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Introduction

This paper is inspired from the nice idea of A. Hassell in [START_REF] Hassell | Ergodic billiards that are not quantum unique ergodic[END_REF]. From the classical paper of V. Arnol'd [START_REF] Arnol'd | Modes and quasi-modes (Russian)[END_REF], we know that quasi-modes are not always close to exact modes. We will show that, for almost all Riemannian metrics on closed surfaces with an elliptic generic closed geodesic γ, there exists exact modes located on γ. Similar problems in the integrable case are discussed in several papers of J. Toth and S. Zelditch (see [START_REF] Toth | Norms of modes and quasi-modes revisited[END_REF]).

2 Quasi-modes associated to an elliptic generic closed geodesic 2.1 Babich-Lazutkin and Ralston quasi-modes Definition 2.1 A periodic geodesic γ on a Riemannian surface (X, g) is said to be elliptic generic if the eigenvalues of the linearized Poincaré map of γ are of modulus 1 and are not roots of the unity.

Theorem 2.1 (Babich-Lazutkin [START_REF] Babich | Eigenfunctions concentrated near a closed geodesic[END_REF], Ralston [START_REF] Ralston | On the construction of quasi-modes associated with stable periodic orbits[END_REF][START_REF] Ralston | Approximate eigenfunctions of the Laplacian[END_REF]) If γ is an elliptic generic closed geodesic of period T > 0 on a closed Riemannian surface (X, g), there exists a sequence of quasi-modes (u m ) m∈N of L 2 (X, dx g ) norm equal to 1 which satisfies

• (∆ g -λ m )u m L 2 (X,dxg) = O(m -∞ )
• There exists α so that 1

λ m = 2πm + α T 2 + O(1) • For any compact K disjoint of γ, K |u m | 2 = O(m -∞ ).
Corollary 2.1 There exists a sub-sequence (µ jm ) m∈N of the spectrum (µ j ) j∈N of the Laplace operator so that µ jm = λ m + O(m -∞ ). * Grenoble University, Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74, 38402-Saint Martin d'Hères Cedex (France); yves.colin-de-verdiere@ujf-grenoble.fr 1 α is given by α = (m 1 + 1 2 )θ + pπ where m 1 ∈ N is a "transverse" quantum number, the linearized Poincaré map is a rotation of angle θ (0 < θ < 2π) and p = 0 or 1 is a "Maslov index" of γ 3 Modes and quasi-modes following Arnol'd Arnol'd [START_REF] Arnol'd | Modes and quasi-modes (Russian)[END_REF] has observed that, given a quasi-mode (u m ) m∈N , there do not always exists a sequence (ϕ jm ) m∈N of exact modes close to the quasi-mode (u m ) m∈N . His example is given by a planar domain with a symmetry of order 3.

A simpler example is given by a symmetric double well: let us give V : R → [0, +∞[ a smooth even function with

• lim x→∞ V (x) = +∞ • V -1 (0) = {-a, a} with a > 0 • V (0) = b > 0 . If Ĥ = -2 d 2
x +V (x) is the semi-classical Schrödinger operator, there exists quasimodes located in the well V := {x | x > 0 and V (x) < b}. The exact eigenfunctions are even or odd and hence are not localized in a single well.

The previous examples are in some sense non generic. They involve some symmetry of the operator. [START_REF] Csörnyei | Aronszajn null and Gaussian null sets coincide[END_REF] The main result Theorem 4.1 Let us give a closed Riemannian surface (X, g 0 ) and a smooth nonzero function f ≥ 0. Let us define the metric g t := exp(-tf )g 0 . Let us assume that there exists some intervals

I m = [λ m -l m , λ m + l m ], (m ∈ N), independent of t, so that, for any t ∈ [0, 1], there exists at least one eigenvalue of ∆ t inside I m . Assume that λ m → +∞ and ∞ m=1 l m < ∞. Choose a sequence q m → 0 so that ∞ m=1 l m /q m < ∞. Then, for almost all t ∈ [0, 1], for any sequence of exact modes ϕ m (t) of eigenvalues µ m (t) with µ m (t) ∈ I m , we have X f |ϕ m (t)| 2 dx t = o(q m ).
In particular, if

Γ = support(f ), ϕ m (t) → 0 in L 2 loc (X \ Γ).
Remark 4.1 In applications, the interval I m is provided from quasi-modes located in the support of f : if u m is a quasi-mode for each values of t with

(∆ t -λ m )u m L 2 (X,dx0) ≤ C m u m L 2 (X,dx0)
with λ m independent of t, we can take l m = cC m with c large enough, depending only on bounds of f .

Remark 4.2

The quasi-mode is only used in order to find a sequence of intervalls I m which contains at least one eigenvalue of ∆ t and is independent of t. We can then take q m = O(m -∞ ).

We are unfortunately unable to prove that the modes ϕ m are close to linear combinations of the quasi-modes given in Theorem 2.1 in the interval I m .

The precise statement is Corollary 4.1 With the notations of Section 2, there exists a sequence 0 < l m = 0(m -∞ ) so that, for any t

∈ [0, 1], Spectrum(∆ t ) ∩ [λ m -l m , λ m + l m ] = ∅ and a subset Z ⊂ [0, 1] of measure 1, so that, for any sequence µ jm (t) ∈ [λ m -l m , λ m + l m ]
and for any t ∈ Z,

X f |ϕ jm (t)| 2 dx 0 = 0(m -∞ ) .
Moreover, for any compact K ⊂ X with K ∩ γ = ∅ and for any k ∈ N, we have

ϕ jm (t) C k (K) = 0(m -∞ ) .
Proof.-

The first part is a direct application of Theorem 4.1.

The second part comes from the Sobolev embeddings and the equations

∆ N t ϕ jm (t) = µ jm (t) N ϕ jm (t) with µ jm (t) = 0(m 2 ).
Remark 4.4 If we have only l m → 0, on can apply the previous result by taking first a sub-sequence m k so that l m k < ∞ and choosing then q m k → 0. This does not work with l m = O(1) as in the paper [START_REF] Hassell | Ergodic billiards that are not quantum unique ergodic[END_REF].

Variation of the eigenvalues

With g t = e -tf g 0 , we define dx t = e -tf dx 0 the Riemannian area of g t and ∆ t = e tf ∆ 0 the Laplace operator. Let us denote by

µ 1 (t) = 0 < µ 2 (t) ≤ • • • ≤ µ j (t) ≤ • • •
the eigenvalues of ∆ t and by (ϕ j (t)) j∈N an associated orthonormal eigenbasis.

Lemma 5.1

• µ j (t) is a continuous increasing function of t

• µ j (t) is piecewise analytic and, at any regular point, the t-derivative of µ j (t) is given by:

μj (t) = µ j (t) X f ϕ j (t) 2 dx t . (1) 
Proof.-

• The Rayleigh quotient R t (ϕ) is given by R t (ϕ) = X dϕ 2 g0 dx 0 / X e -tf ϕ 2 dx 0
which is an increasing function of t. Applying the min-max characterization of the eigenvalues, we get their monotonicity. • Because ∆ t is an analytic function of t, we know that µ j (t) is continuous and piecewise smooth as well as ϕ j (t). We can then compute formally the derivative of the eigenfunction's equation

e tf ∆ 0 ϕ j (t) = µ j (t)ϕ j (t) ,
and get

f ∆ t ϕ j (t) + ∆ t φj (t) = μj (t)ϕ j (t) + µ j (t) φj (t) ,
and taking the t-scalar product with ϕ j (t), we get Equation ( 1).

The proof

The proof is an adaptation of the argument of [START_REF] Hassell | Ergodic billiards that are not quantum unique ergodic[END_REF]. Let us denote by

I m = [λ m - l m , λ m + l m ].
From the Weyl law and the monotonicity of the µ j 's, we deduce the

Lemma 6.1 For any t ∈ [0, 1], #{j | µ j (t) ∈ I m } = O(λ m ) uniformly in t.
In fact,

#{j | µ j (t) ∈ I m } ≤ #{j | µ j (t) ≤ λ m + l m } ≤ #{j | µ j (0) ≤ λ m + l m } !
We will also need the elementary Lemma 6.2 Let F : [0, 1] → R be an increasing, continuous and piecewise C 1 function. Let us give a Borel set Y ⊂ [0, 1] and I a compact interval of R so so that

F ′ (t) ≥ m > 0 for almost all t ∈ K = F -1 (I) ∩ Y . Then the Lebesgue measure |K| of K satisfies |K| ≤ |I|/m.
Let us denote by

Z := t ∈ [0, 1] | lim m→∞ q -1 m sup µj (t)∈Im X f |ϕ j (t)| 2 dx t = 0 ,
(Z is well defined because there exists at least one µ j (t) ∈ I m for each m) and Y = [0, 1] \ Z. Let us denote also, for ε > 0, by

Y m ε := t | ∃j with µ j (t) ∈ I m , X f |ϕ j (t)| 2 dx t ≥ εq m .
Using Lemma 6.1, the monotonicity of t → µ j (t) and the lower bound μj (t) ≥ µ j (t)εq m in Lemma 6.2, we have

|Y m ε | ≤ Cλ m |I m | εq m (λ m -Cl m ) = O l m εq m .
Let us give a sequence ε m → 0, then, for any m 0 , Y ⊂ ∪ m≥m0 Y m εm . But this implies that |Y | is arbitrarily close to 0 by choosing ε m so that m l m /ε m q m < ∞. This proves that |Z| = 1 and the Theorem.

Null sets in Banach spaces

It is not clear what is a set of measure 0 in a infinite dimensional Banach space because there is no "Lebesgue measure" on it. There are several definitions of sets of measure 0 in a separable Banach space B. For Borel sets, it is shown in [START_REF] Csörnyei | Aronszajn null and Gaussian null sets coincide[END_REF] that the notions of cube null sets and Gaussian null sets coincide.

Definition 7.1

• A cube measure in B is defined as the distribution of a random variable i∈N t i e i where t = (t i ) ∈ [0, 1] N with the Lebesgue measure and the sequence (e i ) i∈N span a dense subspace of B with i∈N e i < ∞.

• A cube null set is a Borel subset of B which is of measure 0 for every cube measure.

• A Gaussian measure on B is a Borel measure whose image by any continuous linear form on B is a (non-degenerate) Gaussian measure on R (i.e. of the form dm = A.exp(-(xa) 2 /b)dx with A > 0).

• A Gaussian null set is a Borel set which is of measure 0 for every Gaussian measure.

It is proved in [START_REF] Csörnyei | Aronszajn null and Gaussian null sets coincide[END_REF] that cube null sets and Gaussian null sets coincide in every separable Banach space.

We have the: Equation [START_REF] Babich | Eigenfunctions concentrated near a closed geodesic[END_REF] shows that Z t ′′ is of measure 0. We can then use Fubini Theorem on [0, 1] k × [0, 1] N\{1,••• ,k} in order to finish the proof.

8 From Theorem 4.1 to almost all metrics

We will apply the previous result to the following situation where (X, g 0 ) is our smooth closed surface and γ a closed geodesic; let us choose N large (and even) and define B as follows: 

B = {f ∈ C N (X,

Remark 4 . 3

 43 It works with (u m ) the quasi-modes of Theorem 2.1 with Γ = γ an elliptic generic closed geodesic and f flat on γ, because the functions u m satisfies an estimates u m (x) = O e -cd 2 (x,γ)/ √ λm .

  R) | ∀α with |α| ≤ N, D α f vanishes on γ} and C the open cone of functions of B which satisfy ∃c > 0 such that f (x) ≥ cd(x, γ) N with d the distance associated to g 0 .Then Theorem 4.1 can be reformulated with almost all metrics e f g 0 with f ∈ B instead of almost all t ∈ [0, 1] . Of course, we can only take l m of the order of m -N ′ , where N ′ depends on N .

  Lemma 7.1 Let B be a separable Banach space and C ⊂ B be a non empty open cone. Let us give a Borel set Z ⊂ B so that, for any x ∈ B, y ∈ C, |{t | x + ty ∈ Z}| = 0 . Let us show that Z is of measure 0 for every cube measure given from sequence (e i ) i∈N . There exists k ∈ N and (t 1 , • • • , t k ) ∈ [0, 1] k so that e = Let us rewrite the Lebesgue measure on [0, 1] k as

	Then Z is a cube null and Gaussian null set.		
	Proof.-			
	f (t)dt =	dµ(d)	f (t)ds	(2)
	[0,1] k	X	d∩[0,1] k	
		k		
		t ′ i e i +		
		i=1		

k i=1 t i e i ∈ C.

where X is the set of lines parallel to e cutting [0, 1] k and ds is the Lebesgue measure on the line d.

Let us denote t = (t ′ , t ′′ ) ∈ [0, 1] k × [0, 1]

N and denote by Z t ′′ := {t ′ | x + j>k t ′′ j e j ∈ Z} .