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Anisotropic Geodesics for Perceptual Grouping and Domain Meshing

This paper shows how computational Riemannian manifold can be used to solve several problems in computer vision and graphics. Indeed, Voronoi segmentations and Delaunay graphs computed with geodesic distances are shaped according to the anisotropy of the metric. A careful design of a Riemannian manifold can thus help to solve some important difficulties in computer vision and graphics. The first contribution of this paper is thus a detailed exposition of Riemannian metrics as a tool for computer vision and graphics. The second contribution of this paper is the use of this new framework to solve two important problems in computer vision and graphics. The first problem studied is perceptual grouping which is a curve reconstruction problem where one should complete in a meaningful way a sparse set of curves. Our anisotropic grouping algorithm works over a Riemannian metric that propagates the direction of a sparse set of noisy incomplete curves over the whole domain. The proposed method prunes the Delaunay graph in order to correctly link together salient features in the image. The second problem studied is planar domain meshing, where one should build a good quality triangulation of a given domain. Our anisotropic meshing algorithm is a geodesic Delaunay refinement method that exploits a Riemannian metric in order to locally impose the orientation and aspect ratio of the created triangles.

Geodesic Distance over Riemannian Manifold

Various important problems in computer graphics and computer vision require the integration of a local anisotropy over a complex planar domain. This local anisotropy is dictated by directional features such as curves or textures that should be exploited to perform sampling, segmentation, grouping or meshing. In this paper, we focus on two representative problems in these fields: perceptual grouping of salient features and meshing of a complicated planar domain.

The proposed approach encodes the local anisotropy within a tensor field that corresponds to a Riemannian metric. This local information is integrated into global constraints thanks to the geodesic distance over this Riemannian domain. Figure 1 shows some examples of Riemannian metrics frequently encountered in computer vision and graphics. This section reviews basis facts about Riemannian manifolds and explains how geodesic distances can be computed efficiently with Fast Marching methods.

Riemannian Metric and Geodesic Distance

This paper considers 2D Riemannian manifolds that are defined over a compact planar domain Ω ⊂ R 2 . At each point x ∈ Ω, one has a tensor H(x) ∈ R 2×2 which is a positive symmetric matrix. This tensor field defines a local metric that allows to measure the length of a piecewise smooth curve γ : [0, 1] → Ω as follows

L(γ) def. = 1 0 γ ′ (t) T H(γ(t))γ ′ (t)dt.
In image processing and computer vision, the manifold is often the image domain Ω = [0, 1] 2 equipped with a metric H derived from the image f to process. In computer graphics and numerical analysis, one often deals with complicated planar domains Ω with holes and corners. Figure 1 shows some examples of Riemannian metrics. An important issue is thus to design, for a specific application, a tensor field H(x) that encodes the important information about the problem to solve. Sections 3 and 4 show computer vision and graphics applications where the tensor field is derived either from a background image or from some user input.

At each location x ∈ Ω, the Riemannian tensor can be diagonalized

H(x) = λ 1 (x)e 1 (x)e 1 (x) T + λ 2 (x)e 2 (x)e 2 (x) T with 0 < λ 1 λ 2 , (1) 
and e 1 , e 2 are two orthogonal (un-oriented) eigenvector fields. A curve γ passing at location γ(t) = x with speed γ ′ (t) has a shorter local length if γ ′ (t) is collinear to e 1 (x) rather than to another direction. Hence shortest paths (to be defined next) tends to be tangent to the direction field e 1 .

The anisotropy of a metric H(x) is defined as

α(x) = λ 1 -λ 2 λ 1 + λ 2 = 2 √ ab -c 2 a + b ∈ [0, 1], for H(x) = a c c b . (2) 
A metric with α(x) close to 1 is highly directional near x, whereas a metric with α(x) = 1 is locally isotropic near x.

Geodesic Distances and Shortest Paths

The geodesic distance between two points is defined as

∀ (x, y) ∈ Ω 2 , d(x, y) def. = min γ∈P(x,y) L(γ) (3) 
where P(x, y) denotes the set of piecewise smooth curves joining x and y P(

= {γ \ γ(0) = x and γ(1) = y} .

The distance d turns the domain Ω into a metric space. By carefully designing a local Riemannian metric, one can create global interactions within the domain that are crucial to solve computer vision and graphics problems such as perceptual grouping or planar domain meshing.

A shortest path γ between two points (x, y) ∈ Ω 2 according to the Riemannian metric is called a geodesic. It satisfies L(γ) = d(x, y). If the metric H is well chosen, then geodesic curves can be used to follow salient features in images.

In order to perform the numerical computation of geodesic curves and distances, we fix a set of starting points S = (x k ) k ⊂ Ω and define the distance map to this set

∀ x ∈ Ω, U S (x) def. = min k d(x, x k ).
An important theoretical result is that if x → H(x) is continuous, U S is the unique viscosity solution of the following Hamilton-Jacobi non-linear PDE

||∇ x U S || H(x) -1 = 1 with ∀ k, U S (x k ) = 0, (4) 
where ||v|| A = √ v T Av. This classical result allows to replace the optimization problem (3) that defines geodesic distances by a partial differential equation.

Once the distance map U S has been computed by solving the Eikonal equation (4), one can extract a geodesic γ between a point x and its closest point x k ∈ S by the following gradient descent

γ ′ (t) = - H(γ(t)) -1 ∇ γ(t) U S ||H(γ(t)) -1 ∇ γ(t) U S || with γ(0) = x. (5) 
The geodesic curve γ extracted using this gradient descent is parameterized with unit speed since ||γ ′ || = 1. In particular if S = {x 1 } then one can compute the geodesic curve between x 1 and any point in Ω.

Figure 2 shows examples of geodesic curves computed from a single starting point S = {x 1 } in the center of the image Ω = [0, 1] 2 and a set of points on the boundary of Ω. The geodesics are computed for a metric H(x) whose anisotropy α(x) (defined in equation ( 2)) is decreasing, thus making the Riemannian space progressively closer to the Euclidean space.
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Examples of geodesics for a tensor metric with an increasing anisotropy α (see equation [START_REF] Sethian | Level Sets Methods and Fast Marching Methods[END_REF] for a definition of this parameter). The tensor field H(x) is computed from the structure tensor of f as defined in equation [START_REF] Cohen | Multiple Contour Finding and Perceptual Grouping Using Minimal Paths[END_REF], its eigenvalues fields λi(x) are then modified to impose the anisotropy α.

For the particular case of an isotropic metric H(x) = W (x) 2 Id x , the geodesic distance and the shortest path satisfy

||∇ x U S || = W (x) and γ ′ (t) = - ∇ x U S ||∇ x U S || . ( 6 
)
This corresponds to the Eikonal equation, that has been used to compute minimal paths weighted by W [START_REF] Cohen | Global Minimum for Active Contour models: A Minimal Path Approach[END_REF].

Numerical Computations of Geodesic Distances

In order to make all the previous definitions effective in practical situations, one needs a fast algorithm to compute the geodesic distance map U S . The Fast Marching algorithm, introduced by Sethian [2] is a numerical procedure to efficiently solve in O(n log(n)) operations the discretization of equation ( 6) in the isotropic case. Several extensions of the Fast Marching have been proposed in order to solve equation ( 4) for a generic metric, see for instance Kimmel and Sethian [START_REF] Kimmel | Computing Geodesic Paths on Manifolds[END_REF] for triangulated meshes and Spira and Kimel [START_REF] Spira | An efficient solution to the eikonal equation on parametric manifolds[END_REF], Bronstein et al. [START_REF] Bronstein | Weighted distance maps computation on parametric three-dimensional manifolds[END_REF] for parametric manifolds.

We use the Fast Marching method developed by Prados et al. [START_REF] Prados | Control theory and fast marching methods for brain connectivity mapping[END_REF], which is a numerical scheme to compute the geodesic distance over a generic parameteric Riemannian manifold in 2D and 3D in O(n log(n)) operations. As any Fast Marching method, it computes the distance U S by progressively propagating a front, starting from the initial points in S. Figure 3 shows an example of Fast Marching computation with an anisotropic metric. The front propagates faster along the direction of the texture. This is because the Riemannian tensor is computed following equation ( 8) in order for the principal direction e 1 to align with the texture patterns.

Fig. 3. Examples of anisotropic front propagation (from 9 starting points). The colormap indicates the values of the distance functions at a given iteration of the algorithm.

The metric is computed using the structure tensor, equation [START_REF] Cohen | Multiple Contour Finding and Perceptual Grouping Using Minimal Paths[END_REF], of the texture f shown in the background.

Computational Geometry with Riemannian Metric

This section, shows how several tools from computational geometry extend to the setting of a Riemannian metric.

Starting from a set of points S = {x i } m i=1 , one can define graphs and triangulations that reflect the geometry of the Riemannian manifold. These points and the corresponding graphs are the basic building blocks of the algorithms for perceptual grouping and planar domain meshing.

In the following, the boundary ∂Ω of Ω is assumed to be a set of closed smooth curves. At least one point of S is located on each curve, and these boundary points segment ∂Ω as a set of sub-curves

∂Ω = i,j θ i,j with θ i,j ∈ P(x i , x j ) θ i,j ∩ S = {x i , x j }.
(one can have x i = x j if there is only one point on a curve).
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Delaunay and Voronoi Graphs

The segmentation of the domain Ω in Riemannian Voronoi cells is

Ω = C 0 xi∈S C i where C i = {x ∈ Ω \ ∀ j = i, d(x i , x) d(x j , x)} . (7) 
The outer Voronoi cell is defined as C 0 = Closure(Ω c ). The Delaunay graph D S of S is a graph where two points are connected if their respective Voronoi cells are adjacent

(x i , x j ) ∈ D S ⇐⇒ C i ∩ C j = ∅.
To each Delaunay edge (x i , x j ) ∈ D S corresponds a double point w i,j , which is the closest point to x i and x j on the common Voronoi cell boundary

w i,j = argmin x∈Ci∩Cj d(x, x i ).
The Delaunay graph D S is a planar graph, where each Delaunay edge (x i , x j ) ∈ D S has a geometric realization that is defined as if one of x i or x j is not on ∂Ω, the curve (x i , x j ) is the union of the two geodesics joining the double point w i,j to x i and x j , if x i ∈ ∂Ω and x j ∈ ∂Ω, the curve (x i , x j ) is the portion of the boundary θ i,j ⊂ ∂Ω. If the sampling S of Ω is dense enough, then one can prove that D S is a valid planar triangulation, see [START_REF] Leibon | Delaunay triangulations and Voronoi diagrams for Riemannian manifolds[END_REF].

A triple point s i,j,k is located at the intersection of three adjacent Voronoi cells

s i,j,k ∈ C i ∩ C j ∩ C k .
The set of triple points of S is denoted as Σ S . For a generic set of points S, these triple points are isolated. Saddle points s i,j,k where one of the index i, j or k is 0 are located on the boundary ∂Ω of the domain.

Numerical Computation

The Voronoi segmentation [START_REF] Leibon | Delaunay triangulations and Voronoi diagrams for Riemannian manifolds[END_REF] can be computed in parallel to the computation of the geodesic distance map U S . This requires to track the index of the closest point in S of any point in the front during the Fast Marching propagation. This can be done with any algorithm mentioned in section 1.3.

During this propagation, one can keep track of the double points w i,j for each Delaunay edge (x i , x j ) ∈ D S . Such a point corresponds to the first meeting location of the two fronts emanating from both x i and x j . After the propagation is finished, the Delaunay edge curve (x i , x j ) is extracted by solving two gradient descents, equation [START_REF] Bronstein | Weighted distance maps computation on parametric three-dimensional manifolds[END_REF], to compute the two geodesics joining w i,j to x i and x j .

All the geometric tools (Delaunay graph, Voronoi cells, double and triple points) can thus be extracted using a single front propagation, which requires O(n log(n)) operations. Furthermore, when they have been computed for a set of points S, they can be extended to S ∪ {x m+1 } by a local propagation restricted to the cell C m+1 , thus requiring on average O(n log(n)/m) operations.

Figure 4 shows examples of Voronoi segmentation for Riemannian metrics with a decreasing anisotropy. One can see how the Voronoi cells C i are stretched along the main tensor direction e 1 for highly anisotropic metrics. 

Application to Perceptual Groupping

Perceptual grouping is a curve reconstruction problem where one wants to extract a curve from an image containing a sparse set of curves embedded in noise. This problem is relevant both to model good continuation perception laws and to develop efficient edge detection methods. In this paper we restrict ourselves to the detection of a set of non-intersecting open or closed curves, although other kinds of topological or regularity constraints could be enforced.

Our algorithm extends the isotropic geodesic grouping method of Cohen [8] by designing a Riemannian metric that propagates the anisotropy of the sparse curves to the whole domain. This metric helps to disambiguates difficult situations where some curves are close from one to each other. This allows a better reconstruction with less user intervention.

The idea of using anisotropic information to perform perceptual grouping is introduced in [START_REF] Guy | Inferring global perceptual contours from local features[END_REF] where the completed contours are local minimizers of a saliency field. Many variational definitions of perceptual contours have been proposed using local regularity assumption, for instance with the ellastica model of Mumford [START_REF] Mumford | Elastica and computer vision[END_REF]. In contrast, our completed contours are anisotropic shortest paths that connect Riemannian Voronoi cells, thus being the global minimum of a length criterion.

Design of an Anisotropic Tensor Field

The Riemannian metric H(x) needs to be computed from the noisy input image f . In order to compute robustly the local direction of the features, we use a local pooling of the gradient information that constitutes a sparse set of tensors with a confidence measure. This sparse tensor field is then integrated by diffusion into a dense field.

Structure Tensor. The local orientation of a feature around a pixel x is given by the vector orthogonal to the gradient v(x) = (∇ x f ) ⊥ , which is computed numerically with finite differences (using maybe some little smoothing to cancel noise). This local direction information can be stored in a rank-1 tensor T 0 (x) = v(x)v(x)

T . In order to evaluate the local anisotropy of the image, one needs to average this tensor

T (x) = T 0 * G σ (x) (8) 
where the 4 entries of the tensor are smoothed against a gaussian kernel G σ of width σ > 0. The metric H corresponds to the so-called structure tensor, see for instance [START_REF] Kothe | Edge and junction detection with an improved structure tensor[END_REF]. This local tensor T is able to extract both the local direction of edges and the local direction of textural patterns (see figure 4, left). Another option, that we do not pursue here, is to use the square of the Hessian matrix of f instead of the structure tensor.

Estimation of a dense tensor field. The structure tensor field T (x) defined in [START_REF] Cohen | Multiple Contour Finding and Perceptual Grouping Using Minimal Paths[END_REF] gives a robust estimation of the local anisotropy only close to image features, where the gradient is large. In homogenous areas (typically outside the salient features), the tensor is nearly isotropic with small eigenvalues. In order to have a dense anisotropic field, one needs to extend the anisotropy over the whole domain using some kind of interpolation. This notion of interpolation of local orientation is similar to the computation of good continuation field, as studied for instance in stochastic completion fields [START_REF] Williams | Stochastic completion fields: a neural model of illusory contour shape and salience[END_REF] or tensor voting [START_REF] Medioni | A Computational Framework for Segmentation and Grouping[END_REF].

In this paper, we propose a simple interpolation method that computes a dense tensor field with a linear diffusion outside a region of high confidence. The region of high saliency is computed by thresholding the anisotropy map α of T (x) defined in equation ( 2)

Ω α = {x ∈ Ω \ α(x) > 1 -ε} ,
where ε is a small constant, in the numerical examples we choose ε = .05. The orientation of the tensors in Ω α are computed with a high confidence, and in order to compute a dense tensor field, we compute the following steady state of a heat diffusion

∀ x / ∈ Ω α , ∆T d i,j (x) = 0 and ∀ x ∈ Ω α , T d i,j (x) = T i,j (x),
where ∆ is the Laplacian with Neumann reflecting conditions on the boundary ∂Ω and where (T i,j ) i,j=1,2 are the components of the structure tensor.

In order to turn the dense tensor field T d into a Riemannian metric, we apply a non-linear mapping to its eigenvalues,

T d (x) = µ 1 e 1 e 1 T + µ 2 e 2 e 2 T =⇒ H(x) = ψ 1 (µ 1 )e 1 e 2 T + ψ 2 (µ 2 )e 2 e 2 T . (9) 
where ψ i is a decreasing function. In this paper, we use ψ i (x) = (η + |x|) -1 for a small value of η.

Figure 5 shows examples of computation of dense tensor fields. 

Anisotropic Perceptual Grouping

Our anisotropic grouping algorithm proceeds by computing a perceptual graph DS of a set of points S provided by the user. This perceptual graph is a sub-graph of the Delaunay graph DS ⊂ D S .

The use of the anisotropic metric H(x) defined in ( 9) helps to reduce the user intervention to a minimum by grouping together only curves that obey a good continuation property with respect to the anisotropic tensor field. This is performed by ordering the edges (x i , x j ) ∈ D S with respect to their respective geodesic distance d(x i , x j ). The edges are progressively inserted as at the corresponding curves are closed or open but non-intersecting. This topological constraint is enforced by monitoring the current degree δ i of each point, which should be smaller or equal to 2. The algorithm is detailed in Table 1. Table 1: Anisotropic perceptual grouping algorithm.

Figure 6 compares the results of perceptual grouping using an isotropic metric (which is equivalent to the algorithm developed in [START_REF] Cohen | Multiple Contour Finding and Perceptual Grouping Using Minimal Paths[END_REF]) to our algorithm that uses the dense tensor field T d . The isotropic method fails because closed curves are connected regardless of their relative orientation. In contrast, our anisotropic metric enables a correct grouping of curves that obey a good continuation property. varying sizes are highly desirable because of their capability to represent efficiently functions with directional singularities that one encounters for instance in parabolic PDE's near shocks. This section proposes a new anisotropic meshing algorithm that conforms the shape and size of the triangles to the tensor field of a Riemannian metric. Classical planar domain meshing algorithms are based on Euclidean Delaunay triangulation. They proceed by progressively inserting triple points, which are circumcenters of Delaunay triangles, see for instance [START_REF] Ruppert | A Delaunay refinement algorithm for quality 2-dimensional mesh generation[END_REF][START_REF] Chew | Guaranteed-quality mesh generation for curved surfaces[END_REF]. These points are inserted in order to split triangles that are poorly shaped, and also to ensure a minimum size of the triangles.

Application to Meshing of Planar Domains

Anisotropic meshes can be built using a local modification of the metric [START_REF] Borouchaki | Delaunay mesh generation governed by metric specifications[END_REF] or anisotropic elastic forces [START_REF] Bossen | A pliant method for anisotropic mesh generation[END_REF] and bubble packing [START_REF] Yamakawa | High quality anisotropic tetrahedral mesh generation via ellipsoidal bubble packing[END_REF]. In order to incorporate global constraints within a provably correct Delaunay refinement scheme, Labelle and Shewchuk propose in [START_REF] Labelle | Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation[END_REF] to use the anisotropic distance d(x, y) 2 = (xy)

T H(x)(xy). This is a simplified anisotropic metric not based on shortest paths. Several issues arise with such a definition. It is not symmetric and the Voronoi diagram might not be connected. However it can be used in conjunction with Ruppert's Delaunay refinement algorithm to provide anisotropic triangulation with guaranties on the aspect ratio of the triangles. This algorithm is extended in 3D by [START_REF] Boissonnat | Anisotropic diagrams: Labelle shewchuk approach revisited[END_REF] and to domains with curves by [START_REF] Yokosuka | Guaranteed-quality anisotropic mesh generation for domains with curves[END_REF]. The simplified distance d has been applied to image sampling [START_REF] Feng | Anisotropic noise samples[END_REF], optimal samples placement with centroidal tesselations [START_REF] Du | Anisotropic centroidal Voronoi tessellations and their applications[END_REF] and surface remeshing [START_REF] Valette | Generic remeshing of 3d triangular meshes with metric-dependent discrete Voronoi diagrams[END_REF].

Anisotropic geodesic meshing. We propose a new Delaunay refinement algorithm that extends the algorithm of Ruppert [START_REF] Ruppert | A Delaunay refinement algorithm for quality 2-dimensional mesh generation[END_REF] with Riemannian metrics. It extends the isotropic farthest point seeding strategy of [START_REF] Peyré | Geodesic remeshing using front propagation[END_REF] with anisotropic metrics and domains with arbitrary boundaries.

Our anisotropic meshing algorithm proceeds by iteratively inserting a triple point s i,j,k ∈ Σ S to an already computed set of points S. In order to compute an anisotropic mesh with triangles of high quality with respect to the local metric, one inserts s i,j,k for a Delaunay triangle (x i , x j , x k ) with the smallest circumradius to shortest edge ratio

ρ(s i,j,k ) = d(s i,j,k , x i ) min(d(x i , x j ), d(x j , x k ), d(x k , x i ))
,

which is a quantity computed for each triple point in parallel to the Fast Marching propagation. In the Euclidean domain, a triangle (x i , x j , x k ) with a low value of ρ(s i,j,k ) is badly shaped since its smallest angle is close to 0 . As explained in [START_REF] Labelle | Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation[END_REF], this property extends to an anisotropic metric H(x) if angles are measured using the inner product defined by H(x).

The major obstacle to the removing of badly shaped triangles is that the boundary ∂Ω should always be part of the Delaunay graph. This can be broken if a point x k is located too close to the boundary. A boundary sub-curve θ i,j is said to be encroached by x k ∈ S if it exists a triple point w i,k,0 ∈ θ i,j , see figure 7. Such an encroached edge cannot be part of the Delaunay triangulation, and is automatically split by the algorithm by inserting a mid point. Similarly, triple points are not added if they encroach any boundary sub-curve (the sub-curve is subdivided instead).

Another difficulty is that the Delaunay graph D S of S is not necessarily a valid triangulation if the sampling S is not dense enough, see [START_REF] Leibon | Delaunay triangulations and Voronoi diagrams for Riemannian manifolds[END_REF]. This is because of some isolated point, that is connected to only one other point of S in D S . The algorithm automatically add points on the Voronoi cell boundary of such a point. Table 2 details this algorithm. A bound ρ ⋆ on ρ enforces the refinement to reach some quality criterion, while a bound U ⋆ enforces a uniform refinement to match some desired triangle density. -If in S ∪ {s ⋆ }, s ⋆ encroaches some θi,j ⊂ ∂Ω, subdivide: S ← S ∪ argmax x∈θ i,j US (x).

-Otherwise, add it: S ← S ∪ s ⋆ . Update US with a local Fast Marching. 5. Stop: while ρ(s ⋆ ) > ρ ⋆ or US (s ⋆ ) > U ⋆ , go back to 2. 

Conclusion

This paper has detailed how several notions from computational geometry extend seamlessly to the geodesic setting. This allows to incorporate some important knowledges about the directionality of the features to solve more efficiently problems in computer vision and graphics. We explore two particular applications, perceptual grouping and domain meshing, where this anisotropy allows to overcome several limitations of previous approaches.
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 1 Fig. 1. Examples of Riemannian metrics (top row) and geodesic distances and curves (bottom row). The blue/red colormap indicates the geodesic distance to the starting point. From left to right: euclidean (H(x) = Id2 restricted to Ω = [0, 1] 2 ), planar domain (H(x) = Id2 restricted to Ω = [0, 1] 2 ), isotropic (H(x) = W (x)Id2 with W computed from the image), Riemannian manifold metric (H(x) is the structure tensor of the image, see equation (8)) and 3D surface (H(x) corresponds to the first fundamental form).
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 14 Fig. 4. Examples of anisotropic distances (top row) and Voronoi diagrams (bottom row) with an decreasing anisotropy α. The metric tensor is computed using the structure tensor, equation (8).
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 5 Fig. 5. Computation of a dense tensor field T d (x) from a sparse structure tensor T (x).
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 12 Initialization: set DS ← ∅, and Π ← DS . Select edge: set (xi, xj) ←argmin (x,y)∈Π d(x, y). Remove it: Π ← Π -{(xi, xj)}.

3 .

 3 Check topology: if δi < 2 and δj < 2, then update DS ← DS ∪ {(xi, xj)} and set δj ← δj + 1 and δi ← δj + 1. 4. Stop: while Π = ∅, go back to 2.
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 6 Fig. 6. Comparison of isotropic and anisotropic Riemannian metric for perceptual grouping.

3 Fig. 7 .

 37 Fig. 7. Left: the vertex x3 encroaches the boundary curve θ1,2. Right: the vertex x3 does not encroach anymore because (x1, x2) is a Delaunay edge.
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 8 Figure 8 show an example of anisotropic meshing, where the user controls the shape of the triangle by designing the tensor field.

Fig. 8 .

 8 Fig. 8. Example of anisotropic meshing with a synthetic tensor field.
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 1 Initialization: set S with at least one point on each curve of Ω, compute US with a Fast Marching. 2. Boundary enforcement: while it exists θi,j ⊂ ∂Ω encroached by some x k ∈ S, subdivide: S ← S ∪ argmax x∈θ i,j US (x). Update US with a local Fast Marching. 3. Triangulation enforcement: while it exists (xi, xj) ∈ DS with xi or xj isolated, insert w * = argmax

	d(xi, w).
	w∈C i ∩C j	
	4. Select point: s ⋆ ← argmin	ρ(s).
	s∈Σ S -∂Ω	

Table 2 :

 2 Anisotropic planar domain meshing algorithm.