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Introduction

Let (X , d) be a complete and separable metric space (say Polish) and µ a given probability measure on (X , B) where B is the Borel σ-field. Let (X t ) t≥0 be a µ-symmetric ergodic conservative Markov process valued in X , with transition semigroup (P t ) (which is symmetric on L 2 (µ)), and Dirichlet form (E(•, •), D(E)) where D(E) is the domain of E in L 2 (µ) := L 2 (X , B, µ). Here the ergodicity means simply : for g ∈ D(E), E(g, g) = 0 iff g = c.

For 1 ≤ p < +∞ fixed and for any probability measure ν on X (written as ν ∈ M 1 (X )), consider (i): L p -Wasserstein distance between ν and µ:

W p (ν, µ) := inf π∈C(ν,µ) E 2 d p (x, y)π(dx, dy) (1.1)
where C(ν, µ) are the set of all couplings of (ν, µ), i.e., probability measures π on E × E such that π(A × E) = ν(A) and π(X × A) = µ(A) for all A ∈ B. 

I(ν|µ)

:= E( √ f , √ f ). if ν = f µ, √ f ∈ D(E), +∞ otherwise. (1.3) Fisher
The usual transport inequalities W p H, introduced and studied by K. Marton [START_REF] Marton | Bounding d-distance by informational divergence: a way to prove measure concentration[END_REF] and M. Talagrand [START_REF] Talagrand | Transportation cost for gaussian and other product measures[END_REF] mean that W p (ν, µ) 2 ≤ 2CH(ν|µ), ∀ν ∈ M 1 (X ).

(W p H(C)) Its study is very active: see Bobkov-Götze [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF], Otto-Villani [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF], Bobkov-Gentil-Ledoux [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF], Djellout-Guillin-Wu [START_REF] Djellout | Transportation cost-information inequalities for random dynamical systems and diffusions[END_REF] and references therein. Furthermore Gozlan-Léonard [START_REF] Gozlan | A large deviation approach to some transportation cost inequalities[END_REF] consider the following generalized transportation cost from ν to µ: T V (ν, µ) := sup{ν(u)µ(v); (u, v) ∈ V} (µ(u) := E udµ) where V is some given family of (u, v) ∈ (bB) 2 so that (A1) u ≤ v for all (u, v) ∈ V (or equivalently T V (ν, ν) ≤ 0 for all ν ∈ M 1 (X )); (A2) For all ν 1 , ν 2 ∈ M 1 (X ), there exists (u, v) ∈ V such that u dν 1v dν 2 ≥ 0 (or equivalently T V (ν 1 , ν 2 ) ≥ 0 for all ν 1 , ν 2 ∈ M 1 (X )). And they introduced the following generalization of W p H: for some convex, non-decreasing and left continuous function α on R + , α(T V (ν, µ)) ≤ 2CH(ν|µ), ∀ν ∈ M 1 (X ) (α-T V H(C)) and they established its equivalence with some concentration inequality of the underlying measure µ and of the i.i.d. sequences of common law µ.

Recall that T V (ν, µ) = W p (ν, µ) 2 iff V = V(p, d), the family of all couples (u, v) of real bounded measurable functions on X such that u(x)v(y) ≤ d p (x, y), ∀x, y ∈ E.

(1.4) A31 Guillin-Leonard-Wu-Yao [START_REF] Guillin | Transport-information inequalities for Markov processes (I)[END_REF] propose a new transport-information inequality, adapted to Markov processes (and in particular to consider deviation inequalities for integral functionals of Markov processes) W p (ν, µ) 2 ≤ 4C 2 I(ν|µ), ∀ν ∈ M 1 (X ) (W p I(C)) or the more general α (T V (ν, µ)) ≤ I(ν|µ), ∀ν ∈ M 1 (X ).

(α-T V I) Using large deviations techniques they prove the following characterization: 

λ max (L + λu) := sup g∈D(E):µ(g 2 )=1 λ ug 2 dµ -E(g, g) ≤ λµ(v) + α * (λ) (1.5) L2bound
where L is the generator of (P t ) on L 2 (X , µ) and r) , ∀t, r > 0.

α * (λ) = sup r≥0 {λr -α(r)}, ∀λ ≥ 0 is the semi-Legendre transformation of α. (c): For any initial measure ν = f µ with f ∈ L 2 (µ) and for all (u, v) ∈ V P ν 1 t t 0 u(X s )ds ≥ µ(v) + r ≤ f 2 e -tα(
(1.6) thmA11a

Remarks 1.2. The meaning of the deviation inequality characterization (1.6) of α-W p I is clear in the ergodic behavior of the Markov process (X t ), as well as (1.5) in the study of the Schrödinger operator L + u. That is one more reason why α-T V I inequality is useful.

Remarks 1.3. If V is some family of (u, u) ∈ (bB) 2 , (1.6) becomes a deviation inequality of the empirical (time) mean from its space mean µ(u) for the observable u so that (u, u) ∈ V. Three criteria for W 1 I(C) are established in [START_REF] Guillin | Transport-information inequalities for Markov processes (I)[END_REF]: spectral gap in L 2 (µ); spectral gap in the space of Lipschitz functions and a very general Lyapunov function criterion if V = {(u, u); |u| ≤ φ} where φ > 0 is some fixed weight funtion. And it is also shown that on a Riemannian manifold X equipped with the Riemannian metric d, the log-Sobolev inequality

Notice that if V = {(u, u); u ∈ bB, u Lip ≤ 1} then T V (ν, µ) = W 1 (ν, µ),
H(ν|µ) ≤ 2CI(ν|µ), ∀ν ∈ M 1 (X ).
(HI(C))

implies W 2 I(C), which in turn implies the Poincaré inequality

V ar µ (g) ≤ c P E(g, g), ∀g ∈ L 2 (µ) D(E) (P (C))
where V ar µ (g) = µ(g 2 )µ(g) 2 is the variance. Furthermore W 2 I(C) =⇒ HI(C ′ ) once if the Ricci-Bakry-Emery curvature of µ is bounded from below.

We organize this paper around the four questions below:

(i): Investigate the relations between W p I with W p H. That is the objective of §2.

(ii): Prove that the spectral gap in the space of Lipschitz functions implies a Cheeger type's isoperimetric inequality, which is stronger than W 1 I. That is the purpose of §3. We will also establish deviation inequalities under natural quantities such as the variance of the test function, refining [START_REF] Guillin | Transport-information inequalities for Markov processes (I)[END_REF]. (iii): In §4 we study relations between (α-W 2 I) and the β-log-Sobolev inequality:

β • µ(g 2 log g 2 ) ≤ E(g, g), µ(g 2 ) = 1, g ∈ D(E), (1.7) Phi
where β is a positive increasing function. This inequality was connected in [START_REF] Wang | Transportation cost inequalities for the log-Sobolev inequality with powers[END_REF] to the well developed F -Sobolev inequality introduced in [START_REF] Wang | Functional inequalities for empty essential spectrum[END_REF], so that known criteria for the later can be applied directly to (1.7). (iv): Finally we present in §5 applications of Φ-Sobolev inequality

g 2 Φ ≤ C 1 E(g, g) + C 2 µ(g 2 )
in transportation-information inequalities α-T V I and then in the concentration phenomena of 1 t t 0 u(X s )ds under integrability conditions on u.

W p I implies W p H on a Riemannian manifold

Recall (cf. Villani [START_REF] Villani | Topics in Optimal Transportation[END_REF]) the well known Kantorovitch's dual characterization :

W p p (ν, µ) = sup (u,v)∈V(p,d) udν -vdµ (2.1) A32
where V(p, d) is given in (1.4), and Kantorovitch-Robinstein's identity

W 1 (ν, µ) = sup u Lip ≤1 ud(ν -µ). (2.2) A33
Throughout this section X is a connected complete Riemannian manifold equipped with the Riemannian metric d, and µ = e -V dx/Z (Z being the normalization constant assumed to be finite) with V ∈ C 1 (X ), and (E, D(E)) is the closure of

E(g, g) := E |∇g| 2 dµ(x), g ∈ C ∞ 0 (X )
where ∇ is the gradient on X , and C ∞ 0 (X ) is the space of infinitely differentiable functions on X with compact support. In such case our Fisher information of f µ with 0 < f ∈ C 1 (X ) w.r.t. µ becomes

I(f µ|µ) = 1 4 |∇f | 2 f dµ = 1 4 |∇ log f | 2 dµ. 2.1. W 1 I(C) =⇒ W 1 H(C). thm21 Theorem 2.1. Assume that µ satisfies W 1 I(C). Then W 1 (ν, µ) 2 ≤ 2CH(ν|µ), ∀ν ∈ M 1 (X )
i.e., µ satisfies W 1 H(C).

Proof. By Bobkov-Götze's criterion [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF] for W 1 H(C), it is enough to show that for any bounded g ∈ C 1 (X ) with |∇g| ≤ 1 and λ ≥ 0, e λ(g-µ(g)) dµ ≤ e λ 2 C 2 /2 .

(

2.3) thm21b

To this end we may assume that µ(g) = 0. Consider Z(λ) = e λg dµ, µ λ := e λg Z(λ) µ.

We have by Kantorovitch's identity (2.2)

d dλ log Z(λ) = µ λ (g) ≤ W 1 (µ λ , µ) but by W 1 I(C), W 1 (µ λ , µ) ≤ 2C I(µ λ |µ) = Cλ |∇g| 2 dµ λ ≤ Cλ. Thus log Z(λ) ≤ λ 0 Ctdt = Cλ 2 2 the desired control (2.3).
The implication "W 1 I(C) =⇒ W 1 H(C)" is strict, as shown by the following simple counter-example ( [START_REF] Djellout | Transportation cost-information inequalities for random dynamical systems and diffusions[END_REF]).

Example 2.2. Let X = [-2, -1] [1, 2] and µ(dx) = (1 [-2,-1] + 1 [1,2] )dx/2. The Dirichlet form (E, D(E)) is given by E(f, f ) = f ′2 dµ(x), ∀f ∈ D(E) = H 1 (X )
where H 1 (X ) is the space of those functions f ∈ L 2 (µ) so that f ′ ∈ L 2 (µ) (in the distribution sense). It corresponds to the reflecting Brownian Motion in X , which is not ergodic. But W 1 I(C) implies always the ergodicity. Thus µ does not satisfy W 1 I(C). However µ satisfies W 1 H(C) by the Gaussian integrability criterion in [START_REF] Djellout | Transportation cost-information inequalities for random dynamical systems and diffusions[END_REF].

The argument above can be extended to more general transportation information inequality α-W 1 I:

prop21 Proposition 2.3. Let α : R + → [0, +∞] be a left-continuous non-decreasing convex func- tion with α(0) = 0. Assume that µ satisfies α-W 1 I. Then µ satisfies α(W 1 (ν, µ)) ≤ H(ν|µ), ∀ν ∈ M 1 (X ) (α -W 1 H) prop21a
where α(r) = 2 r 0 α(s)ds. In particular for any Lipschitzian function g with g Lip ≤ 1, r) , ∀r > 0.

µ(g > µ(g) + r) ≤ e -α(
Proof. By Gozlan-Léonard's criterion [START_REF] Gozlan | A large deviation approach to some transportation cost inequalities[END_REF] for α-W 1 H, it is enough to show that for any bounded g ∈ C 1 (X ) with |∇g| ≤ 1 and λ ≥ 0, e λ(g-µ(g)) dµ ≤ e α * (λ) , ∀λ ≥ 0 (2.4) prop21c

which implies the last concentration inequality in this Proposition by Chebychev's inequality. To show (2.4) we may assume that µ(g) = 0. Let Z(λ) and µ λ be as in the previous proof of Theorem 2.1, we have

d dλ log Z(λ) = µ λ (g) ≤ W 1 (µ λ , µ).
But by the assumed α-W 1 I,

W 1 (µ λ , µ) ≤ α -1 (I(µ λ |µ)) = α -1 λ 2 4 |∇g| 2 dµ λ ≤ α -1 (λ 2 /4) where α -1 (t) := inf{t ≥ 0; α(r) > t}, t ≥ 0. Thus log Z(λ) ≤ λ 0 α -1 (t 2 /4)dt =: h(λ). Now by Fenchel-Legendre theorem, h = (h * ) * , but h * (r) = sup λ≥0 (λr -h(λ)) = 2 r 0 α(s)ds,
which completes the proof of the desired control (2.4).

W

2 I(C) =⇒ W 2 H(C). thm22 Theorem 2.4. Assume that µ satisfies W 2 I(C). Then W 2 (ν, µ) 2 ≤ 2CH(ν|µ), ∀ν ∈ M 1 (X ) i.e., µ satisfies W 2 H(C).
Proof. We shall use the method of Hamilton-Jacobi equation due to Bobkov-Gentil-Ledoux [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF]. Consider the inf-convolution

Q t g(x) := inf y∈E (g(y) + 1 2t d 2 (x, y))
which is viscosity solution of the Hamilton-Jacobi equation

∂ t Q t g + 1 2 |∇Q t g| 2 = 0. (2.

5) HJequ

By Bobkov-Götze's criterion [START_REF] Bobkov | Exponential integrability and transportation cost related to logarithmic Sobolev inequalities[END_REF] for

W 2 H(C), it is enough to show that for any g ∈ C 1 b (X ), e Q 1 g/C dµ ≤ e µ(g)/C . (2.6) thm22b
To this end we may and will assume that µ(g) = 0. Let λ = λ(t) = κt where κ > 0 will be determined later and consider

Z(t) = e λQtg dµ, µ t := e λQtg Z(t) µ.
We have

d dt log Z(t) = 1 Z(t) λ ′ (t)Q t f + λ(t)∂ t Q t g e λQtg dµ = κ Q t gdµ t - λ 2 |∇Q t g| 2 dµ t = κ Q t gdµ t - 2 λ I(µ t |µ).
But by Kantorovitch's identity (2.1),

Q t gdµ t ≤ 1 2t W 2 2 (µ t , µ) (2.7) thm22c
and the assumed

W 2 I(C) gives W 2 2 (µ t , µ) ≤ 4C 2 I(µ t |µ). Thus for every t > 0, d dt log Z(t) ≤ 2κC 2 t - 2 κt I(µ t |µ)
Putting κ = 1/C, we obtain d dt log Z(t) ≤ 0 for all t > 0, which implies by the continuity of log

Z(t) on R + that e Q 1 g/C dµ = Z(1) ≤ Z(0) = 1 the desired (2.6).
Remarks 2.5. The proof above is adapted from that of Bobkov-Gentil-Ledoux [START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF] for the implication HI(C) =⇒ W 2 H(C), originally established by Otto-Villani [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF].

Remarks 2.6. We have thus established in this section

HI(C) ⇒ W 2 I(C) ⇒ W 2 H(C).
It was also established in [START_REF] Guillin | Transport-information inequalities for Markov processes (I)[END_REF] that under a lower bound of the Ricci-Bakry-Emery curvature of µ that W 2 I implies back to HI, and with additional conditions on this lower bound that W 2 H implies back HI. It is then a natural question to know if the condition on the lower bound of the Ricci-Bakry-Emery curvature is also necessary to get the reverse implication. A partial answer was provided in [START_REF] Cattiaux | On quadratic transportation cost inequalities[END_REF] where an example of a real probability measure, with infinite lower bounded curvature, was shown to verify W 2 H but not HI. Inspired by this example, we furnish here an example where W 1 I holds (using Lyapunov conditions of [13, Section 5]) but not HI. Let then consider dµ(x) = e -V (x) dx, where V is symmetric C 2 (at least) and given for large x by

V (x) = x 4 + 4x 3 sin 2 (x) + x β .
Consider also the natural reversible process associated to this measure given by generator Lf = f ′′ -V ′ f ′ . Using W (x) = e ax 4 , by easy calculus, one sees that LW ≤ -cx 4 W + b (for some positive b and c) if β > 2. This Lyapunov condition also implies a Poincaré inequality (see [START_REF] Barthe | A simple proof or the Poincaré inequality for a large class of probability measure including the logconcave case[END_REF] for example), so that using a slight modification of [13, Lem. 5.7], we get that W 1 I holds and also W 2 H by [START_REF] Cattiaux | On quadratic transportation cost inequalities[END_REF]. Remark now that if β < 3 then V /V ′2 is not bounded, which is a known necessary condition for HI to hold (see [START_REF] Cattiaux | On quadratic transportation cost inequalities[END_REF]). Unfortunatly, we are not up to now able to prove that W 2 I holds.

W 1 I and the isoperimetric inequality of Cheeger's type by means of the spectral gap in C Lip

In this section we return to the general Polish space case (X , d). We assume that µ charges all non-empty open subsets of X .

Let C Lip be the space of all real functions g on X which are Lipschitz-continuous, i.e., g Lip := sup x =y

|f (x)-f (y)| d(x,y)
< +∞. We assume that there is an algebra A ⊂ C Lip D 2 (L) (here D 2 (L) is the domain of the generator L in L 2 (µ) associated with (E, D(E))), which is a form core for (E, D(E)). Hence the carré-du-champs operator

Γ(f, g) := 1 2 (L(f g) -f Lg -gLf ) , ∀f, g ∈ A admits a unique continuous extension Γ : D(E) × D(E) → L 1 (X , µ).
Throughout this section we assume that Γ is a differentiation, that is, for all (h k ) 1≤k≤n ⊂ A, g ∈ A and

F ∈ C 1 b (R n ), Γ(F (h 1 , • • • , h n ), g) = n i=1 ∂ i F (h 1 , • • • , h n )Γ(h i , g) (this can be extended to D(E)). thm31 Theorem 3.1. Assume that d 2 (x, x 0 )dµ(x) < +∞ for some (or all) x 0 ∈ E and Γ is a differentiation. Suppose that there is a form core D ⊂ C Lip D 2 (L) of (E, D(E)) such that 1 ∈ D and W 1 (ν, µ) = sup g∈D: g Lip ≤1 { gd(ν -µ)}, ∀ν with I(ν|µ) < +∞ (3.1) thm31a and 
Γ(g, g) ≤ σ g Lip , µ -a.s., ∀g ∈ C Lip D 2 (L) (3.2) thm31b
and for some constant C > 0 and for any g ∈ D with µ(g) = 0, there is

G ∈ C Lip D 2 (L) so that -LG = g, G Lip ≤ C g Lip . (3.3) thm31c
Then the Poincaré inequality holds with c P ≤ C, and the following isoperimetric inequality of Cheeger's type

W 1 (f µ, µ) ≤ σC Γ(f, f )dµ, 0 ≤ f ∈ D(E), µ(f ) = 1 (3.4) thm31d
holds true. In particular,

W 1 (ν, µ) 2 ≤ 4(σC) 2 I(ν|µ), ∀ν ∈ M 1 (X ). (3.5) thm31e
Furthermore for any observable g with g Lip = 1,

gd(ν -µ) ≤ 2 I(ν|µ) V (g) 2 + 2(σC) 2 c P I(ν|µ) (3.6) thm31f
and for any t, r, δ > 0,

P β 1 t t 0 g(X s )ds > µ(g) + r ≤ dβ dµ 2 exp   -t r 2 (1 + δ)V (g) + [(1 + δ)V (g)] 2 + 8c P (σC) 4 δV (g) r 2   (3.7) thm31g
where V (g) := lim t→∞

1 t V ar Pµ t 0 g(X s )ds = 2
∞ 0 gµ(g), P t g µ dt is the asymptotic variance of g.

Proof.

Under the Lipschitzian spectral gap condition (3.3), it is noted in [START_REF] Guillin | Transport-information inequalities for Markov processes (I)[END_REF] that the Poincaré inequality holds with c P ≤ C.

For both (3.4) and (3.5) we may assume that ν = f µ with f ∈ D(E), f ≥ ε > 0. For any g ∈ D with g Lip ≤ 1 and µ(g) = 0, letting G := (-L) -1 g be the unique solution of the Poisson equation with µ(G) = 0, we have

gdν -gdµ = g, f µ = E(G, f ) = Γ(G, f )dµ ≤ Γ(G, G) ∞ Γ(f, f )dµ.
Taking the supremum over all such g and observing Γ(G, G) ∞ ≤ σ G Lip ≤ σC we obtain (3.4). Furthermore by Cauchy-Schwarz and the fact that Γ is a differentiation, we have

Γ(f, f )dµ ≤ Γ(f, f ) f dµ f dµ = 2 I(ν|µ)
where (3.5) follows from (3.4). For (3.6) writing f = h 2 , we have

gdν -gdµ = Γ(G, f )dµ = 2 hΓ(G, h)dµ ≤ 2 Γ(h, h)dµ • Γ(G, G)h 2 dµ.
Using the inequality in [13, Theorem 3.1]

Γ(G, G)h 2 dµ -Γ(G, G)dµ ≤ Γ(G, G) ∞ h 2 µ -µ T V ≤ (σC) 2 4c P I(ν|µ)
and noting that

V (g) = 2 (-L) -1 g, g µ = 2E(G, G) = 2 Γ(G, G)dµ, we obtain gdν -gdµ ≤ 2 I(ν|µ) V (g) 2 + 2(σC) 2 c P I(ν|µ)
which is (3.6). Using 2I 

= N (0, σ 2 ). For f ∈ C ∞ b (R), from the explicit solution X t = e -σ -2 t X 0 + t 0 e σ -2 s √
2dB s , we see that (P t f ) ′ = e -σ -2 t P t f ′ . 

Hence c

G ′ (x) = - x 0 g(t)dt, x ∈ [0, D].
It is now easy to see that c Lip,P = sup g Lip =1 G ′ ∞ is attained with g(x) = x -D/2 and then c Lip,P = D 2 /8. Thus by Theorem 3.1, the optimal constant C W 1 I for this process satisfies C W 1 I ≤ c Lip = D 2 /8. In comparison recall that the best Poincaré constant

c P = D 2 /π 2 . Since W 1 I(C) =⇒ W 1 H(C)
and the best constant of W 1 H(C) for the uniform law µ on [0, D] is D 2 /12, so we obtain

D 2 12 ≤ c W 1 I ≤ D 2 8 .
We do not know the exact value of c W 1 I for this simple example.

Example 3.6. Let X be a compact connected Riemannian manifold of dimension n with empty or convex boundary. Assume that the Ricci curvature is nonnegative and its diameter is D. Consider the Brownian Motion (with reflection in the presence of the boundary) generated by the Laplacian operator ∆.

In [START_REF] Wu | Lipschitzian norm of Poisson operators on Riemannian manifolds[END_REF] it is shown that c Lip,P = (-∆) -1 Lip ≤ D 2 /8 (the latest quantity is exactly c Lip,P for the reflected Brownian Motion on the interval [0, D]). Thus by Theorem 3.1,

W 1 I(C) holds with C = D 2 /8.
See [START_REF] Wu | Lipschitzian norm of Poisson operators on Riemannian manifolds[END_REF] for more examples for which c Lip,P is estimated.

Example 3.7. (One-dimensional diffusions) Now let us consider the one-dimensional diffusion with values in the interval (x 0 , y 0 ) generated by

Lf = a(x)f ′′ + b(x)f ′ , f ∈ C ∞ 0 (x 0 , y 0 )
where a, b are continuous such that a(x) > 0 for all x ∈ (x 0 , y 0 ). Let ((X t ) 0≤t<τ , P x ) be the martingale solution associated with L and initial position x, where τ is the explosion time. With a fixec c ∈ (x 0 , y 0 ),

s ′ (x) := exp - x c b(t) a(t) dt , m ′ (x) := 1 a(x) exp x c b(t) a(t) dt
are respectively the derivatives of Feller's scale and speed functions. Assume that

Z := y 0 x 0 m ′ (x) dx < +∞ (3.8) D1 and let µ(dx) = m ′ (x)dx/Z. It is well known that (L, C ∞ 0 (x 0 , y 0 )) is symmetric on L 2 (µ). Assume also that y 0 c s ′ (x) dx x c m ′ (x) dx = c x 0 s ′ (x) c x m ′ (x) dx = +∞ (3.9) D2
which, in the Feller's classification, means that x 0 , y 0 are no accessible or equivalently τ = ∞, P x -a.s. In this case by the L 1 -uniqueness in [START_REF] Wu | Uniqueness of Nelson's diffusions[END_REF], the Dirichlet form

D(E) = f ∈ AC(x 0 , y 0 ) L 2 (µ); y 0 x 0 (f ′ ) 2 dµ < +∞ , E(f, f ) = y 0 x 0 (f ′ ) 2 dµ, f ∈ D(E)
is associated with (X t ), where AC(x 0 , y 0 ) is the space of absolutely continuous functions on (x 0 , y 0 ). Fix some ρ ∈ C 1 (x 0 , y 0 ) such that ρ ∈ L 2 (µ) and ρ ′ (x) > 0 everywhere, consider the metric

d ρ (x, y) = |ρ(x) -ρ(y)|. A function f on (x 0 , y 0 ) is Lipschitz with respect to d ρ (written as f ∈ C Lip(ρ) ) if and only if f ∈ AC(x 0 , y 0 ) and f Lip(ρ) = sup x 0 <x<y<y 0 |f (y) -f (x)| ρ(y) -ρ(x) = f ′ ρ ′ ∞ .
The argument below is borrowed from [START_REF] Djellout | Spectral gap of one dimensional diffusions in Lipschitzian norm and application to log-Sobolev inequalities for Gibbs measures[END_REF]. Assume that

C(ρ) := sup x∈(x 0 ,y 0 ) 1 ρ ′ (x) y 0 x [ρ(t) -µ(ρ)]m ′ (t) dt < +∞. (3.10) C-rho
For every g ∈ C Lip(ρ) with µ(g) = 0, then f (x) =

x c dy

y 0 y g(t)m ′ (t) dt -A (in C 2 ) solves -(af ′′ + bf ′ ) = g. (3.11) cor44a It is obvious that f Lip(ρ) = sup x∈(x 0 ,y 0 ) 1 ρ ′ (x) y 0 x g(t)m ′ (t) dt.
An elementary exercise (as done in [START_REF] Djellout | Spectral gap of one dimensional diffusions in Lipschitzian norm and application to log-Sobolev inequalities for Gibbs measures[END_REF]) shows that the last quantity is always not greater than C(ρ) g Lip(ρ) . Thus f ∈ L 2 (µ) (for ρ ∈ L 2 (µ)). By Ito's formula, f ∈ D 2 (L). With the constant A so that µ(f ) = 0, f given above is the unique solution in L 2 (µ) with zero mean of (3.11) by the ergodicity of (X t ). We see also that C(ρ) is the best constant by taking g = ρµ(ρ). In other words condition (3.3) is verified with the best constant C = c Lip,P = C(ρ). Hence from Theorem 3.1, we get cor44 Corollary 3.8. Let a, b : (x 0 , y 0 ) → R be continuous such that a(x) > 0 for all x and conditions (3.8) (3.9) be satisfied. Assume (3.10) and σ := sup x∈(x 0 ,y 0 ) a(x)ρ ′ (x) < +∞.

Then µ satisfies W 1 I(σC(ρ)) on ((x 0 , y 0 ), d ρ ). In particular for Remarks 3.9. The quantity C(ρ) in (3.10) is not innocent: Chen-Wang's variational formula for the spectral gap λ 1 says that ( [START_REF] Chen | Eigenvalues, inequalities, and ergodic theory[END_REF][START_REF] Wang | Functional inequalities, Markov Semigroup and Spectral Theory[END_REF]):

ρ a (x) =
λ 1 = sup ρ 1 C(ρ) .

Functional inequalities and W 2 I inequalities

Throughout this section we consider the framework of Section 2, i.e. X is a connected complete Riemannian manifold M with µ(dx) := e -V (x) dx/Z for some V ∈ C(M ) with Z := M e -V (x) dx < ∞. Recall that in [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF][START_REF] Guillin | Transport-information inequalities for Markov processes (I)[END_REF] was proven the fact that a logarithmic Sobolev inequality implies W 2 I, and that (using HWI inequalities) under a lower bounded curvature, the converse was also true. We extend here this assertion for α -W 2 I inequalities.

T4.1 Theorem 4.1. (1) Let β ∈ C([0, ∞)) be increasing with β(0) = 0 such that γ(r) := 1 2 r 0 ds β(s) < ∞, r > 0.
Then the following β-log-Sobolev inequality

β • µ(g 2 log g 2 ) ≤ µ(|∇g| 2 ), g ∈ C 1 b (M ), µ(g 2 ) = 1, (4.1) P1 implies α(W 2 (ν, µ)) ≤ I(ν|µ), ν ∈ M 1 (X ) (4.2) AA for α(s) := β • γ -1 (s), s ≥ 0.
(2) Assume that Ric + Hess V ≥ -K for some K ≥ 0. Then (4.2) implies (4.1) for

β(r) := inf s > 0 : 2 √ 2sα -1 (s) + K(α -1 (s)) 2 ≥ r , r ≥ 0.
Proof. (1) According to [24, Theorem 2.2], (4.1) implies

W 2 (f µ, µ) ≤ γ • µ(f log f ), f ≥ 0, µ(f ) = 1. (4.
3) TP Then (4.2) follows from (4.3) and (4.1). For readers' convenience, we include below a brief proof of (4.3), inspired by the seminal work [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] pushed further in [START_REF] Wang | Probability distance inequalities on Riemannian manifolds and path spaces[END_REF].

Since a continuous function can be uniformly approximated by smooth ones, we may and do assume that V is smooth. Let P t be the diffusion semigroup generated by L := ∆ -∇V.∇. Then P t is symmetric in L 2 (µ). For fixed f > 0 with µ(f ) = 1, let µ t = (P t f )µ, t > 0. According to [22, page 176] for p = 2 (see also [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF] under a curvature condition), we have

d + dt -W 2 (µ, µ t ) := lim sup s↓0 W 2 (µ, µ t ) -W 2 (µ, µ t+s ) s ≤ 2µ ∇ P t f 2 1/2 . (4.4) W2.1 Let γ(r) = 1 2 r 0 ds β(s) , r > 0.
It suffices to prove for the case that γ(r) < ∞ for r > 0. By (4.1) we have

d dt γ • µ(P t f log P t f ) = 4γ ′ • µ(P t f log P t f )µ ∇ P t f 2 = 2µ ∇ √ P t f 2 β • µ(P t f log P t f ) ≥ 2µ ∇ P t f 2 1/2 .
Combining this with (4.4) we obtain

d + dt -W 2 (µ, µ t ) ≤ d dt γ • µ(P t f log P t f ),
which implies (4.3) by noting that

P t f → µ(f ) = 1 as t → ∞.
(2) By the HWI inequality (see [START_REF] Otto | Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality[END_REF][START_REF] Bobkov | Hypercontractivity of Hamilton-Jacobi equations[END_REF]), we have

µ(g 2 log g 2 ) ≤ 2(e 2Kt -1) K µ(|∇g| 2 ) + Ke 2Kt e 2Kt -1 W 2 (g 2 µ, µ) 2 , µ(g 2 ) = 1, t > 0.
Combining this with (4.2) we obtain

µ(g 2 log g 2 ) ≤ inf t>0 2(e 2Kt -1) K µ(|∇g| 2 ) + Ke 2Kt e 2Kt -1 [α -1 µ(|∇g| 2 ) ] 2 .
Taking t > 0 such that

e 2Kt = 1 + K α -1 (µ(|∇g| 2 )) 2µ(|∇g| 2 ) , we obtain µ(g 2 log g 2 ) ≤ 2 2µ(|∇g| 2 )α -1 (µ(|∇g| 2 )) + K[α -1 (µ(|∇g| 2 
))] 2 . This completes the proof.

Let us give a natural family of examples, namely when β is a power function. -δ) . Then the first assertion follows from Theorem 4.1 [START_REF] Barthe | A simple proof or the Poincaré inequality for a large class of probability measure including the logconcave case[END_REF].

C4.2 Corollary 4.2. For any δ ∈ [1, 2), µ(g 2 log g 2 ) δ ≤ Cµ(|∇g| 2 ), g ∈ C 1 b (X ), µ(g 2 ) = 1 implies W 2 (ν, µ) 2 ≤ C 2/δ (2 -δ) 2 I(ν|µ) (2-δ)/δ . Inversely if Ric + Hess V is bounded below, then W 2 (ν, µ) 2 ≤ CI(ν|µ) (2-δ)/δ implies µ(g 2 log g 2 ) δ ≤ C ′ µ(|∇g| 2 ), g ∈ C 1 b (X ), µ(g 2 ) = 1 for some C ′ > 0. Proof. For β(r) := r δ /C we have γ(r) = √ C 2-δ r (2-δ)/2 so that β • γ -1 (s) = 1 C 2 -δ √ C s 2δ/(2-δ) = (2 -δ) 2δ/(2-δ) C 2/(2-δ) s 2δ/(2
Next, for α(r) = r 2δ/(2-δ) C -δ/(2-δ) , we have

α -1 (s) = √ Cs (2-δ)/2δ . Since 2 -δ ≤ 1, Theorem 4.1(2) implies µ(g 2 log g 2 ) ≤ 2 √ 2Cµ(|∇g| 2 ) 1/δ + KCµ(|∇g| 2 ) (2-δ)/δ , µ(g 2 ) = 1. (4.5) W* Since 2 -δ ≤ 1, this implies µ(g 2 log g 2 ) ≤ C ′ µ(|∇g| 2 ) 1/δ , µ(g 2 ) = 1, µ(|∇g| 2 ) ≥ 1 (4.6) W*2
for some C ′ > 0. Moreover, since δ ≥ 1, (4.5) implies the defective log-Sobolev inequality µ(g 2 log g 2 ) ≤ C 1 µ(|∇g| 2 ) + C 2 , µ(g 2 ) = 1 for some C 1 , C 2 > 0, which in particular implies that the spectrum of L := ∆ + ∇V is discrete (see e.g. [START_REF] Wang | Functional inequalities for empty essential spectrum[END_REF][START_REF] Wu | Uniformly integrable operators and large deviations for Markov processes[END_REF]), and hence the Poincaré inequality holds since λ 0 = 0 is the simple eigenvalue due to the connection of the manifold. Thus, the strict log-Sobolev inequality µ(g 2 log g 2 ) ≤ C ′ µ(|∇g| 2 ), µ(g 2 ) = 1 for some constant C ′ > 0. The proof is then completed by combining this with (4.6).

Example 4.3. Let Ric be bounded below, and ρ o the Riemannian distance function to a fixed point o ∈ E. Let V ∈ C(X ) such that Vaρ θ o is bounded for some a > 0 and θ ≥ 2. Then (4.2) holds for α(r) = Cr 2(θ-1) for some C > 0, i.e. CW 2 (ν, µ) 2(θ-1) ≤ I(ν|µ), ν ∈ M 1 (X ).

(4.7) W*3 The power 2(θ -1) is sharp, i.e. the above inequality does not hold if this power is replaced by any larger number, as seen from Proposition 2.3. Indeed, by [21, Corollaries 2.5 and 3.3], we have µ(g 2 log 2(θ-1)/θ (g 2 + 1)) ≤ C 1 µ(|∇g| 2 ) + C 2 , µ(g 2 ) = 1 holds for some C 1 , C 2 > 0. By Jensen's inequality we obtain µ(g 2 log g 2 ) 2(θ-1)/θ ≤ µ(g 2 log(g 2 + 1))

2(θ-1)/θ ≤ C 1 µ(|∇g| 2 ) + C 2 , µ(g 2 ) = 1.
Combining this with the log-Sobolev inequality as in the proof of Corollary 4.2, we obtain µ(g 2 log g 2 ) 2(θ-1)/θ ≤ µ(g 2 log(g 2 + 1)) 2(θ-1)/θ ≤ C ′ µ(|∇g| 2 ), µ(g 2 ) = 1 for some constant C ′ > 0. According to Corollary 4.2, this implies (4.7).

Φ-Sobolev inequality and concentration inequality for unbounded observables under integrability condition

Let Φ : R + → [0, +∞] be a convex, increasing and left continuous function with Φ(0) = 0, such that lim r→+∞ Φ(r) r = +∞.

(5.1) 51

Consider the Orlicz space L Φ (µ) of those measurable functions g on X so that its gauge norm

N Φ (g) := inf{c > 0; Φ(|g|/c)dµ ≤ 1}
is finite, where the convention inf ∅ := +∞ is used. The Orlicz norm of g is defined by

g Φ := sup{ gu dµ; N Ψ (u) ≤ 1}
where

Ψ(r) := sup λ≥0 (λr -Φ(λ)), r ≥ 0 (5.2)
is the convex conjugation of Φ. The so called (defective) Φ-Sobolev inequality says that for some two nonnegative constants 

C 1 , C 2 ≥ 0 g 2 Φ ≤ C 1 E(g, g) + C 2 µ(g 2 ), ∀g ∈ D(E), µ(g 2 ) = 1. ( 5 
f -1 Φ ≤ C ′ 1 I(f µ|µ) 2 + C ′ 2 I(f µ|µ) (5.5) thm51a where C ′ 1 = (C 1 + 2C 2 C P )C 1 , C ′ 2 = (C 1 + 2C 2 C P ) • 4C 2 ;
or equivalently for any observable u ∈ L Ψ (µ) (Ψ being the convex conjugation of Φ given above) so that N Ψ (u) ≤ 1 and for all t, r > 0,

P ν 1 t t 0 u(X s )ds > µ(u) + r ≤ dν dµ 2 exp -t • 4C ′ 1 r 2 + (C ′ 2 ) 2 -C ′ 2 2C ′ 1 .
(5.6) thm51b (b): for any µ-probability density f ,

sup u∈bB:N Ψ (u 2 )≤1 (f -1)udµ ≤ 2(C 1 + 4C 2 C P )I(f µ|µ) (5.7) thm51c
or equivalently for any u ∈ L 1 (µ) such that u 2 ∈ L Ψ (µ),

P ν 1 t t 0 u(X s )ds > µ(u) + r ≤ dν dµ 2 exp -t r 2 2(C 1 + 4C 2 C P ) u 2 Ψ
, ∀t, r > 0.

(5.8) thm51d (c): More generally for any p ∈ [1, +∞), there is a constant κ > 0 depending only of p, C 1 , C 2 , C P such that for any µ-probability density f ,

α p sup u∈bB:N Ψ (u 2 )≤1 (f -1)udµ ≤ I(f µ|µ) (5.9) thm51e
where α p (r) = (1 + r 2 /κ) p/2 -1; or equivalently for any u ∈ L 1 (µ) such that N Ψ (|u| p ) ≤ 1,

P ν 1 t t 0 u(X s )ds > µ(u) + r ≤ dν dµ 2 exp -t[1 + r 2 /κ) p/2 -1] , ∀t, r > 0. (5.10) thm51f
As there are numerous practical criteria for the Φ-Sobolev inequality (see e.g. [START_REF] Chen | Eigenvalues, inequalities, and ergodic theory[END_REF][START_REF] Ledoux | The Concentration of Measure Phenomenon[END_REF][START_REF] Wang | Functional inequalities, Markov Semigroup and Spectral Theory[END_REF]), this theorem is very useful and gives different concentration behaviors for 1 t t 0 u(X s )ds, according to the integrability condition |u| p ∈ L Ψ (µ) where p ∈ [1, +∞).

This result generalizes the sharp concentration inequality under the log-Sobolev inequality in Wu [START_REF] Wu | A deviation inequality for non-reversible Markov processes[END_REF]. For applications of Φ-Sobolev inequalities in large deviations see Wu and Yao [START_REF] Wu | Large deviations for Markov processes via Φ-Sobolev inequalities[END_REF].

Remarks 5.2. As the l.h.s. of (5.5), (5.7) and (5.9) are the transportation cost T V (f µ, µ), with V = {(u, u); u ∈ bB, N Ψ (|u| p ) ≤ 1}, p = 1, 2, p ≥ 1 respectively, so they are the transportation-information inequality. In this point of view, the equivalence between (5.5) and (5.6) in part (a), that between (5.7) and (5.8) in part (b) and that between (5.9) and (5.10) in part (c) are all immediate from Theorem 1.1 (the passage from bounded u to general u in the concentration inequalities (5.6), (5.8) and (5.10) can be realized easily by dominated convergence).

Remarks 5.3. The concentration inequalities (5.6), (5.8) and (5.10) are all sharp in order. Indeed consider the Ornstein-Uhlenbeck process on R generated by Lf = f ′′xf ′ : the Φ-Sobolev inequality (X t ) holds with Φ(r) = (1 + r) log(1 + r) and µ = N (0, 1). Consider u(x) := |x| 2/p where p ≥ 1. Then u p ∈ L Ψ (µ), and 1 t t 0 u(X s )ds = 1 t t 0 |X s | p ds possess exactly the concentration behaviors exhibited by the r.h.s. of (5.10) for large deviation value r, and for small deviation value r of order 1/ √ t if t is large enough (by the central limit theorem).

Proof of Theorem 5.1. As explained in the previous remarks, (5.6) (resp. (5.8); (5.10)) is equivalent to (5.5)(resp. (5.7), (5.9)), all by Theorem 1.1. It is not surprising that the proof relies on the ideas first used in [START_REF] Bolley | Weighted Csiszar-Kullback-Pinsker inequalities and applications to transportation inequalities Ann[END_REF], establishing criterions for W 1 H under integrability criteria. Note also that the reader may easily adapt the proof to use conditions on F -Sobolev inequalities (equivalent to some Orlicz-Poincaré inequality) and integrability on u (rather than Orlicz norm of u). Plugging those two estimates into the previous inequality we get (5.7). Substituting those estimates into the first inequality we get

  (ii): Relative entropy or Kullback's information of ν w.r.t. µ H(ν|µ) := dν dµ log dν dµ dµ, if ν ≪ µ; +∞, otherwise. (1.2) def-entropy-a (iii): The Fisher information of ν w.r.t. µ: Date: First Version: March 2008.

  thm-GLWY Theorem 1.1. ([START_REF] Guillin | Transport-information inequalities for Markov processes (I)[END_REF]) Let ((X t ) t≥0 , P µ ) be the µ-symmetric and ergodic Markov associated with the Dirichlet form (E, D(E)), α : R + → [0, +∞] a left-continuous non-decreasing convex function with α(0) = 0, and V as above.The following properties are equivalent: (a): µ satisfies the transport-information inequality (α-T V I).(b): For all (u, v) ∈ V and all λ ≥ 0

  Lip,P = (-L) -1 Lip = σ 2 . Therefore µ satisfies W 1 I(C) with C = c Lip = σ 2 by Theorem 3.1. Furthermore C = c Lip = σ 2 is also the best constant in W 1 I(C). Indeed W 1 I(C) =⇒ W 1 H(C) and the best constant in W 1 H(C) of µ is C = σ 2 . In other words Theorem 3.1 produces the exact best constant C in W 1 I(C) for this example. Example 3.5. (Reflected Brownian Motion) Consider the reflected Brownian Motion X D t on the interval X = [0, D] (D > 0) equipped with the usual Euclidean metric, whose generator is given by Lf = f ′′ with Neumann boundary condition at 0, D. The unique invariant measure µ is the uniform law on [0, D]. For every g ∈ C 2 b ([0, D]) with D 0 g(x)dx = 0, the solution G of the Poisson equation -LG = g satisfies

  (d ρa is the metric associated with the carré-du-champs operator of the diffusion), if C(ρ a ) < +∞, then µ satisfies W 1 I(C(ρ a )) on ((x 0 , y 0 ), d ρa ).

  .3) 52 Under the assumption of the Poincaré inequality with the best constant C P , (5.3) can be transformed into the following tight version (gµ(g)) 2 Φ ≤ (C 1 + C 2 C P )E(g, g), ∀g ∈ D(E) (5.4) 53 called sometimes Orlicz-Poincaré inequality. thm51 Theorem 5.1. Assume the Φ-Sobolev inequality (5.3) and the Poincaré inequality with constant C P . Then (a): for any µ-probability density f ,

2 Φ

 2 (a) For (5.5) we may assume that I(f µ|µ) is finite, i.e., √ f ∈ D(E) (and thenI(f µ|µ) = E( √ f , √ f )). For any u ∈ L Ψ (µ) with N Ψ (u) ≤ 1, we have by Cauchy-Schwartz |(f -1)u|dµ = | f -1|( f + 1)|u|dµ ≤ ( f -1) 2 |u|dµ ( f + 1) 2 |u|dµ ≤ ( f -1) 2 Φ ( f + 1)But by the assumed Φ-Sobolev inequality (5.3),( f -1) 2 Φ ≤ C 1 E( f , f ) + C 2 ( f -1) 2 dµ and ( √ f -1) 2 dµ = 2(1µ( √ f )) ≤ 2V ar µ ( √ f ) ≤ 2C P E( √ f , √ f ); moreover ( f + 1) 2 Φ ≤ C 1 E( f , f ) + C 2 ( f + 1) 2 dµand ( √ f + 1) 2 dµ ≤ 4. Thus we get|(f -1)u|dµ ≤ (C 1 + 2C 2 C P )E( f , f )(C 1 E( f , f ) + 4C 2 )where (5.5) follows by recalling I(f µ|µ) For any u so that N Ψ (u 2 ) ≤ 1 we use now differently Cauchy-Schwartz inequality to get:|(f -1)u|dµ ≤ ( f -1) 2 dµ ( f + 1) 2 u 2 dµBut as noticed in the proof of (a), ( f -1) 2 dµ ≤ 2V ar µ ( f ) ≤ 2 min{C P I(f µ|µ), 1} and ( f + 1) 2 u 2 dµ ≤ ( f + 1) 2 Φ ≤ C 1 I(f µ|µ) + 4C 2 .

  (c). Letting q := p/(p -1) we have by Hölder's inequality,|(f -1)u|dµ ≤ (µ(|f -1|)) 1/q |f -1||u| p dµ1/p Note that µ(|f -1|) ≤ 2 and by [13, Theorem 3.3], (µ(|f -1|)) 2 ≤ 4V ar µ ( f ) ≤ 4C P I where I := I(f µ|µ). On the other hand by part (a), |f -1||u| p dµ ≤ f -1 Φ ≤ C ′ 1 I 2 + C ′ 2 I.

  and W 1 I(C) is equivalent to the Gaussian deviation inequality (1.6) with α(r) = r 2 /(4C 2 ) for the Lipschitzian observable u with Lipschitzian coefficient u Lip ≤ 1, which generalizes the well known Hoeffding's inequality in the i.i.d. case.

  3/2 ≤ εI + I 2 /ε in(3.6), we obtain (3.7) by Theorem 1.1.Remarks 3.2. The W 1 I(σC) inequality (3.5) is due to Guillin and al.[START_REF] Guillin | Transport-information inequalities for Markov processes (I)[END_REF], but the method therein is based on the Lyons-Meyer-Zheng forward-backward martingale decomposition. The argument here is simpler and direct, and yields the stronger Cheeger type's isoperimetric inequality(3.4).Remarks 3.3. Letting δ be close to 0, we see that (3.7) is sharp for small r by the central limit theorem.Set C Lip,0 = {g ∈ C Lip,0 ; µ(g) = 0}. Under the Lipschitzian spectral gap condition (3.3), the Poisson operator (-L) -1 : C Lip,0 → C Lip,0 is a well defined bounded linear operator w.r.t. the Lipschitzian norm, and the best constant C in (3.3) is the Lipschitzian norm (-L)-1 Lip and will be denoted by c Lip,P (the index P is referred to Poincaré). We now present four examples for illustrating usefulness of Theorem 3.1.

	Example 3.4. (Ornstein-Uhlenbeck process) Consider the Ornstein-Uhlenbeck pro-cess dX t = √ 2dB

tσ -2 X t dt on X = R where σ > 0 and B t is the standard Brownian motion on R. Its unique invariant measure is µ

The last term is less than κ[(1 + I) 2/p -1] for some constant κ > 0. That yields to (5.9).

Let us finally relate previous inequalities to usual α -W I inequalities.

cor51 Corollary 5.4. Assume the Φ-Sobolev inequality (5.3) and the Poincaré inequality. Assume that d p (x, x 0 ) ∈ L Ψ (µ) for some p ≥ 1 where Ψ is the convex conjugation of Φ. Then there are positive constants C ′ 1 , C ′ 2 and κ such that for all ν ∈ M 1 (X ),

and when p ≥ 2,

Proof. Recall the following fact ([19, Proposition 7.10]),

Then this corollary follows directly from Theorem 5.1.