
E(

√
f ,

√
f)). For any u ∈ LΨ(µ) with NΨ(u) ≤ 1, we have by Cauchy-Schwartz

∫

|(f − 1)u|dµ =

∫

|
√

f − 1|(
√

f + 1)|u|dµ

≤
√

∫

(
√

f − 1)2|u|dµ

√

∫

(
√

f + 1)2|u|dµ

≤
√

‖(
√

f − 1)2‖Φ‖(
√

f + 1)2‖Φ

But by the assumed Φ-Sobolev inequality (5.3),

‖(
√

f − 1)2‖Φ ≤ C1E(
√

f,
√

f) + C2

∫

(
√

f − 1)2dµ

and
∫

(
√

f − 1)2dµ = 2(1 − µ(
√

f)) ≤ 2V arµ(
√

f) ≤ 2CPE(
√

f,
√

f); moreover

‖(
√

f + 1)2‖Φ ≤ C1E(
√

f,
√

f) + C2

∫

(
√

f + 1)2dµ

and
∫

(
√

f + 1)2dµ ≤ 4. Thus we get
∫

|(f − 1)u|dµ ≤
√

(C1 + 2C2CP )E(
√

f ,
√

f)(C1E(
√

f,
√

f) + 4C2)

where (5.5) follows by recalling I(fµ|µ) = E(
√

f,
√

f).

(b) For any u so that NΨ(u2) ≤ 1 we use now differently Cauchy-Schwartz inequality
to get:

∫

|(f − 1)u|dµ ≤
√

∫

(
√

f − 1)2dµ

√

∫

(
√

f + 1)2u2dµ

But as noticed in the proof of (a),
∫

(
√

f − 1)2dµ ≤ 2V arµ(
√

f) ≤ 2min{CP I(fµ|µ), 1}

and
∫

(
√

f + 1)2u2dµ ≤ ‖(
√

f + 1)2‖Φ ≤ C1I(fµ|µ) + 4C2.

Plugging those two estimates into the previous inequality we get (5.7).

(c). Letting q := p/(p − 1) we have by Hölder’s inequality,

∫

|(f − 1)u|dµ ≤ (µ(|f − 1|))1/q

(
∫

|f − 1||u|pdµ

)1/p

Note that µ(|f − 1|) ≤ 2 and by [13, Theorem 3.3],

(µ(|f − 1|))2 ≤ 4V arµ(
√

f) ≤ 4CP I

where I := I(fµ|µ). On the other hand by part (a),
∫

|f − 1||u|pdµ ≤ ‖f − 1‖Φ ≤
√

C ′
1I

2 + C ′
2I.

Substituting those estimates into the first inequality we get
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(∫

|(f − 1)u|dµ

)2

≤ (max{4, 4CP I})1/q
(

C ′
1I

2 + C ′
2I
)1/p

≤
{

41/q(C ′
1 + C ′

2CP )1/p · I2/p, if CP I ≥ 1;

41/q(C ′
1 + C ′

2CP )1/pC
(p−2)/p
P · I, otherwise.

The last term is less than κ[(1 + I)2/p − 1] for some constant κ > 0. That yields to
(5.9). �

Let us finally relate previous inequalities to usual α − WI inequalities.

cor51 Corollary 5.4. Assume the Φ-Sobolev inequality (5.3) and the Poincaré inequality. As-
sume that dp(x, x0) ∈ LΨ(µ) for some p ≥ 1 where Ψ is the convex conjugation of Φ. Then
there are positive constants C ′

1, C
′
2 and κ such that for all ν ∈ M1(X ),

W p
p (ν, µ) ≤

√

C ′
1I(ν, µ)2 + C ′

2I(ν|µ),

and

κ
(

[1 + W1(ν, µ)2]p/2 − 1
)

≤ I(ν|µ)

and when p ≥ 2,

κ
(

[1 + W2(ν, µ)4]p/4 − 1
)

≤ I(ν|µ).

Proof. Recall the following fact ([19, Proposition 7.10]),

W p
p (ν, µ) ≤ 2p−1‖d(·, x0)

p(ν − µ)‖TV .

Then this corollary follows directly from Theorem 5.1. �
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Pures et Appliquées, 86:342–361, 2006.

[8] M.F. Chen. Eigenvalues, inequalities, and ergodic theory. Probability and its Applications. Springer-
Verlag, 2005.

[9] J-D. Deuschel and D.W. Stroock. Large Deviations, volume 137 of Pure and Applied Mathematics.
Academic Press, 1989.

[10] H. Djellout, A. Guillin, and L. Wu. Transportation cost-information inequalities for random dynamical
systems and diffusions. Annals of Probability, 32(3B):2702–2732, 2004.

[11] H. Djellout and L. Wu. Spectral gap of one dimensional diffusions in Lipschitzian norm and application
to log-Sobolev inequalities for Gibbs measures. In preparation.
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18 ARNAUD GUILLIN, CHRISTIAN LÉONARD, FENG-YU WANG, AND LIMING WU

[14] M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89.
American Mathematical Society, Providence RI, 2001.

[15] W. Liu and Y. Ma, Spectral gap and deviation inequalities for birth-death processes, Preprint 06,
contained in the Ph.D thesis of Y. Ma at Université La Rochelle 2007.
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