Modes and quasi-modes on surfaces: variation on an idea of Andrew Hassell
Yves Colin de Verdière

To cite this version:
Yves Colin de Verdière. Modes and quasi-modes on surfaces: variation on an idea of Andrew Hassell. 2009. hal-00360811

HAL Id: hal-00360811
https://hal.science/hal-00360811
Preprint submitted on 12 Feb 2009

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Modes and quasi-modes on surfaces:
variation on an idea of Andrew Hassell

Yves Colin de Verdière∗
February 12, 2009

1 Introduction
This paper is inspired from the nice idea of A. Hassell in [5]. From the classical
paper of V. Arnol’d [1], we know that quasi-modes are not always close to exact
modes. We will show that, for almost all Riemannian metrics on closed surfaces
with an elliptic generic closed geodesic γ, there exists exact modes located on γ.
Similar problems in the integrable case are discussed in several papers of J. Toth
and S. Zelditch (see [8]).

2 Quasi-modes associated to an elliptic generic closed
geodesic

2.1 Babich-Lazutkin and Ralston quasi-modes

Definition 2.1 A periodic geodesic γ on a Riemannian surface (X, g) is said to be
elliptic generic if the eigenvalues of the linearized Poincaré map of γ are of modulus
1 and are not roots of the unity.

Theorem 2.1 (Babich-Lazutkin [2], Ralston [6, 7]) If γ is an elliptic generic
closed geodesic of period T > 0 on a closed Riemannian surface (X, g), there exists
a sequence of quasi-modes (u_m)_{m ∈ N} of L^2(X, dx_g) norm equal to 1 which satisfies

• \|{(∆_g - λ_m)u_m}\|_{L^2(X, dx_g)} = O(m^{-∞})
• There exists α so that

\[λ_m = \left(\frac{2πm + α}{T} \right)^2 + O(1) \]

• For any compact K disjoint of γ, \int_K |u_m|^2 = O(m^{-∞}).

Corollary 2.1 There exists a sub-sequence (µ_{jm})_{m∈N} of the spectrum (µ_j)_{j∈N} of
the Laplace operator so that µ_{jm} = λ_m + O(m^{-∞}).

∗Grenoble University, Institut Fourier, Unité mixte de recherche CNRS-UJF 5582, BP 74,
38402-Saint Martin d’Hères Cedex (France); yves.colin-de-verdiere@ujf-grenoble.fr

1α is given by α = (m_1 + \frac{1}{2})θ + px where m_1 ∈ N is a “transverse” quantum number, the
linearized Poincaré map is a rotation of angle θ (0 < θ < 2π) and p = 0 or 1 is a “Maslov index”
of γ
3 Modes and quasi-modes following Arnol’d

Arnol’d [1] has observed that, given a quasi-mode \((u_m)_{m \in \mathbb{N}}\), there do not always exist a sequence \((\varphi_m)_{m \in \mathbb{N}}\) of exact modes close to the quasi-mode \((u_m)_{m \in \mathbb{N}}\). His example is given by a planar domain with a symmetry of order 3.

A simpler example is given by a symmetric double well: let us give

\[V : \mathbb{R} \to [0, +\infty[\text{ a smooth even function with} \]

- \(\lim_{x \to -\infty} V(x) = +\infty\)
- \(V^{-1}(0) = \{-a, a\}\) with \(a > 0\)
- \(V(0) = b > 0\)

If \(\hat{H} = -h^2 \Delta^2 + V(x)\) is the semi-classical Schrödinger operator, there exists quasi-modes located in the well \(V := \{x \mid x > 0\text{ and } V(x) < b\}\). The exact eigenfunctions are even or odd and hence are not localized in a single well.

The previous examples are in some sense non generic. They involve some symmetry of the operator.

4 The main result

Theorem 4.1 Let us give a closed Riemannian surface \((X, g_0)\) and a smooth non-zero function \(f \geq 0\). Let us define the metric \(g_t := \exp(-tf)g_0\). Let us assume that there exists some intervals \(I_m = [\lambda_m - l_m, \lambda_m + l_m]\), \((m \in \mathbb{N})\), independent of \(t\), so that, for any \(t \in [0, 1]\), there exists at least one eigenvalue of \(\Delta_t\) inside \(I_m\). Assume that \(\lambda_m \to +\infty\) and \(\sum_{m=1}^{\infty} l_m < \infty\). Choose a sequence \(q_m \to 0\) so that \(\sum_{m=1}^{\infty} l_m/q_m < \infty\).

Then, for almost all \(t \in [0, 1]\), for any sequence of exact modes \(\varphi_m(t)\) of eigenvalues \(\mu_m(t)\) with \(\mu_m(t) \in I_m\), we have \(\int_X f|\varphi_m(t)|^2dx_t = o(q_m)\).

In particular, if \(\Gamma = \text{support}(f)\), \(\varphi_m(t) \to 0\) in \(L^2_{loc}(X \setminus \Gamma)\).

Remark 4.1 In applications, the interval \(I_m\) is provided from quasi-modes located in the support of \(f\): if \(u_m\) is a quasi-mode for each values of \(t\) with

\[\|\Delta_t - \lambda_m\|u_m\|L^2(X, dx_0) \leq C_m\|u_m\|L^2(X, dx_0) \]

with \(\lambda_m\) independent of \(t\), we can take \(l_m = cC_m\) with \(c\) large enough, depending only on bounds of \(f\).

Remark 4.2 The quasi-mode is only used in order to find a sequence of intervals \(I_m\) which contains at least one eigenvalue of \(\Delta_t\) and is independent of \(t\).

Remark 4.3 It works with \((u_m)\) the quasi-modes of Theorem 2.4 with \(\Gamma = \gamma\) an elliptic generic closed geodesic and \(f\) flat on \(\gamma\), because the functions \(u_m\) satisfies an estimates

\[u_m(x) = O\left(e^{-c\|x\|/\sqrt{\lambda_m}}\right) \]

We can then take \(q_m = O(m^{-\infty})\).

We are unfortunately unable to prove that the modes \(\varphi_m\) are close to linear combinations of the quasi-modes given in Theorem 2.4 in the interval \(I_m\).

The precise statement is

Corollary 4.1 With the notations of Section 3, there exists a sequence \(0 < l_m = 0(m^{-\infty})\) so that, for any \(t \in [0, 1]\), Spectrum(\(\Delta_t\)) \(\cap [\lambda_m - l_m, \lambda_m + l_m] \neq \emptyset\) and a
subset $Z \subset [0, 1]$ of measure 1, so that, for any sequence $\mu_{j_m}(t) \in [\lambda_m - l_m, \lambda_m + l_m]$ and for any $t \in Z$,

$$\int_X f|\varphi_{j_m}(t)|^2 dx_0 = 0(m^{-\infty}) .$$

Moreover, for any compact $K \subset X$ with $K \cap \gamma = \emptyset$ and for any $k \in \mathbb{N}$, we have

$$\|\varphi_{j_m}(t)\|_{C^k(K)} = 0(m^{-\infty}) .$$

Proof.–

The first part is a direct application of Theorem 4.1.

The second part comes from the Sobolev embeddings and the equations $\Delta_t^N \varphi_{j_m}(t) = \mu_{j_m}(t)^N \varphi_{j_m}(t)$ with $\mu_{j_m}(t) = 0(m^2)$.

$$\square$$

Remark 4.4 If we have only $l_m \to 0$, one can apply the previous result by taking first a sub-sequence m_k so that $\sum l_m < \infty$ and choosing then $q_m \to 0$. This does not work with $l_m = O(1)$ as in the paper [5].

5 Variation of the eigenvalues

With $g_t = e^{-tf}g_0$, we define $dx_t = e^{-tf}dx_0$ the Riemannian area of g_t and $\Delta_t = e^{tf} \Delta_0$ the Laplace operator. Let us denote by

$$\mu_1(t) = 0 < \mu_2(t) \leq \cdots \leq \mu_j(t) \leq \cdots$$

the eigenvalues of Δ_t and by $(\varphi_j(t))_{j \in \mathbb{N}}$ an associated orthonormal eigenbasis.

Lemma 5.1

- $\mu_j(t)$ is a continuous increasing function of t
- $\mu_j(t)$ is piecewise analytic and, at any regular point, the t-derivative of $\mu_j(t)$ is given by:
 $$\dot{\mu}_j(t) = \mu_j(t) \int_X f\varphi_j(t)^2 dx_t .$$

Proof.–

- The Rayleigh quotient $R_t(\varphi)$ is given by
 $$R_t(\varphi) = \int_X \|d\varphi\|^2_{g_t} dx_0 / \int_X e^{-tf} \varphi^2 dx_0$$
 which is an increasing function of t. Applying the min-max characterization of the eigenvalues, we get their monotonicity.
- Because Δ_t is an analytic function of t, we know that $\mu_j(t)$ is continuous and piecewise smooth as well as $\varphi_j(t)$. We can then compute formally the derivative of the eigenfunction’s equation
 $$e^{tf} \Delta_0 \varphi_j(t) = \mu_j(t) \varphi_j(t) ,$$
 and get
 $$f \Delta_t \varphi_j(t) + \Delta_t \dot{\varphi}_j(t) = \dot{\mu}_j(t) \varphi_j(t) + \mu_j(t) \dot{\varphi}_j(t) ,$$
 and taking the t-scalar product with $\varphi_j(t)$, we get Equation (1).
The proof

The proof is an adaptation of the argument of [3]. Let us denote by \(I_m = [\lambda_m - l_m, \lambda_m + l_m] \). From the Weyl law and the monotonicity of the \(\mu_j \)'s, we deduce the

Lemma 6.1 For any \(t \in [0, 1] \), \(\# \{ j \mid \mu_j(t) \in I_m \} = O(\lambda_m) \) uniformly in \(t \).

In fact,

\[
\# \{ j \mid \mu_j(t) \in I_m \} \leq \# \{ j \mid \mu_j(t) \leq \lambda_m + l_m \} \leq \# \{ j \mid \mu_j(0) \leq \lambda_m + l_m \} !
\]

We will also need the elementary

Lemma 6.2 Let \(F : [0, 1] \to \mathbb{R} \) be an increasing, continuous and piecewise \(C^1 \) function. Let us give a Borel set \(Y \subset [0, 1] \) and \(I \) a compact interval of \(\mathbb{R} \) so that \(F(t) \geq m > 0 \) for almost all \(t \in K = F^{-1}(I) \cap Y \). Then the Lebesgue measure \(|K| \) of \(K \) satisfies \(|K| \leq |I|/m \).

Let us denote by

\[
Z := \left\{ t \in [0, 1] \mid \lim_{m \to \infty} \frac{1}{m} \sup_{\mu_j(t) \in E_m} \int_X |f(t)|^2 dx = 0 \right\},
\]

\(Z \) is well defined because there exists at least one \(\mu_j(t) \in E_m \) for each \(m \) and \(Y = [0, 1] \setminus Z \). Let us denote also, for \(\epsilon > 0 \), by

\[
Y^m_{\epsilon} := \left\{ t \mid \exists j \text{ with } \mu_j(t) \in E_m, \int_X |f(t)|^2 dx \geq \epsilon q_m \right\}.
\]

Using Lemma 6.2, the monotonicity of \(t \to \mu_j(t) \) and the lower bound \(\dot{\mu}_j(t) \geq \mu_j(t)\epsilon q_m \) in Lemma 6.1, we have

\[
|Y^m_{\epsilon}| \leq C \lambda_m \frac{|I_m|}{\epsilon q_m(\lambda_m - Cl_m)} = O \left(\frac{l_m}{\epsilon q_m} \right).
\]

Let us give a sequence \(\epsilon_m \to 0 \), then, for any \(m_0 \), \(Y \subset \bigcup_{m \geq m_0} Y^m_{\epsilon_m} \). But this implies that \(|Y| \) is arbitrarily close to 0 by choosing \(\epsilon_m \) so that \(\sum_{m} l_m/\epsilon_m q_m < \infty \). This proves that \(|Z| = 1 \) and the Theorem.

Null sets in Banach spaces

It is not clear what is a set of measure 0 in an infinite dimensional Banach space because there is no “Lebesgue measure” on it. There are several definitions of sets of measure 0 in a separable Banach space \(B \). For Borel sets, it is shown in [3] that the notions of cube null sets and Gaussian null sets coincide.

Definition 7.1

- A cube measure in \(B \) is defined as the distribution of a random variable \(\sum_{i \in \mathbb{N}} t_i e_i \) where \(t = (t_i) \in [0, 1]^{\mathbb{N}} \) with the Lebesgue measure and the sequence \((e_i)_{i \in \mathbb{N}} \) span a dense subspace of \(B \) with \(\sum_{i \in \mathbb{N}} \| e_i \| < \infty \).

- A cube null set is a Borel subset of \(B \) which is of measure 0 for every cube measure.

- A Gaussian measure on \(B \) is a Borel measure whose image by any continuous linear form on \(B \) is a (non-degenerate) Gaussian measure on \(\mathbb{R} \) (i.e. of the form \(dm = A \exp(-(x - a)^2/b)dx \) with \(A > 0 \)).
A Gaussian null set is a Borel set which is of measure 0 for every Gaussian measure.

It is proved in [4] that cube null sets and Gaussian null sets coincide in every separable Banach space.

We have the:

Lemma 7.1 Let B be a separable Banach space and $C \subset B$ be a non empty open cone. Let us give a Borel set $Z \subset B$ so that, for any $x \in B$, $y \in C$,

$$|\{ t \mid x + ty \in Z \}| = 0.$$

Then Z is a cube null and Gaussian null set.

Proof.–

Let us show that Z is of measure 0 for every cube measure given from sequence $(e_i)_{i \in \mathbb{N}}$. There exists $k \in \mathbb{N}$ and $(t_1, \cdots, t_k) \in [0, 1]^k$ so that $c = \sum_{i=1}^k t_i e_i \in C$. Let us rewrite the Lebesgue measure on $[0, 1]^k$ as

$$\int_{[0,1]^k} f(t) dt = \int_X d\mu(d) \int_{d \in [0,1]^k} f(t) ds \tag{2}$$

where X is the set of lines parallel to e cutting $[0,1]^k$ and ds is the Lebesgue measure on the line d. Let us denote $t = (t', t'') \in [0, 1]^k \times [0, 1]^N$ and denote by

$$Z_{t''} := \{ t' \mid x + \sum_{i=1}^k t'_i e_i + \sum_{j>k} t''_j e_j \in Z \}.$$

Equation (2) shows that $Z_{t''}$ is of measure 0. We can then use Fubini Theorem on $[0, 1]^k \times [0, 1]^N \setminus \{1, \cdots, k\}$ in order to finish the proof.

□

8 From Theorem 4.1 to almost all metrics

We will apply the previous result to the following situation where (X, g_0) is our smooth closed surface and γ a closed geodesic; let us choose N large (and even) and define B as follows:

$$B = \{ f \in C^N(X, \mathbb{R}) \mid \forall \alpha \text{ with } |\alpha| \leq N, \ D^\alpha f \text{ vanishes on } \gamma \}$$

and C the open cone of functions of B which satisfy

$$\exists c > 0 \text{ such that } f(x) \geq cd(x, \gamma)^N$$

with d the distance associated to g_0.

Then Theorem 4.1 can be reformulated with almost all metrics $e^f g_0$ with $f \in B$ instead of almost all $t \in [0, 1]$. Of course, we can only take l_m of the order of $m^{-N'}$, where N' depends on N.

5
References

