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EXPANDERS

HERVE OYONO-OYONO AND GUOLIANG YU

ABSTRACT. We study in this paper the maximal version of the coarse Baum-
Connes assembly map for families of expanding graphs arising from residually
finite groups. Unlike for the usual Roe algebra, we show that this assembly
map is closely related to the (maximal) Baum-Connes assembly map for the
group and is an isomorphism for a class of expanders. We also introduce a
quantitative Baum-Connes assembly map and discuss its connections to K-
theory of (maximal) Roe algebras.
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2 H. OYONO-OYONO AND G. YU

1. INTRODUCTION

In this paper, we study K-theory of (maximal) Roe algebras for a class of ex-
panders. The Roe algebra was introduced by John Roe in his study of higher index
theory of elliptic operators on noncompact spaces [@] The K-theory of Roe algebra
is the receptacle for the higher indices of elliptic operators. If a space is coarsely
embeddable into Hilbert space, then K-theory of Roe algebra and higher indices
of elliptic operators are computatble [@] Gromov discovered that expanders do
not admit coarse embedding into Hilbert space [ﬂ] The purpose of this paper is
to completely or partially compute K-theory of the (maximal) Roe algebras associ-
ated to certain expanders. In particular, we prove the maximal version of the coarse
Baum-Connes conjecture for a special class of expanders. The coarse Baum-Connes
conjecture is a geometric analogue of the Baum-Connes conjecture [ﬂ] and provides
an algorithm of computing K-theory of Roe algebras and higher indices of elliptic
operators. We also prove the (maximal) coarse Novikov conjecture for a class of
expanders. The coarse Novikov conjecture gives a partial computation of K-theory
of Roe algebras and an algorithm to determine non-vanishing of higher indices for
elliptic operators. Our results on the coarse Novikov conjecture are more general
than results obtained in [E, , H] The question of computing K-theory of (max-
imal) Roe algebras associated to general expanders remains open. We show that
this question is closely related to certain quantitative Novikov conjecture and the
quantitative Baum-Connes conjecture for the K-theory of (maximal) Roe algebras.
We explore this connection to prove the quantitative Novikov conjecture and the
quantitative Baum-Connes conjecture in some cases.

The class of expanders under examination in this paper is those associated to a
finitely generated and residually finite group I' with respect to a family

I'yoIh>...T,,D...

of finite index normal subgroups. The behaviour of the Baum-Connes assembly
map for I' and of the coarse Baum-Connes assembly map for the metric space
X(I') = II;enT/Ti can differ quite substantially: if T' has the property 7 with
respect to the family (T';)ien, then (I'/T;);en is a family of expanders and the
coarse assembly map for X (T') fails to be an isomorphism, althougth for example
for T' = SLo(Z), the assemply maps is an isomorphism. In [ was introduced the
maximal Roe algebra of a coarse space and a maximal coarse assembly map with
value in this algebra was defined. As we shall see, the behaviour of this maximal
coarse Baum-Connes assembly map for X(T'), and of the maximal Baum-Connes
assemply map for the group I' with coefficients in £*° (X (T"), L(H))/Co(X (I"), K(H))
turn out to be equivalent. In particular, as a consequence of [[L4]], if T' sastifies the
strong Baum-Connes conjecture, then the maximal coarse assembly map for X (T")
is an isomorphism. As a as a spin-off we also obtain the injectivity of the coarse
assembly map when I' coarsely embeds in a Hilbert Space.

This suggests that the properties of the maximal coarse assembly map for X (T")
is closely related to some asymptotic properties of the maximal Baum-Connes as-
sembly maps for I with coefficients in the family {C(T'/T'; };en. For this purpose, we
define quantitative assembly maps that take into account the propagation in the
crossed product {C(T'/T;)Xmax] }ien. Notice that althought C(I'/T;)Xmax' and
C .« (T;) are Morita equivalent, the imprimitivy bimodule between these two alge-

max
bras introduces some distortion in the propagation and the relevant propagation is
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the one coming from I'. In this setting, we show that injectivity and bijectivity of
the maximal coarse assembly map are equivalent to some asymptotic statements for
these quantative assembly maps. For surjectivity, and up to a slight modification
in the sequence of normal subgroups, we also obtain similar results.

The paper is organised as follows. In section E, we review results from [@] and
concerning maximal Roe algebras and coarse assembly maps. We also show the
existence of a short exact sequence (see section P.9)

(1.1) 0—K(PA(XT))RH)——C e (X (T))— Ar X max | —0.

max

In section E, we collect results about Baum-Connes assembly maps that we use
later on. In section [, we state for the left hand side of the Baum-Connes assembly
map an analogue of the exact sequence of equation D . We show that assembly
maps intertwines this exact sequence with the one induced in K-theory by the exact
sequence m, and obtain injectivity and bijectivity results for the maximal coarse
assembly map for X (I'). In section E we set asymptotic statements concerning
some quantitative assembly maps and we discuss examples of groups that satisfy
these statements.

2. K-THEORY FOR MAXIMAL ROE ALGEBRAS

2.1. Maximal Roe algebra of a locally compact metric space. In this sec-
tion, we collect from [@] results concerning the maximal Roe algebra of a locally
compact metric space that we will need in this paper.

2.1.1. The case of a discrete space. Let X be a discrete space equipped with a proper
distance d. Let us denote by C[X] the algebra of locally compact operators with
finite propagation of £2(X)®@H, where H is a separable Hilbert space, i.e (bounded)
operators T of *(X)®H such that when written as a family (T4 ) (s, )ex2 of oper-
ator on H, then

e T, , is compact for all z and y in X;
e there exists a real r such that d(z,y) > r implies that T, , = 0 (T is said
to have propagation less than r).

For any real r, we define C,[X] as the set of elements of C[X] with propagation
less than r. It is straightforward to check that C[X] is a x-algebra. The (usual)
Roe algebra C*(X) is the closure of C[¥] viewed as a subalgebra of operator of
L(¢?(L)®H). The next lemma, proved in [é], shows that if ¥ has bounded geometry,
then C[X] admits an envelopping algebra.

Lemma 2.1. Let X be a discrete metric space with bounded geometry. For any
positive number r, there exists a real ¢, such that for any x-representation ¢ of C[¥]
on a Hilbert space Hy and any T in C,[¥], then [|¢(T)||z(m,) < crlT|e2syom -

This envelopping algebra is then

Definition 2.2. [E] The mazimal Roe algebra of a discrete metric space X with
bounded geometry, denoted by C% . (3), is the completion of C[X] with respect to
the x-norm

lo(T)|| = sup [|&(T)|c(m,),
(¢,Hy)

when (¢, Hg) runs through representations ¢ of C[X] on a Hilbert space Hy.



4 H. OYONO-OYONO AND G. YU

2.1.2. The general case. Let X be a locally compact space, equipped with a metric
d. A X-module is a Hilbert space Hx together with a x-representation px of Co(X)
in Hx. We shall often write f instead of px(f) for the action of f on Hx. If the
representation is non-degenerate, the X-module is said to be non-degenerate. A
X-module is called standard if no non-zero function of Cy(X) acts as a compact
operator on Hx. In the litterature, the terminology Cp(X)-ample is also used for
such a representation [E, ]

Definition 2.3. Let Hx be a standard non-degenerate X -module and let T be a
bounded operator on Hx .

(i) The support of T is the complement of the open subset of X x X
{(z,y) € X x X s.t. there exist f and g in Co(X) satisfying
f(x) #0,9(y) #0 and f-T - g = 0}.

(ii) If there exists a real v such that for any x and y in X such that d(z,y) > r,
then (x,y) is not in the support of T, then the operator T is said to have
finite propagation (in this case propagation less than r).

(iii) The operator T is said to be locally compact if f-T and T - f are compact
for any f in Co(X). We then define C|X] as the set of locally compact and
finite propagation bounded operators of Hx .

(iv) The operator T is said to pseudo-local if [f, T] is compact for all f in Co(X).

It is straightforward to check that C[X] is a *-algebra and that for a discrete
space, this definition coincides with the previous one. Moreover, up to (non-
canonical) isomorphism, C[X] does not depend on the choice of Hx. The Roe
algebra C*(X) is then the norm closure of C[X] in the algebra £L(Hx) of bounded
operators on Hyx. Although C*(X) is not canonically defined, we shall see later on
that up to canonical isomorphism, its K-theory does not depend on the choice a
non-degenerated standard X-module.

Definition 2.4. A net in a locally compact space X is a countable subset X such
that there exists numbers € and r satisfying

e d(y,y') > e for any distinct elements y and y' of 3;
e For any x in X, there exists y in ¥ such that d(z,y) < r.

The following result was proved in [@]

Lemma 2.5. If a locally compact space X contains a net with bounded geometry,
then with notation of definition , there exists a unitary map ¥ : Hy — Hx that
fullfills the following conditions:

(i) The homomorphism L(Hy) — L(Hx);T — ©*-T-W¥ restricts to an algebra
x-isomorphism C[X] — C[X];

(ii) There exists a numberr such that for every x in X andy in 3 with d(z,y) <
r, then there exists f in Co(X) and g in Co(X) which satisfy f(x) # 0,
g(y) 0 and f- ¥ -g=0 (i.e U has propagation less than r).

Then, if ¥ : Hy — Hx is a unitary map as in lemma E7 the *-isomorphism
C[X] — C[X];T — U* . T - T extends to an isomorphism Ady : C*(X) — C*(X).

As a consequence of lemma E, lemma EI admits the following generalisation
to spaces that contain a net with bounded geometry.
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Lemma 2.6. Let X be a locally compact metric that contains a net with bounded
geometry and let Hx be a standard non-degenerate X -module. Then for any posi-
tive number r, there exists a real ¢, such that for any x-representation ¢ of C[X]
on a Hilbert space Hy and any T in C[X] with propagation less than r, then

HQS(T)HE(H@ < CTHT”HX'
This allowed to define for X the maximal Roe algebra as in the discrete case.

Definition 2.7. ] Let X be a locally compact metric space that contains a net
with bounded geometry . The mazimal Roe algebra of X, denoted by CF,,.(X), is
the completion of C[X] with respect to the x-norm

[o(T)l = sup (D)l zn,),

(¢.Hg)

when (¢, Hy) runs through representation ¢ on of C[X| a Hilbert space Hy.

2.2. Maximal Roe algebra associated to a residually finite group. Let I
be a residually finite group, finitely generated. Let I'o D Ty D ...I', D ... be a
decreasing sequence of finite index subgroups of I' such that (). T's = {e}. Let
d be a left invariant metric associated to a given finite set of generators. Let us
endow I'/T'; with the metric d(al';,bT;) = min{d(ay1,by2),11 and vy in T';}. We
set X(T') = H I'/T; and we equip X (') with a metric d such that,
ieN

e on I'/T';, then d is the metric defined above;

o d(I/T;,T/Ty) >i+jifi+#j.

e the group I acts on X (I') by isometries.

Let us define by IC(H) the algebra of compact operators of H. Then the C*-
algebra ¢>°(X (T'),K(H)) acts on £2(X(T'))®H by pointwise action of K(H). This
action is clearly by propagation zero locally compact operators. The group I' acts
diagonally on the Hilbert space #2(X (I'))@H by finite propagation operators, the
action being on ¢?(X (T')) induced by the action on X (I') and trivial on H. From
this, we get a covariant representation of (¢>°(X (T),K(H)),T') on ¢2(X(T)), where
the action of I' on ¢>°(X(I"),L(H)) is induced by the action of T" on X(I') by
translations. This yields to a #-homomorphism C, (T, ¢>°(X (T"), K(H)))—C[X (T')]
(where C.(T, ¢>°(X(I"), K(H))) is equipped with the convolution product) and thus,
setting Br = (> (X (T"), K(H)), to a *-homomorphism

BrXmax'— 00 (X (T)-

max

Under this map, the image of Br 2L Gy (X(T),K(H))XmaxI is contained in
K(*(X(T'))®H). Thus if we set Ar = Br/Brg, then we finally get a *-homomorphism

Pr 2 Ap Xmax [ —CF (X(D))/K((X(T)QH).

max
Proposition 2.8. ®r is a x-isomorphism, i.e we have an short exact sequence

0—K(A(XT)QH)—C  (X(T')— Ar X ppagl —0.

max

Proof. Let us construct an inverse for ®p. Let T be an element in C[X (T")] with
propagation less than r. Let n be any integer such that n > r and Br(e,r)NT,, =
{e}. Then there is a decomposition 7' = T’ + T" with T" in K(¢? (]_[?:_01 I/T,)®H)
and T" = (T))i>n € [l;>, K(C*(T/T;)®H). Let us denote for v in T' by L,
the diagonal operator on ¢?(I'/T;)®H given by left translation by yI'; on ¢2(T'/T})
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and the identity on H. For any integer i, we have a unique decomposition T} =
> et hiLy,r,, where v, T; belongs to Brr, (T's, ) and hy, belongs to C(T'/T;, K(H))
and is viewed as an operator acting on £2(I'/T;)@ H by pointwise action of operators
of K(H). Since Br(e,r) NT; = {e} for i > n, the element ~,T; lifts to a unique
element of Br(e,r). If Br(e,r) = {¢1,-..,9m}, then there is a unique decomposition
T/ =57, fiLg.r,, with fi in C(I'/T;,K(H). Let us denote for k = 1,...,m by
éx(T) the image of (f{)i>n under the projection

[[ca/ri, kEm)— [] c@/ri, K(H)/ P CT/T:, K(H) = Ar.

i>n i>n i>n

It is then straightforward to check that we obtain in this way a well defined map

At CX (D) —Co(T, Ar); T — > ¢1(T)dy, .
k=1

where ¢, is the Dirac function at an element g of I Moreover, if #' > r,then
A, restricts to A, on C[X(T")] and the maps A, extends to a s-homomorphism
C[X(T)]—C.(T, Ar) and thus to a *-homomorphism C}, .. (X (T'))—ArXmaxI -
This homomorphism clearly factorizes through a *-homomorphism

Crnaa (X (D)) /K% (X (D)@ H)— A Xmax]

max

which provides an inverse for ®r.
O

We shall denote by Ua. rmax : Ckow (X (I)—Ar XmaxI' the projection map
corresponding to the exact sequence of the previous proposition. Let Ar 4. :
ArXpmax]’ — Ar Xpeq I' be the homomorphism given by the regular representa-
tion of the covariant system (Ap,T'). The next lemma shows that Ar 4. 0 ¥4 1 max

factorizes through C*(X(T')) (see [f).

Lemma 2.9. There exists a unique homomorphism
Uar,rrea: C*(X(I)) = Ar Xpea T

such that Axr) © Var rred = YAr I maz © Ar, Ar -

Proof. If such an homomorphism exists, it is clearly unique. Let us prove the
existence. Let T" be an element of C,.(X(I")) such that ||T||z(e2(xr))em)) = 1 and
let us set £ = Ar,ap © Uar rmax(T). Let us view Ap Xyeq I' as an algebra of
adjointable operator on the right Ap-Hilbert module Ar®¢?(T"). For any positive
real ¢, let £ be an element of Ap®@/¢?(T') such that ||£]| arger) = 1 and

ezl arwemy = 27/l arx,r — €

We can assume without loss of generality that ¢ lies indeed in C.(T', Ar) and is
supported in some Br(e,s) for s positive real. Let us fix an integer k such that
Br(e,2r + 2s) N Ty, = {e}. There is a decomposition T = T’ + T” with T" in
KT /T)®H) and T in [] K(A(T/T)eH) = [] O(T/T:, K(H)) % T/T.
i>k i>k
Since this decomposition is diagonal, we get ||| < 1. Actually 7" can be
viewed as an adjointable operator on the right ¢>°(U;>,I'/T';, K(H))-Hilbert module
[1,5,C(T/T;,K(H)) @ ¢*(T'/T;). Let us chose a lift ¢ in C.(T, Br) of £ under the
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map induced by the canonical projection Br — Ar such that ||| prger) < 14¢
and ¢’ is supported in Br(e, s). Under the identification

Co(r, [T e/ri, k) = [] Ce(T, C(r/Ti, K(H))),

P>k P>k
we can write £ = (&);>. Since Br(e,2r) NT; = {e} for i > k, the map
Br(e,r) — Brr,(L'i,r);y — L

is bijective. Hence, if we define &' in C.(I'/I';, K(H)) with support in Bpp, (I';,7)
by &/(vI';) = & () for any integer ¢ > k and v in Br(e,r), then &’ = (§/)i<k
is an element of [[.., C(T'/T;,¢*(I'/T;)) such that ||£"|] = ||| < 1+ e. Let
us now define 0" = (n)is>x in [[;», C(T/Ti,C(T/Ty,K(H))) by o = T" - ¢".
Then 7/ € C(I'/T;,C(T'/T;, K(H))) has support in Brp,(I';,r + s). Let us define
n, € C(T,C(T/T;, K(H)) with support in Br(e,r +s) by ni(y) = n}/ (vI';) for i > k
and « in Br(e,r + s). Since Br(e,2r 4+ 2s) NT'; = {e} for i > k, the map

Br(e,r +s) — Bpp, (L', 7+ 5);7 — 7T

/I|| —

is bijective and thus ||n [l7’]|- Tt is then straightforward to check that the image
of 7’ under the map C.(T', Br) — C.(T', Ar) induced by the canonical projection
Br — Ar is precisely zp.£. The result is then a consequence of the following:

Jer ]l < "]l
< (i€
< 1+e¢

O

Proposition 2.10. The inclusion K(¢*(X(T))®H) — C

(X (1)) induced an
ingection Z — Ko(Cr, .. (X (')

Proof. Let p be a projector in K(¢?(X (T'))®H) such that [p] = 0in Ko(C,,,.(X(I))).
We can assume without loss of generality that p belongs to K(¢*(J], I'/T;)®H)

p 0 O Iy, 0 0
for some n. This means that | 0 I 0] is homotopicto [ 0 0 0] in some
0 0 O 0 0 O
Mp(C#,..(X(T))) by a homotopy of projectors. Hence for every positive number
p 0 O I, 0 0
€ < 1/4 there exists areal r suchthat |0 I O] and | 0 0 O | areconnected
0 0 O 0 0 0

0z (X (D)) (i-e selfadjoint
elements satisfying ||p? — p¢|| < €) such that p; has propagation less than r for all ¢
in [0,1]. Let us fix an integer k > max{n,r}. Then for every ¢ € [0, 1] we can write
pe = p; + pf, where (p})ie[o,1] is a homotopy of selfadjoint elements in

by a homotopy (pt):e[o,1] of e-almost projectors of My (C;;

k—1
My (K(C(J]T/T)@H) + Cldp -t ryryom)

=1
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and (p{):e[o,1] is @ homotopy of selfadjoint elements in

My [ T] k@ @/r)emH) + Cldpy,., r/roemH
i>k

Moreover, since p; can be written diagonally as p; & p; in the decomposition
(X ()H = A([1Z T/T)©H @ 2([1,5, T/T:)®H, then p} is also a e-projectors
with propagation less than r. Let ¢ : R — R be a continuous function such that
p(s) = 0if s < 1/2 and ¢(s) = 1 if Y= < 5. Then (¢(p})))sefo,1) is a ho-

. . k—
motopy of projectors in MN(IC(EQ(]_L-:ll I'/T';)oH) + Cldﬁ(]_[f;f r/roem) between

p 0 0 I, 00
0 I 0O)Jand [ O O O] and thus p=0. O
0 0 O 0 0 O

In conclusion, we get

Corollary 2.11. With previous notations, we have

(i) a short exact sequence

4 maz, *
0—Z—Ko(C* . (X(T) "2 Ko(Ar X mael’)—0,

max

where the copy of Z in Ko(C¥, ..

one projector on (*(X) @ H.
(ii) an isomorphism

(X (T))) is generated by the class of a rank

K1 (Cl (X (1)) 22 K (Ap 5 maal)

max

Remark 2.12. The same proof as for proposition applies to show that the
injection K(2(X(I'))®H) — C*(X(T)) induces an injection 7 — Ko(C*(X(I))).
But when the group T has the property T with respects to the family (I';)ien, then
X(T) is a family of expanders and it was proved in [ﬂ] that the composition

‘IJF,TGdﬁ*

Z—Ko(C*(X(T))) =" Ko(Ar Xpeal’)
(and thus the composition K(£*(X (T))®H) — C*(X(I")) s Ar Xpeqa T') is not
exact in the middle

2.3. Assembly map for the Maximal Roe algebra. Let X be alocally compact
metric space, then according to a result of [E] that we shall recall below, the K-
theory group K,.(C*(X)) up to canonical isomorphism does not depend on the
chosen non-degenerated standard X-module defining C*(X). In [§ was defined
an assembly map for the Roe algebra fix : K. (X) — K.(C*(X)) in the following
way. Let Hx be a standard X-Hilbert module with respect to a non-degenerated
representation px : Co(X) — L(Hx). Let us define the following subalgebras of
L(Hx)

D(
C(
D*(X

{T € L(Hx) such that [f,T] € K(Hx) for all f € Co(X)},
{T' € L(Hx) such that f-T € K(Hx) and T - f for all f € Co(X)},
= {T € D(X) and T is in the closure of finite propagation operator}.

X
X

)
)
)
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Then every element in K,.(X) can be represented by a K-cycle (px,Hx,T), with
T € D(X). This operator then defines a class [T] in K,41(D(X)/C(X)) and we get
in this way an isomorphism called the Paschke duality |

K (X)— K1 (D(X)/C(X)): [(px. Hx, T)] — [T

According to [}, Lemma 12.3.2], the C*-algebras inclusions C*(X) — C(X) and
D*(X) — D(X) induce an isomorphism

(2.1) D*(X)/C*"(X) — D(X)/C(X).
Using the inverse of this isomorphism, we get finally an isomorphism
K.(X) = K. (D"(X)/C"(X))

which when composed with the boundary map in K-theory associated to the short
exact sequence

0—-C*"(X)— D*(X)— D*(X)/C*"(X)—0
gives rise to the assembly map
fix.-  K.(X)—K.(C* (X))

Remark 2.13. Every element x in K.(X) can be indeed, represented by a K-cycle
(px,Hx,T), withT € D(X). In this case, (T,C*(X)) is K-cycle for K,.(C*(X)) =
KKC,C*(X)) and thus defines an element of K.(C*(X)) we shall denote by
Indx T. It is then straightforward to check that fix «(x) =Indx T.

In order to define the coarse Baum-Connes assembly maps, we shall recall some
functoriality results of the Roe algebras under coarse maps.

Let ¢ : X — Y be a coarse map between locally compact metric spaces. Let
Hx (resp. Hy) be a non-degenerated standard X-Hilbert module (resp. Y-Hilbert
module) with respect to a representation px (resp. py). Recall from [§ that
there is an isometry V : Hx — Hy that covers ¢, i.e there exists a real s such
that for any = and y in X with d(¢(x),y) > s, we can find f in Cp(Y) and g in
Co(X) that satisfy f(y) #0, g(z) # 0 and py (f)Vpx(g) = 0. The map L(Hx) —
L(Hy); T — VTV* then restricts to a x-homomorphism C[X] — C[Y] and thus to
a homomorphism AdV : C*(X) — C*(Y). The crucial point, due to [J is that the
homomorphism Ad, V : K, (C*(X)) — K.(C*(Y)) induced in K-theory by AdV
does not depend on the choice of the isometry V covering ¢. Hence, we define
¢ = AdV : K, (C*(X)) — K.(C*(Y)), where V : Hx — Hy is any isometry
covering ¢.

Remark 2.14.

(i) If ¢ : X — X is a coarse map such that for some real C, we have d(z, p(z) <
C for all x in X, then Idg, covers ¢ and hence ¢ = ldg, (c+(x))-
(ii) Ifp: X =Y and ¢ : Y — Z are two coarse maps, then (¢po1)), = ¢y 0.
(iii) In consequence if ¢ : X — Y is a coarse equivalence, then ¢. is an iso-
morphism. Moreover, if ' : X — Y is another coarse equivalence, then
(iv) In particular, by chosing for two non-degenerated standard X -modules Hx
and HY an isometry V : Hx — HY that covers Idx, we see that up to
canonical isomorphisms, the K-group K,.(C*(X)) does not depend on the
choice of a non-degenerated standard X -module.
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The previous construction can be extended to maximal Roe algebras by using
the following lemma.

Lemma 2.15. With above notations, assume that X and Y a locally compact
metric spaces both containing nets with bounded geometry. For any isometry V :
Hx — Hy covering a coarse map ¢ : X — Y, we have

(i) CX] - ClY]; T — VTV* extends to a homomorphism C[X] — C[Y] and
thus to a homomorphism Admez V 1 Choun(X) — CF (V).
(ii) The homomorphism Admaz«V @ Ki(Chou(X)) — K (C.n(Y)) induced
by Ada.V in K-theory does mot depend on the choice of the isometry
V : Hx — Hy covering ¢.
Proof. The first item is just a consequence of the universal properties for C: . (X)
and C} . (Y). For the second point, assume that V' : Hx — Hy is another
isometry covering ¢ and let us set W = V - V'*. Then W is a partial isometry of
Hy with finite propagation. Then Wz and (Idgy, —W*W)x are in C[Y] for any x
in C[Y], and since

. = 2WWa+2*(Idy, —W*W)3z
(Wx)*Wz + (z(Idg, —W*'W))* (Idg, —W*W)z,

(Y) and thus |Wz| < ||z||. Hence C[Y] —
C[Y];z — W -z extends to a bounded linear map C} . (X) — Cf . (X) we shall
denote again by W. But W* is also a partial isometry of Hy with finite support
and it is straightforward to check that for any = and y in C . (Y') then W*(2)y =
W (y) and thus W is a multiplier of C (V). Since Adpax +«V = W - Adpmax « V

W*, we get the result by using [E, Lemma 4.6.2]. O

we get that (Wz)*Waz < z*x in C}

max

With above notation, this allowed to define for a coarse map ¢ : X — Y with X
and Y both containing nets with bounded geometry,

d)max,* = Admax,* V. K*(O* (X))—>K* (C;:lax(y))v

max

where V' : Hx — Hy is any isometry covering ¢. Notice that the remark
obvioulsy admits a analogous formulation for maximal Roe algebra. In view of
remark and in order to define the maximal assembly map, we will need the
following result.

Lemma 2.16. Let Hx a standard non-degenerated X-module. Then, for any
pseudo-local operator T on Hx with finite propagation, the map

ClX] - CX;x—Tx

extends in a unique way to a multiplier of C*, .. (X) we shall again denote by T.

Moreover, for any positive real 1, there exists a real constant ¢, such that if T has
propagation less than r, then

1T arccx. (x)) < el Tl 2crx)s

maz

where M (C?,,..(X)) stands for the algebra of multiplier of C},

maxr

X).

llI(

Proof. We can assume without loss of generallity that T as an operator on Hx is
norm 1.
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e Let (fi)icsr be a partition of unit, whose supports have uniformally bounded

diameters. Since T'— ), ; fi1/2Tfi1/2 is in C[X] and has norm operator

for Hy less than 2, then according to lemma @ it is enought to prove the

result for » ., ]‘1-1/2Tf1-1/2 instead T. For an element z of C[X], let us set

o = Zfil/QTfi1/2x7
il
A= (Idg, —T*T)"/?
and
y = (Z fi1/2Afi1/2)*(Z fil/ZAfil/Q) B Zfil/zA*Afil/z'
icl il icl
Then A is a positive pseudo-local operator of Hx and y is a self-adjoint
element in C[X] and

¥y —x*r = Z o [T — 1 ) £ P2 + 2y
i€l
= QKA QR AL ) )
iel el
where y' = (3,c; Ay - Y el F2 A2 12 lies in C[X]. According
to lemma P.6|, since y and 3’ has operator norm on Hx bounded by 2 and

have propagation less than r, there exists a real constant ¢/, depending only
on Hy and r and such that ||[y+¢/| < ¢l in Cf . (X). Hence 2"z’ —z*x <
crx*z and hence ||2'|| < (14 ¢,)'?||z|| in C¥,.(X). In consequence, the
map C[X] — CX]|;z — >, fil/QTfil/%r, is bounded for the norm of
Ct . (X) and thus extends to a bounded linear map C . (X) — C . (X).
e Applying the preceding point also to T*, we get that (T*z)*y = x(Ty) for
all z and y in C¥, (X) (check it on C[X]) and thus T is a multiplier for
Clhax(X)-
O

Remark 2.17. The set of pseudo-local operator of Hx of finite propagation is a
x-subalgebra of L(Hx) which contains C[X] as an ideal. From preceding lemma,
we get then a x-homomorphism from the algebra of pseudo-local operator of Hx of
finite propagation to the multiplier of C%,...(X) whose restriction to C[X] is just
the inclusion x-homomorphism C[X] — C¥, . (X).

Corollary 2.18.

o If (px,Hx,T) is a K-cycle for K.(X) with T of finite propagation. Then
(T, Ck (X)) is a K-cycle for K. (C?,..(X)) = KK(C,C?,,.(X)) we shall
denote by Indx maz T

o (px,Hx,T)— Indx meT gives rise to a homomorphism

Fx mag B (X) = Ko (Cf00(X)-

Proof. We only have to check that the definition of Indx max 1 only depends on
the class of (px,Hx,T) in K.(X). But if (px,Hx,T) and (px,Hx,T’) are two
K-cycle for K,.(X) with T and T” of finite propagation then

o if f(T —T’) is compact for all f in Cy(X), then Indyax T = Indpax T;
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e if 7 and 7" are connected by a homotopy of operators (7%)se[o,1] such that
(px,Hx,Ts) is a K-cycle for all s in [0, 1], then according to the preceding

. /25 £1/2
point, we can replace (Ts)seo,1] by (D icn fi/ Tsfi/ )sejo,1], where (f;)ien
is a partition of unit with support of uniformally bounded diameter.

The result is then a consequence of the second item of lemma 0

Remark 2.19. Let x be an element of Ko(X)) represented by an even K -cycle
(px,Hx,T) as in the previous corollary. Let us set

wo (duox T\ (e 0 (g, T 0 —Idg,
0 Idg, )\ =T 1dgm, 0 Idg,)\ldg, 0 )°

Then [W (1ng 8) W_l] - ngx 8)]

defines an element in Ko(C,..(X)) which is precisely [ix. « maz(T).

max

We are now in position to define the coarse Baum-Connes assembly maps. Recall
that for a proper metric set ¥ and a real r, the Rips complex of order r is the set
P.(X) of probability measures on ¥ with support of diameter less than r. Recall
that P.(X) is a locally finite simplicial complex that can be provided with a proper
metric extending the euclidian metric on each simplex. Moreover, by viewing an
element of ¥ as a Dirac measure, we get an inclusion ¥ — P,.(3), which turns out to
be a coarse equivalence. If we fix for each real r a coarse equivalence ¢, : P.(X) — X,
then the collections of homomorphisms given by the compositions

K.(P(2) "2 KL (€ (R(9) 25 KL(C()
and
(Pr(D)) 57 Ko (G (D))
give rise respectivelly to the the Baum-connes coarse assembly map
e i K (P(2)— K. (C*()

K* (PT(E)) HPT(E)_,r)nax,* K* (C*

max

and to the maximal Baum-Connes assembly map

M3 %, max - hi% K. (P (X)) — K. (Chax(X))-

Moreover, if 2z in lim, K.(P.(X)) comes from a K-cycle (pp, (5, Hp,(s), T') for some
K.(P,(X)), where T is a finite propagation operator on the non-degenerated stan-
dard P,(¥)-module Hp, (5 then

NZ,*(Z) = ¢r,* IndP,w(E) T
and
,UJE,max,*(Z) - ¢r,max,* IndPT(E),max T.

Remark 2.20. Let Ay : C},,.(3) — C*(X) be the homomorphism induced from

maxr

the representation C[X] — B(Hx). Then ps . = s mazx © A,

3. THE BAUM-CONNES ASSEMBLY MAP

We gather this section with result we will need later on concerning the Baum-
Connes assembly map and its left hand side. For a proper I'-space X and a I'-algebra
A, we shall denote for short K K!' (X, A) instead of KK (Co(X), A).
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3.1. Definition of the maximal assembly map. Let X be a locally compact
proper and cocompact I'-space and let (p,£,T) be a K-cycle for KKI'(X, A). Up
to averaging with a cut-off function, we can assume that the operator T is I'-
equivariant. Let & be the separated completion of C.(X) - £ with respect to the
AXmax-valued scalar product defined by (e/e')e.(v) = (£/7(€))e for € and &' in
C.(X)-€ and v in T (recall that the separated completion is obtained by first divide
out by the submodule of vanishing elements for the pseudo-norm associated to the
inner product and then by completion of the quotient with respect to the induced
norm). Up to replace T' by Z,Yerw(fl/Q)Tw(fl/Q), for f € C.(X,]0,1]) a cut-off
function with respect to the action of I" of X, the map C.(X)-E — C.(X)-&; £ — TE
extends to an adjointable operator Tt : & — Er. Then we can check that (Er,TT)
is a K-cycle for KK, (C, AXmax]') = K.(AXmaxI') whose class Indr 4 max T only
depends on the class of (p,&,T) in KKL (X, A). The left hand side of the maximal
assembly map is then the topological K-theory for I with coefficients in A

KieP(T, A) =l K KT (P, (1), 4)

and the assembly map
MU, A max - K:Op(l—‘a A) B K* (AX]maxF)

is defined for an element z in Ki°°(I", A) coming from the class of a K-cycle (p, €, T)
for KK (P.(T'), A) by pr A max(z) = Indr, A max T

3.2. Induction. We recall now from the description of induction to a group,
from the action of one of its subgroup on a C*-algebra, and the behaviour of the
left-hand side of the Baum-Connes assembly map under this transformation.

Let I be a subgroup of a discrete group I', and let A be a I''-C*-algebra. Define

Il A={f:T — Asuch that v - f(y7/) = f(7) forall y €T,y e T
and AT v [[ ()] is in Co(T/T)).

Then T acts on IL, A by left translation and it is a standard fact that the dynamical
systems (It A,T") and (A,T") have equivalent covariant representations. In partic-
ular, the C*-algebras AxXpa I’ and III:, AXpmax' are Morita equivalent (the same
holds for reduced crossed products). Notice that if the action of IV on A is indeed
the restriction of an action of I", then

Iy A = Co(D/T", A); f = [T =y f ()]
is a T'-equivariant isomorphism, where Co(I'/T", A) = Co(T'/T")®A is provided with
the diagonal action of I'. In [@] was defined an induction homomorphism
TP, KYP(IV, A) — K'P(D, 1L, A),
which turned out to be an isomorphism. If I has finite index in I, then Ill:}fff* can
be described quite easily as follows. Recall first that if I is a subgroup of I with

finite index, then the family of inclusions Cy(P,-(I")) — Co(P(T')) gives rise to an
isomorphism

(3.1) lim KK (P.(I7), A) = K*P(I", A) = lim KK (P,(I), A),
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and under this identification, the assembly map is defined as before : if x in an ele-
ment in K°P(T', A) coming from the class of a K-cycle (p, £, T) for KK (Co(P-(T), A),
then ,UF,A,max,*(x) = IndF’,A,max T.

Now let (p,&,T) be a K-cycle for some KK (X, A), where X is a proper and
cocompact I'-space. Let us define

I E={:T— A~ -&(vy) =¢(7) for all y € T}

The pointwise right A-Hilbert module structure provides a right IF, A-Hilbert mod-
ule structure for I, £ which is covariant for the action of " by left translations. If T
is chosen I"-equivariant, then ' — &; ~ +— T.¢ lies in Ik, £ for £ in Ig, & and we get
in this way a I'-equivariant and adjointable operator Ill:, T:1L & — Ill:, £. Finally,
for f in Cy(X), pointwise left multiplication by v — ~v(p(f)) defines a covariant
representation I, p of Co(X) on the Hilbert right It A-Hilbert module If, €. It
is straightforward to check that (I p, Ik £,Ik T) is a K-cycle for KKT (X, 15, A)
whose class only depends on the class of (p,&,T) in KK}:,(X, A). On the other
hand, if (p/,&,T") is a K-cycle for KK"(X,I}, A), and if we consider the I'-
equivariant homomorphism ¢ : Ik, A — A; f — f(e), then & = E'®@ypAis al’-
covariant right A-Hilbert module. Let us set T = T"®, Id4 and p(f) = p'(f)®y Ida
for all f in Co(X). Then (p,&,T) is a K-cycle for KKI' (X, A) and we can check
that (It p, Il £, 11 T') is a K-cycle unitary equivalent to (p/, &', T”). Finally, we get
an isomorphism
757 KET (X, A) = KKD(X, 15 A)

which maps the class of a K-cycle (p,&,T) for KKI' (X, A) to the class of the K-
cycle (IL p, I8 €, 1%, T) in KK (X, A). Under the identification of equation B.1],

the family of isomorphisms (I?}lz(}:))wo gives rise to an isomorphism

LR, - KPP (I, A) — KI°P(D, 1L, A).

Moreover, up to the identification K (AXmax") = K*(Ig, AXpmaxI') induced by the
Morita equivalence, we have
T'to
HT/, A, max = ,UJF,I;, A,I',max © IF’TAI?* :

Remark 3.1. Let A be aT-algebra, let T be a subgroup of T with finite index and let
(p,E,T) be a K-cycle for KK}:/(X, A), such that the action of T on £ is indeed the
restriction of a covariant action of T'. Under the identification It A = C(T'/T’, A)
we have seen before, then

I € = C(D/TY,€); €= [T = - (7))
is a T-equivariant isomorphism of right C(T' /T, A)-Hilbert module, where we have
equipped C(T /T, &) = C(T/T)QE with the diagonal action of T'. Moreover, under
this identification, IF, p is given pointwise by the representation p and Ill:/ T is the
pointwise multiplication by v — v(T).

3.3. The left hand side for product of stable algebras. As it was proved in
, the topological K-theory for a group is a functor with respect to the coefficients
which commutes with direct sums, i.e K*P(G, ®;c14;) = Dicr K©P(G, A;) for every
locally compact group G and every family (A;);c; of C*-algebras A; equipped with
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an action of G by automorphisms. The aim of this section is to prove a similar
result for product of a family of stable C*-algebras.

Let us first prove the result for usual K-theory.

Lemma 3.2. Let A = (A;)icr be a family of unital C*-algebras. Let

O K.(Mic/(Ai@K(H))— [ [ K«(AioK(H)) = [ [ K.(Ai)
el el

be the homomorphism induced on the j-th factor by the projection

[J(AwK(H))—A;0K(H).

iel
Then O4 is an isomorphism.

Proof. Is clear that ©2 is onto. The injectivity of O is then a consequence of the
next lemma. O

Lemma 3.3. There exists a map ¢ : (0,+o0o[— (0,+00[ such that for any unital
C*-algebra A, the following properties hold:

(i) If p and q are projectors in some M,(A) connected by a homotopy of
projectors. Then there exists integers k and N with n +k < N and a
homotopy of projectors (pt)icjo,1) i Mn(A) connecting diag(p, Ix,0) and
diag(q, I, 0) and such that for any positive real € and any s and t in [0, 1]
with |s — t| < ¢(e), then ||ps — pe|| < e.

(ii) If uw and v are homotopic unitaries in U, (A), then there exists an inte-
ger k and a homotopy (wi)icjo,1) i Unyr(A) connecting diag(u, Iy) and
diag(v, I) such that for any positive real ¢ and any s and t in [0,1] with
|s —t] < @(e), then |[ws —we] < e.

Proof. We can assume without loss of generality that n = 1.

e Let us notice first that using [E, Proposition 5.2.6, page 90 ], then there
exists a positive real o such that for any unital C*-algebra A and any
projectors p and ¢ in A such that ||p — ¢|| < a, then ¢ = u - p - u* for some
unitary u of A with |ju — 1|| < 1/2. Hence there is a self-adjoint element
h of A with ||h|| < In2 such that u = expih. Considering the homotopy
of projectors (expath - p - exp —1th)se(o,1], We see that there exists a map
@1 : (0, +00[— (0, +00[ such that for any C*-algebra A and any projectors
p and ¢ in A such that ||p — ¢|]| < a, then p and ¢ are connected by a
homotopy of projectors (pt):eo,1) and such that for any positive real & and
any s and ¢ in [0, 1] with |s — ¢| < ¢1(g), then ||ps — pe|| < e.

e By considering for a projector p in A the homotopy of projectors

cos®mt/2 - p sinwt/2cosmt/2 - p
sinmt/2cosmt/2-p sin’wt/2-p+1—p re[0.1]

in M3(A), we also get that there exists a map ¢o : (0, +00[— (0, +oo[ such
that for any C*-algebra A and any projector p in A, then diag(1,0) and
diag(p, 1 — p) are connected by a homotopy of projectors (gt):e[o,1] such
that for any positive real € and any s and ¢ in [0, 1] with |s — | < ¢2(e),
then [gs — qfl <e.
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e To prove the general case, let p and ¢ be two homotopic projectors in a
C*-algebra A, and let p = pg,p1, - ,Pm = ¢ be m+1 projectors in A such
that ||pi+1 — pi|| < a for i =0,--- ,m — 1. Let us consider the following
projectors in May,+1(A):

q = diag(po, for—1, 0)

¢ = diag(po,1,0,---,1,0)

g = diag(po,1—p1,p1, -1 = Pm,Pm)

g3 = diag(p —po, P L —p1 o Pm—1,1 — Dm—1,Pm)
qa = diag(1, 1,0, pm)

gs = diag(0, ng 1,pm)

g6 = diag(pm, I2k-1,0)

Since ||g3 — ¢2|| < «, if we set ¢ = min{¢1, P2} and if we use the previous
cases, we get for every [ in {0, 5} homotopies (qé)te[l’lﬂ] between ¢; and ¢;41
such that for any positive real € and any s and ¢ in [0, 1] with |s —t| < ¢(e),
then ||¢} — ¢}|| < e. Hence, by considering the total homotopy, we get the
result.

The proof for unitaries is similar. O

Proposition 3.4. Let " be a discrete group. Let A = (4;)ien be a family of C*-
algebras equipped with an action of T' by automorphisms. Let us equip A;QK(H)
with the diagonal action, the action of T' on IC(H) being trivial and let us then
consider the induced action on [[,c;(A;@K(H)). Let

®£7A : KK{(PT(F)v HzEI(A(X)IC(‘E[)))—>
[[ KK (P(T), Aok (H)) = [[ KKL(P.(T), 4))
icl iel
be the homomorphism induced on the k-th factor by the projection
[T(Aik(H)) — Avok(H).
i€l
Then 14 is an isomorphism.
Proof. Let us set B; = A;QK(H) for ¢ in I. We can define an analogous morphism
OF : KK! (X, Iic/B;) — [[ KKL(X, B;)
i>n
for any locally compact space X equipped with an action of I'. Let us denote
by @fk : KKY(X,W;e1B;) — KKI(X,By) the homomorphism induced by the
projection on the k-th factor. Up to take a barycentric subdivision of P,.(T"), we can
assume that P,.(I") is a locally finite and finite dimension typed simplicial complex,
equipped with a simplicial and type preserving action of I'. Let Zy,--- , Z, be the
skeleton decomposition of P,(I'). Then Z; is a simplicial complex of dimension j,
locally finite and equipped with a proper, cocompact and type preserving simplicial
action of I'. Let us prove by induction on i that G*Zj is an isomorphism. The 0-
skeletton Zj is a finite union of orbits and thus, for j = 0, it is enought to prove

that @1;/ Fis an isomorphism when F is a finite subgroup of I'. Let us recall from
that for every C*-algebra B equipped with an action of I, there is a natural
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restriction isomorphism Resﬁp : KKI'(T/F,B)—KKZI(C,B) 2 K.(B x F). We
get by naturality the following commutative diagram

or/F
KK[(T/F,TerB;) —— KK (U/F,By)
Resg’iFEIBil lResﬁ’kF ’

K.((Iie;Bi) x F) —— K,.(By x F)

where the bottom row is induced by the homomorphism I;c;(B; x F) — B x F
arising from the projection on the k-th factor Il;c;B; — Bjy. Since F' is finite,
IL;c;(B; % F) is naturally isomorphic to (Il;e; B;) x F, and under this identification,

the bottom row homomorphism induces by lemma an isomorphism
K.((WierB;) x F)— [[ K+(Bi x F).
icl

Hence @E/ Fis an isomorphism.
Let us assume that we have proved that @*Zj’l is an isomorphism. Then the
short exact sequence

0—Co(Z; \ Zj—1)—C0(Z;)—Co(Zj-1)—0
gives rise to an natural long exact sequence
— KK (Z;_1,0)—KK} (Z;,8)—KK.(Z;\ Zj_1,0)—KK},(Z;j_1,8)
and thus by naturallity, we get a diagram
KKY(Zj_1,;e1B;)

Zi_4 Z; _Zj—ll
o’ l Q*JJ Out1

et KK (Zj_1,B;) ——— W,erKKL (Z;,B;)) ——— e KKL (24, By)

KKL(Z;,1;¢1B;) KKI(Z;\ Zj_1,T;¢1B;)

KKL, (251, i1 By)

@fj\zj—ll

Wier KK, (Z;-1,B;)

Let 5j be the interior of the standard j-simplex. Since the action of I' is type
preserving, then Z; \ Z;_1 is equivariantly homeomorphic to 5j xYj, where ¥;
is the set of center of j-simplices of Z;, and where I' acts trivially on 3j. This
identification, together with Bott periodicity provides a commutative diagram

KKE(Z] \Zj—17HiEIBi) - KK£+1(E], Hie[Bi)

e | ol
[Lie; KKI(Zj\ Zj—1, Bi)) —— [lic; KK1(%), Bi)
By the first step of induction, ©)7 is an isomorphism, and hence ©7 V-1 g an

isomorphism. Using the induction hypothesis and the five lemma, we get then that
0% is an isomorphism. O

Let (A;)ien be a family of T'-algebras, let H be an Hilbert space and let = be
an element of KK*(P.(I'),[[;cny Ai®K(H)) (the action of T' on H being trivial)
represented by a K-cycle (¢,&,T). Let py : [[;en Ai®K(H) — Ay®K(H) be the
canonical projection on the k-th factor, and let us set & = E®,,, AxQK(H), T} =
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T®yp, Id 4, gic(rr) and let us define the T'-equivariant representation of Co(P;.(I')) on
Ex by on(f) = ¢(f)@p, Ida,ex ) for all fin Co(P-(T')). Then [, y & provided
with the diagonal action is a I'-equivariant right [], .y A:®/C(H)-Hilbert module.
Moreover, if S is a compact operator on &, then for every € > 0, there exists a finite
rank operator S’ on £ such that ||S — S’|| < e. Then (S});en provides a finite rank
operator on [, & such that ||S; — S| < e for all integer 4. Hence (S;)ien gives
rise to a compact operator on [[, .y &. Consequently, ((¢)ien, [[;en Eir (Th)ien) is
a K-cycle for KK (P.(T),[;cn Ai®K(H)) which in view of the isomorphism of
proposition @ represents also x. Using the imprimitivity bimodule implement-
ing the Morita equivalence between A; and A;QK(H), we can actually replace
& by K(A; ® H,H;) where H;, = &; ®a,0kH) ®A;. Hence we obtain that ev-
ery element x in KK*(P.(T),[[;cy Ai®K(H)) can be represented by a K-cycle
((Ds)ien, [ [;en Ka, (Ai®H, H;), (Ti)ien) such that for every integer i,

e H; is a -equivariant right A;-Hilbert module;

e ¢; is a I'-equivariant representation of Co(P,(I")) on H,;

e T} is a I'-equivariant operator on H;;

e the action of T; and of ¢;(f) for f in Co(P-(I")) on Ka4,(A;i®H,H;) being

by left composition.

Moreover, we can assume that ||7;]| < 1 for all positive integer 7.

As a consequence of proposition E we get

Corollary 3.5. If I' admits a universal example which is a finite dimension and
cocompact simplicial complex (equipped with a simplicial action of T'), then we have
an tsomorphism

KIP(T, e (A:@K(H))) — [ [ KIP(T, Ak (H)) = [ KLP(T, Aq)
il i€l
induced on the k-th factor by the projection
ILicr(AiQK(H)) — Ar®@K(H).

3.4. The case of coverings. Recall from [IE] that for a cocompact covering X —
X of group I', we have a natural isomorphism

YL KK (X,C)—K.(X)

which can be described as follows. Let (p, H,T) be a K-cycle for KKI (X, C). We
can assume without loss of generality that the representation p : Co(X) — L(H) is
non-degenerated. We can also assume that the operator T" of L(H) is I'-equivariant
and that _ _

T-Co(X)-HCCyX)-H.

If (e, ®) is the scalar product on the Hilbert space H, then we can define on Co(X)-H

the inner product
(&m) = _(&vm).

yer
Then {(e, )) is positive and thus by taking the separated completion of Co(X)- H,
we get a Hilbert space H. The operator T' being equivariant, its restriction to
C.(X) - H extends to a continuous operator T on H. Since p is non-degenerated,
it extends to a representation of C'(X) (viewed as an algebra of multiplier for
Co ()Z )) on H by equivariant operator. Moreover, since this representation preserves
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Cc()?) - H, it induces a representation p of C(X) on H. Tt is straightforward to
check that (p, H,T) is a K-cycle for K,(X) and we get is this way a homomorphism

(3.2) T%)* : KKI(Co(X),C)—K.(X)

which maps the class of (p, H,T) to the class of (p, ﬁ, f)
F . . .

Theorem 3.6. [@] T)?,* 18 a isomorphism.

We want now to study how the propagation behave under the above transfor-
mation. So assume that X is a locally compact metric space equipped with a
free, proper, isometric and cocompact action of I'. Let 1 be a I'-invariant mea-
sure, and let 7 be the measure induced on X = X/T. Let us set Hg = L*(n)®H
and Hx = L*()®@H. We can view C(X) as the algebra of [-invariant continuous
and bounded functions on X and according to this, for any continuous and com-
pactly supported function f : X — C, then fA* > erv(f) belongs to Hg. It is

straightforward to check that f +— f extends to a unitary map H — Hx.
Lemma 3.7. IfT is a locally compact equivariant operator on H g with propagation
less than r. Then, under the above identification between Hg and Hx, the operator

T isa compact operator with propagation less than r.

Proof. Since T is equivariant and since X is cocompact, the operator T is given by
a kernel K : X x X — K(H) such that K (yz,vy) = K(z,y) for almost all (z, Y)
in X x X and with cocompact support (for the diagonal actlon of Ton X x X )
of diameter less than 7. Under the above identification between H « 5 and Hx, then

for any continuous and compactly supported function f : X — C, we have

T-F=> 7T -f)=> T -~(f)

yel ~el’
By viewing X as a borelian fundamental domain for the action of I on X , we get

T fla) = Z/my (y)dn(y)

yel’

= / K (x,v"y) f(vy'y)dn(y)

(v,y")erz

__— / Ky, ) f () di(y)

(v,y")erz

) (y)di(y)

Il
S -
gl
N

dn(y),

I
S
o
®
<

with L
F:XxX;(x,y) — ZK(’yz,y).
yell
The kernel F'is I' >< I- invariant and thus can be viewed as a kernel on X x X and
thus we get T- f fX (y)dn(y). Hence T is a compact operator and
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since F(z,y) = 0 for almost every (z,y) in X x X such that d(z,y) > r, we see
that T as propagation less than 7. (I

The previous lemma can be extended to pseudo-local operators on H ¢ with finite
propagation. Recall from []E] that if T' is a pseudo-local equivariant operator on

H  with finite propagation, then Tisa pseudo-local operator on fl} = Hx

Lemma 3.8. With notation of lemma @, if T is pseudo-local T'-equivariant op-
erator on Hg with propagation less than r. Then, the operator T is a pseudo-local
operator with propagation less than r

Proof. Let fi,..., fn be a partition of unit for X with support of diameter less than
r. Let usset TV = >"" | fl-l/2 oq-T- fil/2 o ¢, where ¢ : X — X is the projection
map of the covering. Then 7" — T is an equivariant locally compact on Hg with
propagation less than r and thus, according to lemma @, we get that T-T is
compact and has propagation less than r. Since T = Dy fl-l/2 T fil/z, then T" is
a pseudo-local operator of propagation less than r and hence we get the result. [

4. THE LEFT HAND SIDE FOR THE COARSE SPACE ASSOCIATED TO A RESIDUALLY
FINITE GROUP

The aim of this section is to state for the sources of the assembly maps the
analogous of proposition @, i.e the existence of a group homomorphism

U ()« lim KK (P(X(T)),C)—K"“P(T, Ar),
such that
(41) \I]F,Ar,* O UX(T),max,* — MI',Ar,max,* © \IJX(F),*'

4.1. Rips complexes associated to a residually finite group. Let " be a
residually finite group, finitely generated. Let I'g D I'y D ...T,, D ... be a de-
creasing sequence of normal finite index subgroups of I' such that ;. I'i = {e}.
Recall notations of section R.g, if d be a left invariant metric associated to any
finite set of generators for I', then we endow I'/T"; with the metric d(al';,bI';) =
min{d(ay1,bv2),71 and v2 in I';}. Weset X(T") = H T'/T; and we equip X (T") with
ieN
a metric d such that on T'/T';, then d is the metric defined above and d(T'/T;, T'/T;) >
i+ ifi# 5.

For every integer n such that r > n, then

px() = p([L o/ IT{ TT 2/ )

i>n

where P, (]_[?:_11 I'/I;) and [[;5,, P-(I'/T;) can be viewed as distinct open subsets
of P.(X(I')). Hence we have a splitting

K[ /) @ KT /o)

i>n

K.(P(X(I)))

1%

—~
=
[N}

~—
12

n—1
K*(PT(H L) P[] &2 (/1)

i>n
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corresponding to the inclusion of the disjoint open subsets PT(]_[?;ll I'/T;) and
IL;>,, P-(T'/T;) into P.(X(T)).

Let us show that in the inductive limit when r runs through positive real,
K.(P.(T/T;)), behave like K,(P,(T")/T;) (recall that T'; acts properly on P.(T")).
For f in P.(T), let us define

[T Ty = (0,1 9T = > f(v9)-
gel;
Then f is a probability on I'/T;. Let v and ”y' be elements of I such that fN(FyFi) #0
and f(”yTi) # 0. Then there exists g and ¢’ in T'; such that f(vg) # 0 and f(v'g) #
0. Since f is in P,.(T"), we get that d('yg ~'g) < r and hence d(7T';,7'T;) < r. Thus
f belongs to P.(I'/T;), and since ~ - f f for any v in I';, we finally obtain
a continuous map v,; : P.(T')/T; — P.(T/Ty); f — f, where f is the class in
P.(T')/T; of f in P, (F) For a positive real r and an integer n, let

k>n k>n

be the homomorphism induced on the k-th factor by the map
Po(D)/Tx — Po(T/T); f = [.

Lemma 4.1. Let i be an integer such that Br(e,2r)NT; = {e}. Let {y1, -+ ,n}
and {¥;, -+ ,vL} be subsets of T' of diameter less than r and such that vjv'j_l 18 1n

T for all j in {1,--- ,n}, then ij’j_l = %7,;1 for all j and k in {1,--- ,n}.
Proof. We have d(y1,7;) < r and d(v1,v;) < r for all j in {1,--- ,n}. Let us set
g= ’yl'y’;l. Then

d(vj,97;) < d(vm) +d(v,97;)
< d(vi,m) +d(g, 97))
< d(vjm) +d(n,7))
< 2r.

Hence, since I'; is normal, vj_lg% =(v; Ly, el (7]% )5, belongs to Br (e, 2r)NT;
and thus v; = g7}. d

Let i be an integer such that Br(e,4r) NT; = {e}. Let h be an element of
P.(T'/T';). We can choose a finite subset {71, -+, 7,} of diameter less than 2r such
that the support of h lies in {7y, - ,7.I%}. According to lemma @, a such
subset is unique up to left translations by an element of I';. Let us define h in
P, (I)/T; as the class of the probability of P.(I') with support in {y1,+-, 7}
with value on an element v in that set h(y) = h(4T;). It is straightforward to

check that if h is in P,.(I'/T;), then h is the image of h under the inclusion map
P.(T/T;) — Py, (T'/T;). If f is an element of P.(T'), then since Br(e,r) NT; = {e},
the intersection of the support of Af with any ~T'; for v in I" has at most one element.

Hence, according to lemma [L.1], f is the image of the class of f in P.(T")/T; under
the inclusion P.(T")/T; — Py, (T")/T;.

Lemma 4.2. Letr be a positive real and let i be an integer such that Br(e,r)NT; =
{e}. Then the action of T'; on P(T) is free.
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Proof. Let f be an element of P.(T"). If v- f = f with ~ in T';, then the support of
f is invariant under the action of . In particular, v = g1 - g5 ! with g; and g5 in
the support of f. Hence v is in Br(e,r) NT; and thus v = e. O

In consequence, with condition of the lemma above, P.(I') — P.(I')/T; is a
covering map and since I'; has finite index in I, this covering is cocompact.

4.2. Construction of ¥y ). For a positive real r and an integer n, such that
r > n and Br(e,4r) NT,, = {e} let us define
o Ul . K.(P(X(D))) — [l;», K«(P(T/T;)) the projection homomor-
phlSHl corresponding to the decomposition in equation @ of section .
o U2 o Hk>n (P (T/Tk))— Han K, (P2-(T")/T) the homomorphism
induced on the k-th factor by the maps P.(I'/T) — Pa,.(T')/Tx; h — h.

i [ K (P(D)/Tw)— [ [ KEI*(PA(T),C)

k>n k>n

the homomorphism given on the k- th factor by the inverse of the isomor-
phism T;k(r) . KKT*(P.(I),C) — K.(P-(I')/T%) (see section B.4).

. *Tn Hk>nKKF (Pr(I), )—’Hk>nKKF(P( ),C(T'/T)) the homo-

morphism given on the k-th factor by the induction homomorphism IF PT(F)

(see section B.9).

o U0, [is, KK (P(T),C(T/T4)— KK (Pr(T), 0> (Uizal /T3, K(H)))
the inverse of the isomorphism el of proposition @ applied to the family
A= ( (F/F ))ZEN,

o U6  KK[(P(T),>°(Ui»nl'/Ts,K(H)))— KK (P,(),Ar) the homo-

morphism induced by the I'-equivariant epimorphism
A (UiZnF/Fi; ’C(H))—)AF

Remark 4.3. (i) Let us also define for any real r and 1’ such that 0 < r <71/
the homomorphisms

A [T B P/ — T KB (D/T)

k>n k>n

and

[ B )Tk — [ K (P (D/T0)
k>n k>n

respectively induced on the k-th factor by the inclusions P.(T'/Ty) — P (T'/T)
and P.(T)/Ty — P.(I)/Tk. According to the discussion that follows
lemma [{1 and with notations of section [|_1, if n is chosen such thatn <r
and Br(e,4r)NT,, = {e}, then

2 _ yk>n
(43) \IJ* N0 © A*J“y" = ! *,1, 27

and

(4.4) Migrno @2, = 70

n *,7,21°
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(ii) Using the same argument as in the proof of proposition , we get that

v . TeStricts to an isomorphism
P KKL(P.(T),C(T/T4) — KKL(Po(T), Co(Uizal/Ti, K(H))).
i>n

According to the next lemma, \I/ is an epimorphism.

Proposition 4.4. The equivarmnt short exact sequence
0—Co(Ui>n T /T, K(H))—L>° (Ui T /T, K(H))— Ar—0
gives rise to a short exact sequence
0— KK} (P (T),Co(Uiznl /T, K(H)))—
KK, (Pr(D), 6% (Uiznl /T3, K(H)))— K K (P,(T), Ar) —0.

Proof. Using the six-term exact sequence associated to an equivariant short exact
sequence of C*-algebras, this amounts to show that the inclusion

t: Co(UisnT/T5, K(H)) — £°(UisnT'/T3, K(H))
induces a monomorphism
«t KK (Pr(T), Co(Uiznl' /T3, K(H))) — KK (P (D), Uizl /Ti, K(H))).
Accordmg to remark @ and to proposition @ we have a sphttmg
KK (P.(T), Co(UiznT /Ty, K(H))) = @) KK (P.(I), C(T'/T;))
i>n
and an isomorphism
KK (P(T), 6 (Uizn /Ty, K(H))) = [ [ KKL (P(T), C(T/T3)).
i>n
Up to these identifications, ¢, is the inclusion
B KK (P (D), C(0/10)) — [] KKL(P(T), CT/T).
i>n i>n
O
Remark 4.5. Taking the inductive limit over all the P.(T'), we get a short exact
sequence
0—KP(T, Co(Uiznl /T3, K(H)))—
KLP(T, £ (Uinn T /T3, K(H)))— K P (T, Ar)—0
In the same way, since the composition

P K.(C(T/Ti, K(H)) %maeT) = Ko([[CT/Ti, K(H)) % masT)

i>n >n
— [ K«(C@/Ts, K(H)) % maal)
i>n

is injective, where the second map is induced on the k-th factor by the projec-
tion [[;5,, C(I'/T4, K(H)) — C(I'/Ty, K(H)), the ezact sequence for mazimal cross
product

O—>Co(|_|i2nF/Fi, ’C(H)) X maxF—>€OO (I_IZ-ZHF/R-, IC(H)) X mazr—>AF X m(wr—>0
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gives rise to a short exact sequence
0— @izn Ki(Co(T/T3,K(H)) X maal’)—
K.(0UisnT /T3, K(H)) X maal) — K (Ar X el ) —0
and moreover, the assembly maps intertwin the corresponding above exact sequences

Let r be a positive real and let n be an integer such that n < r and Br(e,4r) N
Ty, = {e}. Let us define

U, KK (P.(X(T)),C)— KK (P,,(T), Ar)

by
\Ill

*,7,n"

o U2

*7‘71

U, =Uo owP o U o3
Notice that U, ,, does not depend on the choice of the integer n such that n <r
and Br(e,4r)NT,, = {e}.
For any positive real r and 7’ such that r < 7/, let
it KKL(P(T), Ar) — KK (P (T), Ar)

*’I"T/

*,2r,n *,2r,n *,2r,n *,2r,mn

be the homomorphism induced by the inclusion P,.(I') C P (T").

Lemma 4.6. For every element y in KK (P.(T), Ar), there exists an element x
in KK,(P,(X(I)),C) such that ¥, .(z) = (" A (y).

*,7,27

Proof. According to proposition @ the homomorphism W8 is onto. Since

*,2r,m
W2 o s Us o, and U2 o are isomorphisms, there exists a z in [~ ,, K.(P,(T)/T;)
such that y = W o © \I!i o © Vs o © w3 rn(2), Using equation @7 we have
k>
\I]i ,Tyn A*J‘,n(z) = L/*;‘ZT(Z)

and since Wl  is onto, there exists an element z in K,.(P.(X(I'))) such that

*T"Il
Airn(z) = \I/irn( ). The lemma is then a consequence of the equality
5 4 /k>n _ TAr 6 5 4
\P*anoqj*%"noqj*%“no\l/*%"n *,7,2r T *rr’o‘ll*ano\I/*2rnolp*2rnoqj*2rn

d

Let us denote for a pair of real » and 7’ such that 0 < r < r/ by Lfﬁ) :

K.(P(X(T)))—K.(P-(X(T))) the morphism induced by the inclusion P, (X (I")) C
P..(X(I')). The class I'g of I' /Ty can be viewed as an element of P,.(X(I')) and this
inclusion induces a homomorphism

b+ L2 K ({[To] }) — Ko (
Lemma 4.7. Let = be an element of K.(P.(X(T
X(

there exists a real ' such that r < 1’ such that bypr

P(X(I))),
))) such that U, .(z) = 0, then
F)(

x) s in the range of Ky .

Proof. Let us fix a integer n such that n > r and Br(e,4r) NT,, = {e}. According
to proposition @
U2 2O 2 0 UL oWl oW, ,(z) €
KK, (Por(T), Co(Uizal /T4, K(H))) € KK (Par (), £%°(X (T), K(H))).
In view of remark @ we get that
Ul oW, 002, oWl (z) € @ KKL(Py(I),C(T/Tk)).

*,2r,n
k>n

*,2r,mn

*,2r,n
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Since \I/ft’%n and W2, restricts on direct summands to isomorphisms, then we
get that W2 oW () lies in @, KK.(P2(T)/Tk,C). According to equation

k4

Lan ol (:E) — gl o LX(F) (:E) € @ KK*(PQT(F/FIC>’ (C)

*,7,27 *, 7, *,2T,mn *,7,27r
k>n
But then Lfﬁl;)r(l') lies in a finite sum of summands of @, KK.(Ps-(T')/T'x, C)

and thus we get that for some integer m and some real s with s > 2r and

m > sup{n, s}, then Lfﬁl;)(:zz) belongs to KK, (Ps(Uo<k<mI'/Tk),C). But since

Ho<r<m I'/Tk is finite, Ps(Lo<r<mI'/T') is compact and up to choose a bigger s is

also convex. Hence, L‘fﬁ), (x) lies in the range of k., for r’ big enough. O
. . X(T) _ TAr :
It is straightforward to check that W, . ou, " =1, " 0¥, . and thus the family

of homomorphism (¥, ,.),<o gives rise to a homomorphism
Uy (), : lim KK, (P.(X(T)),C)—K°°(T', Ar).

Let x¢ be the image of (any) k. (1) in lim, KK, (P(X(T)),C). As a consequence
of lemmas [£.q and |7, we get

Theorem 4.8.
e Uy (), s onto;
e In odd degree, Wx (r) . s an isomorphism;
e In even degree, ker U x (1) . is the infinite cyclic group generated by xo;

4.3. Compatibility of ¥ x ) , with the assembly maps. The proof of equation
require some preliminary work. For a locally compact and proper I'-space X,
the notion of standard-X-module, was extended to the equivariant case in [@] as
follows.

Definition 4.9. Let X be a locally compact and proper I'-space, let H be a I'-Hilbert
space. A non-degenarated I'-equivariant representation p : Co(X) — L(H) is called
X -T-ample if when extended to Co(X)xT, then p(Co(X)xT') N K(H) = {0}.

Example 4.10. If n is a T-invariant measure on P.(T') fully supported i.e with
support P.(T') and if H is a separable Hilbert space, then L*(n)®H equipped with
the diagonal action of I, trivial on H together with the representation

is an X -T-ample representation. The reason is that P.(T') contains as a T'-space a
copy of T XY, where Y is a open subset of P.(T'), and where T acts diagonally, by
left translations on T’ and trivially on Y .

Lemma 4.11. Let X be locally compact and proper I'-space, let Hy and Hy be two
I-Hilbert spaces and let p; : Co(X) — L(H;) for i = 0,1 be two non-degenerated
and T-equivariant representation. Assume that pg is X -I'-ample. Then there exists
e Hy a I'-Hilbert space;
o p2: Co(X) — L(Hz) a non-degenerated I'-equivariant representation;
e U:Hy® Hy — Hy a unitary
such that for every f in Co(X),

U-(p1®p2)(f) = po(f) U € K(Hy @ Ha, Hp).
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Proof. Up to replace p1 bypo @ p1, we can assume without loss of generality that p;
is also X-I'-ample. Then, according to [E], there exists an ['-equivariant isometry
W : Hy — Hgy such that W-p1(f) — po(f)-W is in K(Hq, Hyp) for every f in Co(X).
Let us set P =1dy, —W - W*. Now, by using the completly positive map

Co(X) — L(P - Ho); f+ P-po(f)-P,

we can use the proof of [, Theorem 3.4.6] to conclude. O

From this and by using next lemma, we can prove that if X is a locally compact
and proper I'-space, then every element in K K (X, C) can be represented by a K-
cycle supported on a prescribed X-I'-ample and non-degenerated representation.

Lemma 4.12. Let G be a locally compact group and let A and B be two G-algebras.
Let (p,E,T) be a K -cycle for KKE(A, B) and let p' be an equivariant representation
of A on the right B-Hilbert module € such that p(a) — p'(a) is compact for all a in
A. Then (p',E,T) is a K-cycle for KKE(A, B) equivalent to (p,E,T).

Proof. 1t is clear that (p/,&,T) is a K-cycle for KKE (A, B). Then

costm/2 —sintw/2 T 0 costw/2 sintm/2

sintw/2 costmw/2 ’ (0 IdE) "\ —sintr/2 costr/2 te[0,1]
provides a homotopy between the K-cycles (p@®p/,EPE, T@Idg) and (p B p/,E D
&, 1dg @T). O

Corollary 4.13. Let X be a locally compact and proper I'-space and let px be a X -
T-ample representation of Co(X) on a T'-Hilbert space Hx . Then every element of
KKI(X,C) can be represented by a K-cycle (px, Hx,T) where T is a I'-equivariant
operator on Hx .

We fix once for all a separable Hilbert space H and for each real r a I'-invariant
measure 7, on P.(I') fully supported. Let us consider Hp, 1) = L?(n,) ® H with
the X-I'-ample representation p, defined in example . Define W'i(H p.(1)) as
the x-algebra of pseudo-local, I';-equivariant and finite propagation operators on
Hp, (ry. An element of vl (H p,(r)) is called a K-cycle if it satisfies the K-cycle
condition with respect to p,.

Lemma 4.14. Let x be an element of KK'(P.(T'),¢>*(X(T),K(H))). Then there
exists a real s and a family (T;)ien of bounded operators on Hp, ry such that
(i) T; is a K-cycle of WY'i(P,.(T)) of propagation less than s and ||T;|| < 1 for
every integer i;
(ii) Under the identification

(>°(X,K(H,Hp, 1)) = [ [ /T3, K(H, Hp, 1)) = [[ I, K(H, Hp, (1)),
i€N ieN
then
((Ir, pr)ien, €(X, K(H, Hp,(r))), (I, Ti)ien)
is a K-cycle that represents x.
(iii) If ; is the class of (pr, Hp.(ry,Ti) in KK (P.(T'),C), then ol A(z) =
(IF, i))ien, with A= (C(T/T;))ien,
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Proof. Ttem (iii) is a consequence of item (ii) together with proposition B.4. Accord-
ing to the discussion following propositon @, we can assume that z is represented
by a K-cycle ((¢:)ien, [[;en Keo@/r) (C(T/Ti, H), &), (T;)ien) such that for all in-
teger 4

& is a T-equivariant C(T"/T';)-Hilbert module;

T; is a I'-equivariant adjointable operator on & with ||T;]| < 1;

¢; is a T-equivariant representation of Cy(P.(T")) on &;;

Co(P,(T")) and T; act then on Ke(rr,)(H,&;) by left composition.

But for every integer i, there exist a I';-Hilbert space H;, a I';-equivariant represen-
tation v; of Cy(P-(T")) on H; and a I';-equivariant bounded operator F; on H; such
that & = I Hi, ¢; = I, ¢; and T; = I F/. Up to replace H; by the I-Hilbert
space induced by the inclusion I'; — I', we can assume that H; is a I'-Hilbert
which is up to add the degenerated K-cycle (p, Hp, (r),1dn,, ) can be chosen
X-T'-ample. By adding the degenerated K-cycle

( @ (s @ Hy, @ Idm,),

KEN, ki KEN, ki kEN, ki
we can assume that H; = Hy and ¢; = ¢o. According to lemma , by taking
an unitary equivalence of K-cycle, we can assume that Hy = Hp, (r) and that

Yo(f) — pr(f) € K(Hp, (1) for every integer f in Co(P,(I')). It is straightforward
to check that
((Ir, pr)ien, £°(X, K(H, Hp, (1)), (I, Fi)ien)

is a K-cycle for KKS(P,(T'),¢>°(X(I'),K(H))), which is by proposition B.4 and
lemma equivalent to

((IFI wo)iel\h éoo(XulC(Hu HPT(F)))v (IFI Fl)lEN)

If f € C.(P-(I),[0,1]) is a cut-off function for the action of I" on P.(T"), then up
to replace F' = (I}, F});en by > er V(F)FY(f), we can assume that there exists a
real s such that for all integer ¢ the operator F; has propagation less than s. ([l

Set ¢ = ¢>°(X ('), K(H, *(T®H)) and let (r be the right £°°(X ('), K(H)) X max -
Hilbert module constructed from ¢ in section B.I]. Viewing ¢2(I') @ ¢>* (X (I'), K(H))
as a right ¢>°(X ('), C(H))-Hilbert submodule of ¢>°(X(T),K(H, ¢*(T') ® H)), we
see that

Ce(D) - (X (), K(H, *(T) @ H)) Ce(T) - (*(I) @ £°(X(T), K(H)))

=~ C.(T)® (X (), K(H))

and under this identification, we get that

Ce(T) @ £(X (1), K(H)) — £2(X (D), K(H)) XmaxD; 6y ® a = 7~ (a)dy ™!
extends to isomorphism of right £>°(X(T"), K(H)) X max] -Hilbert module
(4.5) (r — (X (T), K(H)) XmaxD-

Define for i integer W'+ (I") as the x-algebras of pseudo-local, T;-equivariant and
finite propagation operators on £*(T") @ H.
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Lemma 4.15. Let (Si)ien be a family in [],c V5(T) uniformally bounded and
with propagation uniformally bounded by a real s. Then under the identification

¢=[[ow/m k@, AT ~ [[ 1t K(H, (1) ® H)),
€N ieN
(i) there exists a unique multiplier Ar(S;)ien of £°(X(T), K(H)) X mazl' which
under the identification (4> (X (T), K(H)) X magl restricts to (IR Si)ieN
on C.(T") - C.

(ii) The multiplier image of Ar(S;)ien under the canonical projection
e (X (F)5 ’C(H)) A mazF—>A1" X magl

and the multiplier image of € S; under the map

ieN

C* (T)) 25 Ap ¥ pasl’

max (

coincide.

Proof. Let us prove first the lemma for a family (.5;);en of locally compact opera-
tors. Since such families are algebraically generated by families
e (fi)ien uniformally bounded with f; in C(T'/T;, K(H)) acting by pointwise
multiplication;
¢ (R,)ien, for v in I', where R, is induced by the right regular representation
on *(T®H,
this amounts to prove the lemma for these families.
Then the elements of £>°(X(T"), K(H))Xmax]" given by
e the image of (f;);en viewed as element of £°°(X(T'), K(H)) under the inclu-
sion £>°(X(T),K(H)) — £°°(X(T), K(H))Xmax[" for the first case.
e the element ¢, € (*°(X(T), K(H))XmaxI" for the family (R,)ien, where d,
be the Dirac function at ~.
satisfy the required property. For a family (S;);en of pseudo-local operators,
let us set for i integer S; = 3 0,5:6,. Then S; — S; is I';-equivariant and
locally compact for all integer i. Moreover, as already mention in subsection
B (If, S)ien = > er 55 (If, Si)iend, extends to an adjointable operator of (r
and thereby to a multiplier Ap(S))ien of £°°(X(T), C(H))XmaxI. We then set
Ar(Si)ien = Ar(S] )zeN + Ar(S; — S!)ien. Unicity is quite obvious. Since pseudo-
local operator on ¢?(I")®H are multiplier for locally compact operator, we get item
(ii) by multiplicativity of (S;)ien — Ar(Si)ien and of (S;)ien — B,y Si- O

we are now in position to prove the main theorem of the section.

Theorem 4.16. Let I' be a residually finite and finitely generated discrete group
with respect to a sequence I'y C ---T',, C -+ of finite index normal subgroups. Then
if we set X(I') = [[,,enI'/T4, we have

\I]I‘,Ar,* O WX (T),maz,+ — MI',Ar,maz,* © \I]X(F),*'

Proof. Let r be a real and let n be any integer such that 2r < n and B(e,4r)NT, =
{e}. Then

(4.6) K. (P.(X(I)) 2K ]_[r/r o [ K«(P(T/T3))

i>n
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If under this identification, z comes from K, (P ([[7-, T/T})), then ¥x .(z) = 0
and using the naturality of the assembly map, we can see that px(r) max,» lies in
Ko(Croae(L15 T/T4)) C Kou(Crar(X(T))) and hence Ur ar .« © fx (1) mas,« (%) = 0.
Thereby, we have to prove that ¥r , o MX(F),max,*(UC) = Ul Ap,max,« © P (), for ele-
ment 2 coming under the identification of equation [L.f from =’ in [, K«(P-(T/T%)).
According to equation @, and up to replace r by 2r, we can assume that 2’/ =
Airn(y), with y in [[,5,, K«(P-(T')/I';). We can assume indeed without loss of
generality that n = 0 and that the action of T'; on P.(I") is free for all integer i.
From now on, we will write A, (resp. W!, i = 1,---,6) instead of A, o (resp.
Wl g i=1,---,6). Let us set z = ¥3(y) in [],cy KK (Co(P,(T)),C). The proof
of the theorem is divided in the following steps.

First Step: Assume that z is given by a family of K-cycles (pp, 0y, Hp, (ry, Ti)ien
such that for a real s, then for all integer ¢ the operator T; is I';-equivariant
with || T3] < 1 and has propagation less than s. Let us set Hp, yr, =
L2(ny)®H and pp, (v, : Co(Pr(D)/Ti) — L(L*(n,:)@H); f — f@1dp
where for all integer 4, the measure 7, ; is induced by 7, on P.(I")/T;. Let

us choose a I'-equivariant coarse map ¢, : P.(I') — I'. Then ¢, is a coarse
equivalence and induces a coarse equivalence

¢ [ Pr(0)/Ti— ] T/T: = X(I).
i€N ieN
Let us show that with notations of section @,

(47) MX(F),max,*(x) = ¢r,max,* Indmax,X(F) @kENTka

where @renT® is viewed as an operator on the non-degenerated standard
[en Pr(I')/Tr-module @, .y Hp, (ry/r,, (for the representation DieNPHp, (7, ).

Let v, : Po()/Tx — Po(T/Tk);h — h be the map defined in sec-
tion @ Notice that the family (v, )en induces a coarse equivalence v, :
Hyen Pr(T)/Tr— ey Pr(I'/T'k). Moreover, if we set

¢r : Co(Pr-(T/Ty)) — L(Hp,(vy/r, )5 | = pp.ry/r, (f 0 Urk),

then 2’ = A.(y) is the class of the K-cycle

(@ Pk @ Hp, 0y @ﬁ)

keN keN keN

in Ky (J{,en(Pr(I'/T'g)). For any non-degenerated standard P, (I'/T'y)-module
Hj; given by a representation pg, then ¢ ®py also provides a non-degenerated
standard P,.(I'/I'y))-Hilbert module structure for Hp, (ry/r, © Hg. Since the
K-cycles

(@ o, B He, vy @ﬁ)

keN keN keN
and

(@Qf)k D pk, @HPT(F)/P;C ® Hy, @fk 691de>

keN keN keN
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are equivalent, we get that
,LLX(F),max,*(:E) = 1/}T,max,* Indmax,]_[kEN P.(T'/T) @ T, @ Idev
kEN

where 9, : [[;cy Pr(I'/T'x) — X(I') is any coarse equivalence. Since the
inclusion @,y Hp,(r)/1w = Pren Hp, ()1, © Hy covers the coarse map
Uy erN P.(T')/Tyx — erN P.(T'/Ty), we get that

Indiax, [T, . P(T/T5) (®keNTk & Ide) = Urmax,» INdmax [T, P.(1)/T (@keNTk) .

Notice that since ¢, and ), o v, are both coarse equivalence between

[pen Pr(I)/Ty and X(T'), then ¢ max,« = ¥rmax,x © Vrmax,« and hence
we get the equality of equation
Second step: According to [@]7 there exists an I'-equivariant isometrie W, :

Hp, 1y — (2(T)®H that covers ¢, : P,(T") — T. Then, if Wy.;, : Hp,(r/r,) —
¢*(T'/T) ® H stands for the isometry induced by W,. for all integer k, then
DWer: D He,wry— D EE/T) 0 H
keN keN keN
is an isometrie that covers ¢, and thus

Gr.maxe Mdmas 11, Po(0y/m, €D The =

keN
Mdmax 11,1/ D WerkTkWry, + e yroom —Wes Wi,
keN
Finally we get that
BX () maxs(T) = Indmax ]y, ., T/T% @Wr,kaW:k +Ider/ryer —WrkWriy
keN
= Indmax,]_[keN /Ty @WerW: + Id€2(F/Fk)®H _W’I"W:
keN

Third step: By naturallity of the assembly map, we get that

M, Ar,max,* © \I]*(:E) = \Ij%* o MF,Z“’(X(F)JC(H)),maX,*(2/)7
where
e ' is the element in K1(T", ¢°°(X(T'), K(H))) coming from W5oW?(z) e
KEL(P(T), (X (T), K(H)));
o Ui : (X (), K(H))XmaxI' = ArXmaxI is induced by the projection
\116 (X (T),K(H)) — Ar.
Let us compute /,LFﬁ[oo(X(F)JC(H))’maX’*(ZI).
According to lemma .11, under the identification
>(X(I), K(H, Hp,(r))) HC I'/Ti, K(H, Hp,(r))) HIF (H,Hp, (1)),
€N €N
the element W2oWi(2) of KK (P.(T),¢>°(X(T'),K(H))) can be represented
by a K-cycle

((r, pr)ien, (X, K(H, Hp,r))), (It, F)ien)

where
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e F; is a K-cycle of Wi (P,(T)) with || F;|| < 1 for all integer i;

e there exists a real s such that F; has propagation less than s for all

integer ¢;

e if 2; is the class of (pr, Hp,(r), Fi) in KK (P.(I'),C) then z = (z;)ien.
Moreover, if we set £ = (°(X(T"), K(H, Hp,(r))) and F = (IR F})ien, we
can assume by averaging by a cut-of function for the action of I on P,.(T")
that F'- C.(P-(I")) - £ C Co(P.(I")) - €. Let us also set

¢ =*(X(D),KL(H, () ® H))

and let & and (r be the right £°° (X (T"), (H)) X max-module constructed
in section @ respectively from &£ and (. Since the isometrie

Wr:Hp,ry— () ® H
has finite propagation, it induces a map
Ce(Pr(D) - € = Ce(T) -G f > Wiof,

which extends to an isometrie Wr : &r — (r. As we have seen before, (T is a
right-£0>° (X (T"), K(H)) X max] module isomorphic to £*°(X ("), K(H)) X max]"
and in view of this, & is a direct factor of £>°(X(T"), K(H))Xmax]'. More-
over, if Fr is the operator of &r extending C.(T")-& — C.(T')-&; f — To f,
then we get with notations of lemma , that

Ar(Wr EsWY + 1dee(ryom —We W) )ien = Wrkr - Wy + 1dg. —Wp WP,

Hence pr g (x(r),x ()« (2") is the class in K, (£>°(X(I'), K(H))XmaxI") of
the K-cycle (£°(X(I), K(H)) X maxL', Ar (Wi E W +1d g2 (ryg i —We W) ien).
The theorem is then a consequence of lemma .

O

4.4. Applications. We end this section with application concerning injectivity and
bijectivity of the maximal coarse Baum-Connes assembly map. Let I' be a residually
finite and finitely generated discrete group with respect to a fixed sequence I'y C
-+-T,, C -+ of finite index normal subgroups. Recall that we have defined X (I") =
H I'/T; and Apr = (> (X ("), K(H))/Co(X(T"),K(H)). We can formulate corollary
N

.11}, theorem @ and theorem together as follows: We have a commutative
diagram

0 z lim, Ko(P,(X () —20%  KP(T, Ap) —— 0
:l HX(F),nlax,*l MF,AF,max,*J(
0 z Ko(Clan (X)) 2255 K (A stapas) ——— 0

with exact rows and a commutative diagram

Px )«

lim, KK, (P.(X(T))) K{°P(T, Ar)

#X(F),max,*l #F,Ar,max,*l

Ur, Ap,«

Kl (C’;";MZLE (X(F))) Kl (AFX]maxF)
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From this commutative diagram, we can deduce the following series of results con-
cerning injectivity and bijectivity of assembly maps.
Theorem 4.17. The following assertions are equivalent:

(i) The mazimal coarse assembly map

1 (), maz« - K (P (X(T), €) — Ko (Cryar (X(T)))

is an isomorphism.
(ii) the mazimal assembly map

HUT A, maz - K:Op(rla AF) - K* (AF ><lma:t:rl)
is an isomorphism.

Example of groups that satisfies item (ii) of the theorem are provided by groups
that satisfy the so called strong Baum-Connes conjecture. Recall first that a I'-
algebra D is said to be a proper I'-algebra, if D is a Cy(Z)-algebra for some proper
I-space Z in such a way that the structure map ® : Co(Z) — ZM (D) is I'-
equivariant. A group I satisfies the strong Baum-Connes conjecture if there exist,
a proper I-algebra D, an element o in KK!'(D,C) and a element 3 in KK (C, D)
such that 8 ®p « is the unit of KKL(C,C). It is well know (see for instance)
that if I satisfies the strong Baum-Connes conjecture, then ur g max K°°(I',B) —
K. (BXpaxI') is an isomorphism for every I'-algebra B. As a consequence, we get

Corollary 4.18. IfT' satisfies the strong Baum-Connes conjecture, then
PX (), maz I K (P (X(T)), €) — Ki(Cr0(X(I)))
is an isomorphism.
As a particular case, we obtain

Corollary 4.19. If T is a group with the Haagerup property, then
X (D) maz MK (Pr(X(T)), €) — Ko (G, (X(T)))

is an isomorphism.

Example 4.20. If T' = SLy(Z) and Ty = ker : SLy(Z)—SLo(Z/kZ), then
KX (T),maz,» 15 an isomorphism while pux .« s not surjective.

Remark 4.21. If the group T has the Kazdhan property (T), then the family of pro-
jectors corresponding to the 0-eigenvalue of the Laplacians of the family (I'/T;)ien
provides a projector p in C,.(X(T)) [Bl. We know from [[i] that the image in

Ko(C*(X(T'))) of the class of p under the homomorphism
Ax(0),e Koo (X (1)) = Ko(C*(X(I)))
is mot in the range of the coarse assembly map
(). lim KL (P (X (D)), €) — K.(C*(X(T).

Hence, according to remark , the assembly map px (), maz,« 1S MOl surjective.

Recall from [@] that if the group I' satisfies the strong Baum-Connes con-
jecture, then I' is K-amenable and in particular, the K-theory of reduced and
maximal crossed product coincide. This allows to get explicit computation for
K. (C}or(X(T))) in the following situation.

max
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Corollary 4.22. If I" satisfies the strong Baum-Connes conjecture and admits a
universal example for proper action which is simplicial, with simplicial and cocom-
pact action of T, then we have a short exact sequence

0—%Z— KO(C’::’LIII - H KO red @KO red —0
ieN €N

and an isomorphism
(C’;";MZLE — H Kl red l))/ @ Ky (C:ed(l—‘
ieN i€N
Proof. First notice that since I' is K-amenable, then
)\I‘,Ar,* : K*(Af‘xmaxl—‘) i K*(AF Ared F)

Let us show that we have an isormorphim

(AF Ared F — H K red /@K red

€N €N

Let us consider the following commutative diagram
KXP (T, [Liew C(T/T3, K(H))) Ko((ITiers C(T/T3, K(H))) rea T)

M KEP(L,OM/T)) e, ] K (C(D/Ta KH)) teea T)

where the vertical arrow are induced on the k-th factor by the projection

[[c@/ri, K(H)) — C(T/Tk, K(H)).

ieN

KT [T;en C(/T)T) red, *

But since the group I' admits a universal example for proper action which is sim-
plicial, with simplicial and cocompact action of ', then the left vertical arrow is an
isomorphism. Since I' satisfies the Baum-Connes conjecture, then the horizontal
map are also isomorphism. Hence the right vertical map is also an isomorphism
and hence the result is a consequence of remark @ and of the Morita equivalence
between C(I'/T;) Xrea I' and CJ4(T;). O

Regarding injectivity, we have similar results.

Theorem 4.23. The following assertions are equivalent:

(i) The mazimal coarse assembly map
HX (), maz,* * 11{11 K. (PT (X(F))v (C) (C:;Lam( (F)))
s injective.
(ii) the mazimal assembly map
MT,Ar,maz,* - Kiop(r, AF) - K* (AFX]maxF)
s injective.
We can also deduce the following result concerning the (usual) coarse Baum-
Connes conjecture.
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Theorem 4.24. Assume that the assembly map
BT Ar reds © KEP(T, Ar) — Ky (Ar Xyeq T)
is injective . Then the coarse assembly map
iy ¢ lim KL (PL(X (D)), €) — K.L(C*(X(T))
is also ingjective.

Proof. In the even case, let us consider the following diagram

0 Z lim, KK§ (P (X([)),C) —X0 KM Ay — 0
:l HX(F),n]ax,*l #F,Ar,n]ax,*J(
‘IJ max,*
0 Z KO(C:VMZ;E('X(F))) L) KO(AFX]maxF) — 0

:l Ax(r),*l >‘F1AI‘1*J/

‘I} re: *

7 —— Ko(C*(X(T))) SA, Ko(Ar ¥rea T)

where the bottom left corner horizontal arrow is induced by the inclusion
K(C(X(D)@H) — C*(X(I))

and is according to remark injective. Thereby, since the top row is exact,
we get that injectivity of pr Ap max« = Ar,Ap © UT,Ap,max,» implies injectivity of
HX(T),x = AX(T) © X (T),max,= 0

It was proved in [E] that for a group I' which embeds uniformally in a Hilbert
space, then ur p . is injective for any I'-algebra B. As a consequence we obtain

Corollary 4.25. Let I' be a group uniformally embeddable in a Hilbert space, then
the coarse assembly map

px ()« im K (P (X (1), €) — K. (C7(X(T)))
s injective.
The last application is to rational injectivity of 1 x (1) max,« Theorem admits
an obvious rational version. This allowed to recover the following result of [[]

Theorem 4.26. Assume that I' admits a universal example for proper action which
is stmplicial and with simplicial and cocompact action of I'. If pr.c mazx« 5 Ta-
tionnaly injective, then ix(r),mazx S also ralionnaly injective.

Proof. Since rationnal injectivity of fte ¢ max,« is inherited by finite index subgroups,
we get under the hypothesis of the theorem that i, ¢ max,« is rationnaly injective
for all integer 7. Since assembly maps are compatible with induction, we get that
UT,C(T/T;),max,« 15 Tationnaly injective. According to corollary @ and since we have
the commutative diagram
(4.8)

P (0, 02(X (1), K(H))) K (022 (X (), K(H)) X max]")

HT,250 (X (I'),K(H)), max,*

! !

[Len KL, C(T/Ty)) AR it R (C(T/T) man])
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where the vertical arrows are induced on the k-th factor up to Morita equivalence
by the projection IL;en¢> (X (T'), K(H)) — C(T /T, K(H)), we see that

1,00 ( (1) JC (1)) omae, e+ BGOP (D, 0°9(X(T), K(H))) — Ko (€°(X(T), K(H)) ¥max])

is rationnaly injective. As we have already seen before, the assembly is also com-
patible with direct sum of coefficients. Hence we get that

[0, Co(X (1) K (H)),max,x * KLP (D, Co(X (D), K(H))) — K.(Co(X (D), K(H)XmaxT')

is also rationnaly injective. By using the maps induced for each integer k by the
k-th factor ILient>(X(T),K(H)) — C(T'/Ty, K(H)), with see that the inclusion
Co(X(T),K(H)) — ¢£>°(X(T"), K(H)) induces inclusions
KPP (T, Co(X (), K(H))) — K2, (X (T),K(H)))
and
K. (Co(X(I), K(H)) ¥ max") = K. (>°(X(T), C(H)) X max])
and thus we get a commutative diagram

0 ——— K°P(T, Co(X(T), K(H)))

K{°P(T, £%°(X(T), K(H)))

! !

0 K.+ (Co(X(T), K(H)) X maxI') ——— K+ (£>(X(T), K(H))X maxT)

KY©P(I,Ap) ——— 0

!

K (Ar X maxI')

0

with exact rows and where the vertical arrows are given by the assembly maps.

Using once again the commutativity of diagram @, we get that if pur ap max (%)
comes rationnally from an element in K, (Co(X(T), K(H))XmaxI'), then z comes
rationnaly from an element in Ki°°(I", Co(X (T'), K(H))). Hence

HUT Ar,max,* - K:op(r, AF) - K*(AFX]maxF)

is rationally injective. (Il

5. ASYMPTOTIC QUANTITATIVE NOVIKOV/BAUM-CONNES CONJECTURE

Corollary suggest that the property of the coarse assembly map
ey, im K (P (X (D)), €) — K.(C(X(D))
should be closely related to the family fo assembly maps
(11, €, max,« + Ki%P(L;,C) — K*(C;lax(l—‘i))ieN'

We this, we introduce some quantitative assembly maps which take into account
the propagation. The relevant propagation here is indeed the one induced by I'
under the Morita equivalence between C} . (T';) and C(T'/T;) Xmax'. We then give
asymptotic statements for these quantitative assembly maps and give examples of
group for which they are satisfied.
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5.1. Almost projectors, almost unitaries and propagation.

Definition 5.1. Let A be a unital C*-algebra and let € in (0,1/4).

e An element p in A is called an e-projector if p = p* and ||p* — p| < e.
o An element u in A is called an e-unitary if [|[u*u—1|| < & and ||luu*—1|| < e

Notice that if p is an e-projector of a C*-algebra A and ¢. : R — R is any
continuous function such that ¢.(t) = 0 for ¢t < =¥ 1—2¢ V21_48 and ¢:(t) = 1 for ¢ >

Itvi=ie then ¢.(p) is a projector. Moreover, we have [¢.(p) — p|| < 2e.

Remark 5.2. If A is a C*-algebra, then for every e in (0,1/4)

e if p is an e-projector of A, then any element q in A such that ||p — q| <
2
% is an e-projector. In this case (tp + (1 —1)q)ef0,1] s a homotopy
of e-projectors between p and q and in consequence ¢-(p) and ¢-(q) are
homotopic projectors.
o if A is unital and if u is an e-unitary of A, then any element v such that
_ *u—1], *_ 1 . . .
[lu —v| < £ max{Ju 3 Llpee® =30} g e -umitary and (tu + (1 = t)v)iejo,1) s
a homotopy of e-unitary connecting u and v.

Definition 5.3. Let A be a I'-algebra. An element x of AXmasl is said to be of
finite propagation if x lies in C.(T', A). We say that x has propagation less than r
if the support of x as an element of C.(T', A) is in Br(e, s). These definitions have

an obvious extension to AX el by requiring the unit to be of propagation zero.

For ¢ in (0,1/4), A a unital T-algebra, and pg and p; two e-projectors of
AXmax'®K(H) with propagation less than s and ng and ny positive integers, we
write (po,no) ~se (p1,n1) if there is an integer k and a e-projector homotopy

(@)eero 0 C([0,1], (AxmaxT)RK(H)) between (PO 0 ) and (”1 0 ) such

0 Ik+n1 0 Ik+n0
that ¢; has propagation less than s for every ¢ in [0, 1]. Similarly if up and u; are

g-unitaries in AX . I'®K(H) with propagation less than s, we write ug ~g uq if

—_~—

there is a e-unitary homotopy (v¢)seo,1] in C([0, 1], (AXmax)@K(H)) between ug
and u1 and such that v; has propagation less than s for every ¢ in [0, 1].

Notice that if p and g are two e-projectors in A X . '@/C(H ) such that pg ~5 p1
then ¢.(po) and ¢.(p1) are homotopic projectors.

5.2. Propagation and assembly map. As before I' is a finitely generated group
which is residually finite with respect to a family I'o D T’y D ...I';, D ... of normal
finite index subgroups of I'.

Recall that W'i(T") and ¥l'i(P.(T)) are respectively the *-algebras of pseudo-
local, I';-equivariant and finite propagation operators on ¢*(I') ® H and Hp, (1.
Recall from section B.3 and corollary that any element of K K. (P,.(T"), C(T'/T;))
can be represented by K-cycle (Ig pr, C(T/Ty, Hp (1)), IR F), where
pr is the standard representation of Co(P,(T')) on Hp, 1y = L*(P.(T),n,)®H;
F is a K-cycle of Wi (Hp, (1))

We have identified It Hp (ry with C(T'/Ty, Hp ) = C(T/T;) ® Hp ()
provided with the diagonal action of T’

Under this identification, IR pr is the pointwise representation p, on Hp, (1)
and I, F is the pointwise action by T'/T; — B(Hp,(r)); 7L — 7(F).
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For a K-cycle F of Wli(P,(T)), let us denote by z the corresponding element in
K*'%P(T',C(I'/T;)) coming from the K-cycle (I, p,, C(T'/Ty, Hp (1)), I, T5).

Let us set ¢; = I, *(T) ® H = O(T'/T;,¢*(I') ® H) and let {;r be the right
C(T/T;) XmaxI-Hilbert module constructed from ¢(; in section . Notice that
Gir as a right C(T'/T;) X max]-Hilbert module is isomorphic to H @ C(I'/T';) X max I’
(compare with isomorphism of equation f.5).

Proceeding as we did for proving lemma and denoting the multiplier algebra
of C(T/T;, K(H))XmaxI' by M(C(T/T;, K(H))XmaxI'), we get with notations of
section

Lemma 5.4. For every integer i, there is a x-homomorphism
Ai 1 UTHT) — M(C(T/T3, K(H) X maol))
such that

o Under the identification ¢;r = H & C(T'/T;) X maal, then A;(S) restricts to
IR, S on C.(T) - Cir;

e For any f in C(T/T;,K(H)), viewed as a locally compact operator on
2(T)Y®H, then \;(f) is the image of f under the inclusion C(T /T, K(H)) —
C(F/an IC(H)) X maa:r;'

o Forevery~y inT, then A\;(R.) is the left multiplication by 6 € C(T'/T;) X paal’
(viewed as a multiplier of C(T'/T;, K(H)Xmazl'));

Remark 5.5. Let us denote by C[['|"¢ the set of I';-equivariant operators of C[T)].
Then C[T)Y is a x-algebra isomorphic to C.(T,C(T/T;)) (equiped with convolution
product) and thus A; induces by restriction a homomorphism

C((T/T) N maal — M(C(T/T;, K(H) X paal)),

which is in fact the natural inclusion. According to [E, lemma 4.13], lemma @
can be generalised to the equivariant case and hence for every real t and any inte-
ger i, there exists a positive real Cy; such that for any element S of C[T|F¢ with
propagation less than t, then ||X;(S)|lc(r/r, k(H)xmeT) < Crill Sllemew-

Let us fix until the end of this subsection
e a [-equivariant coarse equivalence ?45: : P.(T) - T
e aisometry W, : H, — (*(T') ® H that covers ¢,.
By using the same argument as in the third step of the proof of theorem we
get the following result.

Proposition 5.6. Let = be in Ki°P(I',C(T'/T;)) coming from an element xp in
KK (P.(T),C(T/Ty))) for a K-cycle F in some W' (P.(T)). Then pr o (r/r,),maz«(T)
is the class in K.(C(T/T;) X mal) of the K-cycle

(H & C(P/Fi)xmaxru )\l(W’I‘FW: + IdEQ(F)®H _WT‘W;))

Define F,.; = \i(Wo FW} + Ide(rygn —W,W)) for F a K-cycle of Ui (P,.(T))
and let us set in the even case

vo (Mdu Fi\ (ldg 0N (ldg F.\ (0 -ldg
F=\ 0 Idyg) \-F.; Idg 0 Idyg) \ldg 0 )’
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where Id g is viewed as the unit of C(I'/T';, K(H)) Mmax . Since ); is a *-homomorphism,

we see that the matrix
IdH 0 -1 IdH 0
ve (o o) vt (% 0)

has coefficients in C'(I'/T';, K(H)) Xmax' and moreover we get

Proposition 5.7. With notations of proposition [5.4, if x in Ki°P(T',C(T/T;))
comes from an element xrp in KKI(P.(T'),C(T'/T;)) for a K-cycle F in some

ULi(P.(T)) and if we set ep = Vi <I%H 8) Vit then

/LF,C(F/Fz‘);maI,O(:E) = [eF] - [(Id()H 8)} :

The crucial point is that with notations of proposition @, then the coefficients
of the idempotent er have indeed finite propagation depending only on the propa-
gation of F'. Since with notation of lemma Q, the algebra C[I')' is generated by
R, for v in I' an by functions f in C(I'/T;, K(H)), it is straightforward to check
that \; is propagation preserving. Using this, we obtain for every positive real r the
existence of a non-decreasing function h, : Rt — R* (which is in fact affine), inde-
pendant on i, such that for every s and every K-cycle F in Wi (T") with propagation
less than s, then with notation of lemma m, the idempotent er has propagation
less than h,.(s). Notice that er has operator norm less than «a,; = (1 + || F.4|))°.
Recall that if we set e/, = (14 (2ep —1)(2e% — 1))~ 2e(1+ (2ep — 1)(2e% — 1))1/2,
then e} is a projector equivalent to er. Fix once for all two sequences of real
polynomial functions (P;);en and (Q;);en such that P; and @; have degre j for all
j € N and on every compact subset of R™,

e (Pj)jen converges uniformally to ¢ — /1 + ¢;

e (Qj)jen converges uniformally to ¢ — \/%th

Let us define U1 (P.(T")) = {T € Ui (P,.(T)) such that ||T| < 1}. For F a K-cycle
of W1 (P,(I)), a positive real 7 and ¢ in (0,1/4) let j. r; be the smallest integer
such that

IPy(t) — VITH] < (8 + 4o ]))]| +2) % and ]Qm 8 4+ dap)) 2

S P
VvV1i+t| ™
for all integer j > jo p; and all ¢ € [0,4q,.;]. For F a K-cycle of W\#(P,(T")) with

propagation less than s, let us set

Pre = 1/2Q;. r.((2er — 1)(2¢f — 1))(er + ep) Py r,((2er — 1)(2eF — 1)).

Then ||¢/y — prc|| < €/8 and according to remark .9, then jp. is a e-projection
and has propagation less than (2j. r; + 1)h,.(s). Moreover, for any continuous

function ¢. : R — R such that ¢.(t) = 0 for t < 1=G=% V21745 and ¢(t) = 1 for

t> LV;TE, then ¢.(p.) is a projector equivalent to er. Now fix an identification
between IC(H) and the closure of U,en M, (C) and consider g, the rank 2n projec-
tor of Ma(C(I'/Ti, K(H))Xmaxl')) corresponding to the identity of M (M, (C)). For
a K-cycle F of U1*(P,(I)), let nr. be the smaller integer n such that lgnDr.c/2qn —
Prejat (M5 0) | < e/8andset pre = Gup. Pre/2dng.- Then [[pr e+ (144 0) -
ep|| < /4, and according to remark .9, pr.c is as a summand of pg . + (IdHOJ" 8)
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a e-projector in Moy, (C(I'/T';) X maxI"). Moreover, we have
MF,C(F/Fi),max,O(xF) = [¢€(pF7€)] - [InFs]

In the odd case, if F is a K-cycle of W} (P,.(T")) with propagation less than
s, let us set using the notations of the discussion following proposition @ qr =
1/2(F,; +Idg). For ¢ in (0,1/4) and r positive, let I ; be the smallest integer

—+oo
such that Z (i +2)' /1! < £/(3a,; 4 6). Let us define
l:ls,F,i"l‘l
le,Fyi le,F i
upe = (2imqr)' /Il —qr Y (2m)' /1L
=0 =1

It is straightforward to check that
e up.—Idy is indeed an element of C(T'/T';, K(H))Xmax' with propagation
less than I. g h.(s).
o [upe — ¥ || < g/3.

In view of remark f.9, up . is a e-unitary. Moreover, if x in K°?(T', C(T'/T;)) comes
from 2 in KK{ (P,(T), C(T'/T;)) for F in some W' (P,(T)), then pir o (r/r,),max,1(%)
is the class of up. in K1(C(T'/T;)Xmaxl)-

Remark 5.8. According to remark @, for all e in (0,1/4), ¢ positive integer and s
positive real, then the sets {j. pi; F K-cycle of W1'(P,(T")) of propagation less than s}
and {l. ps; F K-cycle of WY (P.(T)) of propagation less than s} are bounded. Thereby,
if Jeis and L. ;s are respectively their suppremium, then for all K-cycle F' of
\Illf (P-(I")) with propagation less than s, we get that pr. and pp. have propaga-
tion less than (2J. ;s + 1)he(s) and up e has propagation less than Le ; shy(s)

With notations of lemma P-3, let z be an element of K°°(T', Br). Under the
identification KK} (P,(T), Br) = [[,cy KK (P,(T),C(T/T;)) of proposition B4,
we can assume that x comes from an element (2, );en, where

e F; is K-cycle of W} (P,.(T")) for every positive integer 4;

e there exists a real s such that F; has propagation less than s for every

positive integer 1.

By viewing BrXmax] = £°°(U;enI'/T, K(H)) X max as an algebra of multipliers of
@ienC(T/T;, K(H)) X max]', we see that BrXmaxI is indeed a closed x-subalgebra of
[Licn (C(T/T4, K(H) X maxI'). In particular, with above notations, if = is even and
since [|A(S;)]| < [Ar(Si)ien]| for all uniformally bounded family S; in [T, U5 (T)
with propagation uniformally bounded and all integer j, then the idempotent
(er)ien and hence the projector (el )ien belong to Ma(BrxmaxI') and more-

OVer, (ir Bromax,0(z) = [(€f, )ien] — [(I%H 0)] Furthermore, the family of inte-

gers (je,r, i)ien is bounded and hence (pr, )ien and (pr,e)ien are e-projector
in Ma(BrXmaxl'). Since ||pr, e — ef || < ¢ for all integer i, we finally get that

(¢<(PF;.c))ien is a projector of My (Br XmaxI') homotopic to (€7, )ien and hence

pr,Bromax,0(®) = [(¢c(PF,c))ien] — [(Id)ien]
= [(¢e(pF.e))ien] = [(Ing, . )ien]-
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In the same way, in the odd case we get that (ug,);en is a e-unitary of BrXpaxl’
and

HT, Br,max,1 (.I) = [(uFi)iGN] .

5.3. Asymptotic statements. For any integer ¢ and any positive real r,7’, s, s’
and any ¢ in (0,1/72), let us consider the following statements

QIo(i,r,1',s,): for any (even) K-cycle F of Ul #(P,(T")), then (pre, npe) ~ise.s
(0,0) implies that zp lies in the kernel of the homomorphism

KK (P,(I),C(V/Ty)) — KK (P (L), C(L/T3))

induced by the inclusion P,.(I") < P (T).
QI (i,r,1r’,s,¢): for any (odd) K-cycle F of W} (P.(I)), then up. ~c s Idy
implies that zp lies in the kernel of the homomorphism

KK{ (P (T"),C(L/T:)) — KKj (P (L), C(T/Ty))

induced by the inclusion P.(T") — P (T).

QSo(i,r,s,s’,e): Forany e-projector p in some My (C(T'/T;) X max') with prop-
agation less than s, and any integer n, there exists a (even) K-cycle F' of
U1 (P,(T)) such that (pre,npe) ~1ge.s (p, 7).

QS1(i,r,s,s’,¢): For any e-unitary v in C(T'/T;, K(H) Mmax]’ with propaga-
tion less than s, there exists a (odd) K-cycle F of W!i(P.(T")) such that
UF e ~e,s U

Remark 5.9. It is straightforward to check that if two e-projectors are e-closed,
then they are homotopic as 18e-projectors and hence conditions QIy and QSy do
not depend on a particular choice of sequences of polynomial functions (P, )nen and
(Qn)nen used in the definition of ppe. Moreover, replacing ng. by any integer n
withn > nr. and pre by qnp/p_://Qqn does not either affect conditions QIy and QSy.

Theorem 5.10. Let T’ be a finitely generated group residually finite with respect
to a family 'o D T'1 D ...y D ... of normal finite index subgroups and let | be in
{0,1}. The following statements are equivalent:

(i) For any positive real r the following condition holds : there is an € in
, such that for any positive real s, there exists an integer j and a
0,1/72) such that y positi ls, th st integer j and
positive real v’ for which QI;(i,r,7’,s,¢e) is true for all i > j.
ii e mazximal coarse assembly map (ix(r).maz1 1S injective.
ii) Th imal bl (T'),maz,l 15 injecti

Proof. Let us give the proof in the even case, the odd one been quite similar (even
simpler). In view of theorem {.1¢, condition (ii) is equivalent to injectivity of
UD, Ap,max,0- Let us prove that condition (i) implies injectivity of ur ap max,0. Ac-
cording to remark [.g, this amounts to prove that for any = in K{**(T', Br), then
the condition pr g max,0(%) € Ko(Br,oXmax]') implies that = belongs indeed to
KSOP(F,BFD). Up to replace U;enI'/T'; by U;>;, I'/T; for some integer ig, we can
actually assume that pr pr max,0(x) = 0. Suppose that x comes from an element
(zF,)ien in some KK (P.(T),Br) = [[;cy KK§ (Pr(I),C(I/T;)) for r positive
real, where (Fj)ien is a family of K-cycles in [,y Ul (P.(T)) with propagation
uniformally bounded. Then there exist integers k and n and a projector homotopy

i - (¢E( i,s))i 0 (In ,E)i 0
in My 4kt2(BrXmax]’) between ( pFO en pn’k) and( i e S ), where
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In
0
topy of 18z-projector P : [0,1] — My tr+2(BrXmax]’) between ((pFi’g)iEN 0 )

Pn,k

Dn.k is the projector ( 8) of Mn+k(B1“/>;\I;XF). Hence we can find a homo-

and( (I"Fi(’f)iEN » i+1 ) such that for some s real, P(t) has propagation less than s

for every ¢ in [0, 1]. From this, by using for every integer j the projection
BrXmaxI' = £ (Usen, K(H))Xmax = C(T'/T;, K(H)) X max]’

and proceeding as we did in section E to obtain pp. from 17;8//2, we get that
(pFjesnF;e) ~i18e,s (0,0). If € is in (0,1/72) and j is an integer satisfy the as-
sumptions of the theorem for s as above, then there exists a ' such that x, lies in
the kernel of KK (P.(T"),C(T/T;)) — KK} (P (T'),C(T'/T;)) for all integer i > j.
This implies that x comes indeed from an element in @i;ol KKE(P.(T),C(T/T))
and hence belongs to @,y Ko "P(T', C(T'/T})).

Conversely, assume that for some positive real r, then for any ¢ in (0,1/72)
there exists a positive real s such that for every integer j and positive real 7/, there
exists an integer ¢ with ¢ > j for which QIy(i,r,7’,s,e) does not hold. Let us
prove that fr ;. max,o is not injective. If r is as above, let us fix € in (0,1/72) and
(r! Jnen an increasing and unbounded sequence of positive reals. Then we can find
an increasing sequence (j;);en of integers, and for each integer ¢ a K-cycle Fj, in
\111;J (P.(T")) such that (PF;, es1F;, ) ~18e,s (0, 0) and v, does not belong to the
kernel of KK (P,(T),C(T/T},)) — KK§ (P, (T),C(T/T;,)). By using a cut-off
function for the action of ' on P,(I') and in view of remark p.9, we can actually
assume that the family (F},);en as propagation uniformally bounded. Define for
any integer k the K-cycle Fy, of W}*(P.(T)) to be Fj, if k = j; for some integer i
and Idg,, ., otherwise. Let x be the element of K°P(T, Br) arising from (2, )ien-
ien 10" (L, O (T/T)).
Hence, the image of 2 under the epimorphism K °P(T', Br) — Ky°®(T, Ar) is a non
vanishing element of the kernel of jir A max,0- O

We clearly have pr pp max.0(z) = 0 and = does not sit in

Corollary 5.11. If T is residually finite, finitely generated and uniformally em-
beddable into a Hilbert space, then T satisfies condition (i) of theorem |5.1().

Remark 5.12. As already mentionned, under the assumption of corollary ,
the reduced assembly map pr Ap red« @5 injective. Moreover, the group I' is K-exact
and hence, in view of the proof of theorem and if we consider conditions QI
and QI1 with reduced assembly maps instead of mazximal ones, we get in this setting

an analogue of corollary for T

Theorem 5.13. Let I' be a finitely generated group residually finite with respect
to a family I'o D I'y D ...T'y D ... of normal finite index subgroups and let | be
in {0,1}. Assume that there exists € in (0,1/72) such that the following condition
holds: for every positive real s, there exist positive real v and s' and an integer j such
that QSy(i,7,s,5',¢) is true for all integer i > j. Then pp, (1) mas, 5 surjective.

Proof. As for injectivity, it is enought in view of theorem to prove that
UT, Ar,max,i 1S surjective and according to remark @, this amounts to prove that
for any z in K;(BrXmaxl'), there exists an element z in Klmp(I‘,Bp) such that
UT, Br max,1(z) — 2z belongs to Kj(BroXmaxI'). As before, we give the proof in
the even case, the odd case being quite similar. Recall that we have fixed an
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identification K(H) = UpenMp(C). It is then straightforward to check that ev-
ery element in Ko(BrXmax]') can be written down as the difference of the classes
of projector that belongs to ([T;crn Mn,(C(I'/T;))) XmaxI' for some sequence of
integers (n;)ien. Let p = (pi)ien be a such projector viewed as an element of
[Licny (Mp, (C(T'/T))XmaxI’). Let € be as in the assumption of the theorem. We
can indeed assume that there exists a positive real s and (¢;)ien an e-projector of
(ITien M, (C(T/T5)) MmaxD € TTien (M, (C(I'/T5)) X max]') with propagation less
than s and such that p = (¢-(¢;))ien. Let 7 and s’ be positive reals and let j be a
positive integer such that QSy(i,r, s, s’,€) is true for every integer ¢ > j, i.e there
exists a K-cycle F; in W1 (P,(I")) such that (pr, e, ) ~18c.s (¢i,0). By using
a cut-off function for the action of ' on P.(I') and in view of remark .4, we can
actually assume that the family (F;);en as propagation uniformally bounded. If we
set F; = Idpy,, ., for every positive integer i with ¢ < j — 1 and then consider the

element = of K °°(T', Br) coming from (zr,)ien € KK} (P-(T), Br), we get that
UT, Ar max,0(z) — [p] belongs to EBieN Ko(C(T/T;) X maxD). O

As we shall see, up to a slight modification in the sequence of finite index normal
subgroups in I', we get a converse result for theorem . This allows in particular
to deal at least with group that satisfies the strong Baum-Connes conjecture. Let
us set for any 7 integer X;(I') = [[,5;I'/T'; and X*(I') = [];cy Xi(I') provided
with the action of T' inherited by the action on X (T). Let us equip X°°(T') with
a T-invariant metric d such that the restriction of d to each X;(T") coincides with
the metric on X(T") and d(X;(T"), X;(I")) > ¢ + j for every integer ¢ and j. Let
us set AP = (°(X>(T),K(H))/Co(X>(T),K(H)). The space X*°(T') is indeed
construct in the same way as X (I') by considering the sequence of finite index
normal subgroups I'o DI'; DTy DTy DTy DTy D TI'3... and hence, according to

theorem , we get
Proposition 5.14. The following assertions are equivalent

(i) The mazimal coarse assembly map
() e T (P (X5 (1)), €) = Ko(Conan(X(T))
18 surjective.
(ii) the mazimal assembly map
pr, a5 ma + K (D AR) = Ko (AR X maal)
18 surjective.

We have of course analogous statements for injectivity and isomorphism. We are
now in position to give a weak converse result for theorem .

Theorem 5.15. Let I' be a finitely generated group, residually finite with respect
to a family I'o DT'1 D ...y D ... of normal finite index subgroups and let | be in
{0,1}. Assume that the mazimal coarse assembly map

Hxoo(T),mag,l * li7m Ki(P(X(I)),C) = Ki(Craz(X>(I)))
is onto. Then there exists € in (0,1/72) such that the following condition is satisfied:

for every positive reals s, there exist positive reals v and s’ and an integer j such
that QS (i,r,s,s',€) is true for all integer i > j.
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Proof. As before we give the prove for the even case. Assume that for all € in
(0,1/72) there exists a positive real s such that for all positive reals r and s’ and in-
teger j there exists an integer ¢ with ¢ > j for which QSy (4,7, s, s, €) does not holds.
In view of proposition , let us show that KT, A%® max,0 is not onto. Let us fix e
in (0,1/72) and (s});en and (r;);en increasing and unbounded sequences of positive
reals. Then for each integer k, there exist an increasing sequence of integers (j¥);en,
an e-projector ¢;x ; with propagation less than s in some Mnj&yk(C(F/ij)NmaxF)

and an integer mx , such that there is no K-cycle F' in gt (P, (")) for which
(TFesnFe) ~1se.s; (a5 5, Mk ). For j and k integers such that j > k, define

® qj tobe g if j = j¥ for some integer i and g, = 0 otherwise.

® mjy to be mk . if j = jF for some integer i and m; = 0 otherwise.
Let us set B = (>°(X>(I'),K(H)) and BpS, = Co(X>(I'),KL(H)). As in the
proof of theorem surjectivity will fail if there is no z in K °P(T', Bf®) such
that ur pee max,0(2) = [(D=(gj.k)jen, k<j] + [(Im, , )jen, k<] lies in Ko(BRp X maxD).
Suppose that such an x exists, coming from an element y in KK} (P,(T), B®) and
let us fix k£ an integer such that r; > r. Define then y;, as the image of y under the
composition

KK"(P.(1), BF) — KK" (P, (T), BY) — KK (P, (1), AY),

where the first map is induced by the inclusion P,(T") < P, (T") and the second by
the projection homomorphism A — ¢*°(X(T'), L(H)). We can assume that y;, =
(7F; . )jen, k<j Where (F} x)jen, k<; is a family of K-cycles in HJEN) k< vl (P, ()
with propagation uniformally bounded. Then (¢:(pr;,.c))jen, k<j is a projector
in Ko(£*°(Xg(T))XmaxI') and by naturality of the assembly map, we get that
[(¢<(pF, e))ien, kil = [Ung, , -)ien, k<i] = [(Pe(g5k))sen, k<il+ [(Tm; 1) jen, k<] lies
in Ko(Co(Xk(T), C(H))XmaxI'). By taking k big enought, we can indeed assume
that

(¢ (r; 1.e))ien, ki) = [(Inr, , )ien, k<i] = (P (@) jen, k<s] = [(Im; 1) jen, k<]

Thus, up to stabilisation, there is a homotopy in some M, (Z‘X’ (Xk(T),K(H)) %1")

0 a5,k 0

) and ( 0 I, )

™k ) jEN, k<j Fjkos ) GEN, k<j
agation between. Proceeding as we did in section @ to obtain pr . from pr /2, we
actually get that there exists

Fj ko€

of 18e-projectors (p o T with finite prop-

e a positive real s';
e two sequences of integers (i;);en, k<j and (i});en, k<j;

e a homotopy of 18¢-projector P : [0,1] — (HjeN w<j M (C’(F/Fj))) Xmax]'
PFj j.e 0

between( 5 T ) and(
ijtmik J jeN, k<j

has propagation less than s’ for every ¢ in [0, 1].

95,k 0
0 Iij+7le,k*5

) such that P(t)

JEN, k<j

If i is an integer such that s > s’ and j¥ > k , then (iji e U, L) ~ises!
Kk’ Kk’

(¢ji ks mn 1), which is in contradiction with the way we have chosen (g;x 1) kyenz

and (mjf,k)(i,k)GNz' [l

Corollary 5.16. Let I" be a finitely generated group residually finite with respect
to a family I'o D T'1 D ... Ty D ... of normal finite index subgroups and let | be in
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{0,1}. If T satisfies the strong Baum-Connes conjecture (for example if T' has the
Haagerup property) then there exists € in (0,1/72) such that the following condition
1s satisfied: for every positive reals s, there exist positive real r and s' and an integer
j such that QS)(i,7,s,s,€) is true for all integer i > j.

Since group satisfying the strong Baum-Connes conjecture are K-amenable [@],
the same result holds if we replace in the definition of conditions Q)Sy and QS
maximal assembly maps by the reduced one. More generally, in this setting, the
analogue of the hypothesis of theorem implies the surjectivity of the reduced
Baum-Connes assembly map pr pee red,l : Klmp(I‘7 Bf®) — Kj(BX X maxI') for [ in
{0, 1} for K-exact groups (in particular for groups that embed uniformly in a Hilbert
space).
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