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Abstract. This paper shows how computational Riemannian manifold
can be used to solve several problems in computer vision and graph-
ics. Indeed, Voronoi segmentations and Delaunay graphs computed with
geodesic distances are shaped according to the anisotropy of the metric.
A careful design of a Riemannian manifold can thus help to solve some
important difficulties in computer vision and graphics. The first contribu-
tion of this paper is thus a detailed exposition of Riemannian metrics as
a tool for computer vision and graphics. The second contribution of this
paper is the use of this new framework to solve two important problems
in computer vision and graphics. The first problem studied is percep-
tual grouping which is a curve reconstruction problem where one should
complete in a meaningful way a sparse set of curves. Our anisotropic
grouping algorithm works over a Riemannian metric that propagates
the direction of a sparse set of noisy incomplete curves over the whole
domain. The proposed method prunes the Delaunay graph in order to
correctly link together salient features in the image. The second problem
studied is planar domain meshing, where one should build a good quality
triangulation of a given domain. Our anisotropic meshing algorithm is a
geodesic Delaunay refinement method that exploits a Riemannian metric
in order to locally impose the orientation and aspect ratio of the created
triangles.

1 Geodesic Distance over Riemannian Manifold

Various important problems in computer graphics and computer vision re-
quire the integration of a local anisotropy over a complex planar domain. This
local anisotropy is dictated by directional features such as curves or textures that
should be exploited to perform sampling, segmentation, grouping or meshing. In
this paper, we focus on two representative problems in these fields: perceptual
grouping of salient features and meshing of a complicated planar domain.

The proposed approach encodes the local anisotropy within a tensor field that
corresponds to a Riemannian metric. This local information is integrated into
global constraints thanks to the geodesic distance over this Riemannian domain.
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Euclidean Shape Isotropic Anisotropic Surface

Fig. 1. Examples of Riemannian metrics (top row) and geodesic distances and curves
(bottom row). The blue/red colormap indicates the geodesic distance to the starting
point. From left to right: euclidean (H(x) = Id2 restricted to Ω = [0, 1]2), planar
domain (H(x) = Id2 restricted to Ω 6= [0, 1]2), isotropic (H(x) = W (x)Id2 with W

computed from the image), Riemannian manifold metric (H(x) is the structure tensor
of the image, see equation (8)) and 3D surface (H(x) corresponds to the first funda-
mental form).

Figure 1 shows some examples of Riemannian metrics frequently encountered in
computer vision and graphics. This section reviews basis facts about Riemannian
manifolds and explains how geodesic distances can be computed efficiently with
Fast Marching methods.

1.1 Riemannian Metric and Geodesic Distance

This paper considers 2D Riemannian manifolds that are defined over a com-
pact planar domain Ω ⊂ R

2. At each point x ∈ Ω, one has a tensor H(x) ∈ R
2×2

which is a positive symmetric matrix. This tensor field defines a local metric that
allows to measure the length of a piecewise smooth curve γ : [0, 1] → Ω as follows

L(γ)
def.

=

∫ 1

0

√

γ′(t)
T
H(γ(t))γ′(t)dt.

In image processing and computer vision, the manifold is often the image domain
Ω = [0, 1]2 equipped with a metric H derived from the image f to process. In
computer graphics and numerical analysis, one often deals with complicated
planar domains Ω with holes and corners. Figure 1 shows some examples of
Riemannian metrics.

An important issue is thus to design, for a specific application, a tensor
field H(x) that encodes the important information about the problem to solve.
Sections 3 and 4 show computer vision and graphics applications where the
tensor field is derived either from a background image or from some user input.

At each location x ∈ Ω, the Riemannian tensor can be diagonalized

H(x) = λ1(x)e1(x)e1(x)
T

+ λ2(x)e2(x)e2(x)
T

with 0 < λ1 6 λ2, (1)
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and e1, e2 are two orthogonal (un-oriented) eigenvector fields. A curve γ passing
at location γ(t) = x with speed γ′(t) has a shorter local length if γ′(t) is collinear
to e1(x) rather than to another direction. Hence shortest paths (to be defined
next) tends to be tangent to the direction field e1.

The anisotropy of a metric H(x) is defined as

α(x) =
λ1 − λ2

λ1 + λ2
= 2

√
ab− c2

a+ b
∈ [0, 1], for H(x) =

(

a c
c b

)

. (2)

A metric with α(x) close to 1 is highly directional near x, whereas a metric with
α(x) = 1 is locally isotropic near x.

1.2 Geodesic Distances and Shortest Paths

The geodesic distance between two points is defined as

∀ (x, y) ∈ Ω2, d(x, y)
def.

= min
γ∈P(x,y)

L(γ) (3)

where P(x, y) denotes the set of piecewise smooth curves joining x and y

P(x, y)
def.

= {γ \ γ(0) = x and γ(1) = y} .

The distance d turns the domain Ω into a metric space. By carefully designing
a local Riemannian metric, one can create global interactions within the do-
main that are crucial to solve computer vision and graphics problems such as
perceptual grouping or planar domain meshing.

A shortest path γ between two points (x, y) ∈ Ω2 according to the Rieman-
nian metric is called a geodesic. It satisfies L(γ) = d(x, y). If the metric H is well
chosen, then geodesic curves can be used to follow salient features in images.

In order to perform the numerical computation of geodesic curves and dis-
tances, we fix a set of starting points S = (xk)k ⊂ Ω and define the distance
map to this set

∀x ∈ Ω, US(x)
def.

= min
k

d(x, xk).

An important theoretical result is that if x 7→ H(x) is continuous, US is the
unique viscosity solution of the following Hamilton-Jacobi non-linear PDE

||∇xUS ||H(x)−1 = 1 with ∀ k, US(xk) = 0, (4)

where ||v||A =
√
vTAv. This classical result allows to replace the optimization

problem (3) that defines geodesic distances by a partial differential equation.
Once the distance map US has been computed by solving the Eikonal equa-

tion (4), one can extract a geodesic γ between a point x and its closest point
xk ∈ S by the following gradient descent

γ′(t) = − H(γ(t))−1∇γ(t)US

||H(γ(t))−1∇γ(t)US ||
with γ(0) = x. (5)
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The geodesic curve γ extracted using this gradient descent is parameterized with
unit speed since ||γ′|| = 1. In particular if S = {x1} then one can compute the
geodesic curve between x1 and any point in Ω.

Figure 2 shows examples of geodesic curves computed from a single starting
point S = {x1} in the center of the image Ω = [0, 1]2 and a set of points on the
boundary of Ω. The geodesics are computed for a metric H(x) whose anisotropy
α(x) (defined in equation (2)) is decreasing, thus making the Riemannian space
progressively closer to the Euclidean space.

Image f α = 1 α = .5 α = .1 α = 0

Fig. 2. Examples of geodesics for a tensor metric with an increasing anisotropy α (see
equation (2) for a definition of this parameter). The tensor field H(x) is computed from
the structure tensor of f as defined in equation (8), its eigenvalues fields λi(x) are then
modified to impose the anisotropy α.

For the particular case of an isotropic metric H(x) = W (x)2Idx, the geodesic
distance and the shortest path satisfy

||∇xUS || = W (x) and γ′(t) = − ∇xUS

||∇xUS ||
. (6)

This corresponds to the Eikonal equation, that has been used to compute mini-
mal paths weighted by W [1].

1.3 Numerical Computations of Geodesic Distances

In order to make all the previous definitions effective in practical situations,
one needs a fast algorithm to compute the geodesic distance map US . The Fast
Marching algorithm, introduced by Sethian [2] is a numerical procedure to effi-
ciently solve in O(n log(n)) operations the discretization of equation (6) in the
isotropic case. Several extensions of the Fast Marching have been proposed in
order to solve equation (4) for a generic metric, see for instance Kimmel and
Sethian [3] for triangulated meshes and Spira and Kimel [4], Bronstein et al. [5]
for parametric manifolds.

We use the Fast Marching method developed by Prados et al. [6], which is a
numerical scheme to compute the geodesic distance over a generic parameteric
Riemannian manifold in 2D and 3D in O(n log(n)) operations. As any Fast
Marching method, it computes the distance US by progressively propagating a
front, starting from the initial points in S. Figure 3 shows an example of Fast
Marching computation with an anisotropic metric. The front propagates faster
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along the direction of the texture. This is because the Riemannian tensor is
computed following equation (8) in order for the principal direction e1 to align
with the texture patterns.

Fig. 3. Examples of anisotropic front propagation (from 9 starting points). The col-
ormap indicates the values of the distance functions at a given iteration of the algorithm.
The metric is computed using the structure tensor, equation (8), of the texture f shown
in the background.

2 Computational Geometry with Riemannian Metric

This section, shows how several tools from computational geometry extend
to the setting of a Riemannian metric.

Starting from a set of points S = {xi}m
i=1, one can define graphs and trian-

gulations that reflect the geometry of the Riemannian manifold. These points
and the corresponding graphs are the basic building blocks of the algorithms for
perceptual grouping and planar domain meshing.

In the following, the boundary ∂Ω of Ω is
assumed to be a set of closed smooth curves.
At least one point of S is located on each
curve, and these boundary points segment
∂Ω as a set of sub-curves

∂Ω =
⋃

i,j

θi,j with

{

θi,j ∈ P(xi, xj)
θi,j ∩ S = {xi, xj}.

(one can have xi = xj if there is only one
point on a curve).

Ω

Ω
c

x1
x2

x3

x4

2.1 Delaunay and Voronoi Graphs

The segmentation of the domain Ω in Riemannian Voronoi cells is

Ω = C0

⋃

xi∈S

Ci where Ci = {x ∈ Ω \ ∀ j 6= i, d(xi, x) 6 d(xj , x)} . (7)
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The outer Voronoi cell is defined as C0 = Closure(Ωc).
The Delaunay graph DS of S is a graph where two points are connected if

their respective Voronoi cells are adjacent

(xi, xj) ∈ DS ⇐⇒ Ci ∩ Cj 6= ∅.

To each Delaunay edge (xi, xj) ∈ DS corresponds a double point wi,j , which is
the closest point to xi and xj on the common Voronoi cell boundary

wi,j = argmin
x∈Ci∩Cj

d(x, xi).

The Delaunay graph DS is a planar graph, where each Delaunay edge (xi, xj) ∈
DS has a geometric realization that is defined as

if one of xi or xj is not on ∂Ω, the curve (xi, xj) is the union of the two
geodesics joining the double point wi,j to xi and xj ,

if xi ∈ ∂Ω and xj ∈ ∂Ω, the curve (xi, xj) is the portion of the boundary
θi,j ⊂ ∂Ω.

If the sampling S of Ω is dense enough, then one can prove that DS is a valid
planar triangulation, see [7].

A triple point si,j,k is located at the intersection of three adjacent Voronoi
cells

si,j,k ∈ Ci ∩ Cj ∩ Ck.

The set of triple points of S is denoted as ΣS . For a generic set of points S,
these triple points are isolated. Saddle points si,j,k where one of the index i, j
or k is 0 are located on the boundary ∂Ω of the domain.

2.2 Numerical Computation

The Voronoi segmentation (7) can be computed in parallel to the computa-
tion of the geodesic distance map US . This requires to track the index of the
closest point in S of any point in the front during the Fast Marching propagation.
This can be done with any algorithm mentioned in section 1.3.

During this propagation, one can keep track of the double points wi,j for
each Delaunay edge (xi, xj) ∈ DS . Such a point corresponds to the first meeting
location of the two fronts emanating from both xi and xj . After the propagation
is finished, the Delaunay edge curve (xi, xj) is extracted by solving two gradient
descents, equation (5), to compute the two geodesics joining wi,j to xi and xj .

All the geometric tools (Delaunay graph, Voronoi cells, double and triple
points) can thus be extracted using a single front propagation, which requires
O(n log(n)) operations. Furthermore, when they have been computed for a set of
points S, they can be extended to S ∪ {xm+1} by a local propagation restricted
to the cell Cm+1, thus requiring on average O(n log(n)/m) operations.

Figure 4 shows examples of Voronoi segmentation for Riemannian metrics
with a decreasing anisotropy. One can see how the Voronoi cells Ci are stretched
along the main tensor direction e1 for highly anisotropic metrics.
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f

α = 1 α = .5 α = .2 α = .1

Fig. 4. Examples of anisotropic distances (top row) and Voronoi diagrams (bottom
row) with an decreasing anisotropy α. The metric tensor is computed using the structure
tensor, equation (8).

3 Application to Perceptual Groupping

Perceptual grouping is a curve reconstruction problem where one wants to
extract a curve from an image containing a sparse set of curves embedded in
noise. This problem is relevant both to model good continuation perception
laws and to develop efficient edge detection methods. In this paper we restrict
ourselves to the detection of a set of non-intersecting open or closed curves,
although other kinds of topological or regularity constraints could be enforced.

Our algorithm extends the isotropic geodesic grouping method of Cohen [8]
by designing a Riemannian metric that propagates the anisotropy of the sparse
curves to the whole domain. This metric helps to disambiguates difficult situa-
tions where some curves are close from one to each other. This allows a better
reconstruction with less user intervention.

The idea of using anisotropic information to perform perceptual grouping
is introduced in [9] where the completed contours are local minimizers of a
saliency field. Many variational definitions of perceptual contours have been
proposed using local regularity assumption, for instance with the ellastica model
of Mumford [10]. In contrast, our completed contours are anisotropic shortest
paths that connect Riemannian Voronoi cells, thus being the global minimum of
a length criterion.

3.1 Design of an Anisotropic Tensor Field

The Riemannian metric H(x) needs to be computed from the noisy input
image f . In order to compute robustly the local direction of the features, we
use a local pooling of the gradient information that constitutes a sparse set of
tensors with a confidence measure. This sparse tensor field is then integrated by
diffusion into a dense field.
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Structure Tensor. The local orientation of a feature around a pixel x is given
by the vector orthogonal to the gradient v(x) = (∇xf)⊥, which is computed
numerically with finite differences (using maybe some little smoothing to cancel
noise). This local direction information can be stored in a rank-1 tensor T0(x) =

v(x)v(x)
T
. In order to evaluate the local anisotropy of the image, one needs to

average this tensor
T (x) = T0 ∗Gσ(x) (8)

where the 4 entries of the tensor are smoothed against a gaussian kernel Gσ of
width σ > 0. The metric H corresponds to the so-called structure tensor, see
for instance [11]. This local tensor T is able to extract both the local direction
of edges and the local direction of textural patterns (see figure 4, left). Another
option, that we do not pursue here, is to use the square of the Hessian matrix
of f instead of the structure tensor.

Estimation of a dense tensor field. The structure tensor field T (x) defined
in (8) gives a robust estimation of the local anisotropy only close to image
features, where the gradient is large. In homogenous areas (typically outside the
salient features), the tensor is nearly isotropic with small eigenvalues. In order
to have a dense anisotropic field, one needs to extend the anisotropy over the
whole domain using some kind of interpolation.

This notion of interpolation of local orientation is similar to the computation
of good continuation field, as studied for instance in stochastic completion fields
[12] or tensor voting [13].

In this paper, we propose a simple interpolation method that computes a
dense tensor field with a linear diffusion outside a region of high confidence. The
region of high saliency is computed by thresholding the anisotropy map α of
T (x) defined in equation (2)

Ωα = {x ∈ Ω \ α(x) > 1 − ε} ,

where ε is a small constant, in the numerical examples we choose ε = .05. The
orientation of the tensors in Ωα are computed with a high confidence, and in
order to compute a dense tensor field, we compute the following steady state of
a heat diffusion

∀x /∈ Ωα, ∆T d
i,j(x) = 0 and ∀x ∈ Ωα, T d

i,j(x) = Ti,j(x),

where ∆ is the Laplacian with Neumann reflecting conditions on the boundary
∂Ω and where (Ti,j)i,j=1,2 are the components of the structure tensor.

In order to turn the dense tensor field T d into a Riemannian metric, we apply
a non-linear mapping to its eigenvalues,

T d(x) = µ1e1e1
T + µ2e2e2

T =⇒ H(x) = ψ1(µ1)e1e2
T + ψ2(µ2)e2e2

T. (9)

where ψi is a decreasing function. In this paper, we use ψi(x) = (η + |x|)−1 for
a small value of η.

Figure 5 shows examples of computation of dense tensor fields.
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Sparse T Dense T d(x) Sparse T (x) Dense T d(x)

Fig. 5. Computation of a dense tensor field T d(x) from a sparse structure tensor T (x).

3.2 Anisotropic Perceptual Grouping

Our anisotropic grouping algorithm proceeds by computing a perceptual
graph D̃S of a set of points S provided by the user. This perceptual graph
is a sub-graph of the Delaunay graph D̃S ⊂ DS .

The use of the anisotropic metric H(x) defined in (9) helps to reduce the
user intervention to a minimum by grouping together only curves that obey a
good continuation property with respect to the anisotropic tensor field. This is
performed by ordering the edges (xi, xj) ∈ DS with respect to their respective
geodesic distance d(xi, xj). The edges are progressively inserted as long at the
corresponding curves are closed or open but non-intersecting. This topological
constraint is enforced by monitoring the current degree δi of each point, which
should be smaller or equal to 2. The algorithm is detailed in Table 1.

1. Initialization: set D̃S ← ∅, and Π ← DS .
2. Select edge: set (xi, xj)←− argmin

(x,y)∈Π

d(x, y). Remove it: Π ← Π − {(xi, xj)}.

3. Check topology: if δi < 2 and δj < 2, then update D̃S ← D̃S ∪ {(xi, xj)} and set
δj ← δj + 1 and δi ← δj + 1.

4. Stop: while Π 6= ∅, go back to 2.

Table 1: Anisotropic perceptual grouping algorithm.

Figure 6 compares the results of perceptual grouping using an isotropic met-
ric (which is equivalent to the algorithm developed in [8]) to our algorithm that
uses the dense tensor field T d. The isotropic method fails because closed curves
are connected regardless of their relative orientation. In contrast, our anisotropic
metric enables a correct grouping of curves that obey a good continuation prop-
erty.

4 Application to Meshing of Planar Domains

Planar domain meshing. Planar domain meshing requires to build a good
quality triangulation of a given domain. Triangles with anisotropic shape and
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Image f Isotropic D̃S Anisotropic D̃S

Dense metric T d(x) Isotropic grouping Anisotropic grouping

Fig. 6. Comparison of isotropic and anisotropic Riemannian metric for perceptual
grouping.

varying sizes are highly desirable because of their capability to represent effi-
ciently functions with directional singularities that one encounters for instance
in parabolic PDE’s near shocks. This section proposes a new anisotropic meshing
algorithm that conforms the shape and size of the triangles to the tensor field of
a Riemannian metric.

Classical planar domain meshing algorithms are based on Euclidean Delaunay
triangulation. They proceed by progressively inserting triple points, which are
circumcenters of Delaunay triangles, see for instance [14, 15]. These points are
inserted in order to split triangles that are poorly shaped, and also to ensure a
minimum size of the triangles.

Anisotropic meshes can be built using a local modification of the metric [16]
or anisotropic elastic forces [17] and bubble packing [18]. In order to incorpo-
rate global constraints within a provably correct Delaunay refinement scheme,
Labelle and Shewchuk propose in [19] to use the anisotropic distance d̃(x, y)2 =

(x− y)
T
H(x)(x− y). This is a simplified anisotropic metric not based on short-

est paths. Several issues arise with such a definition. It is not symmetric and
the Voronoi diagram might not be connected. However it can be used in con-
junction with Ruppert’s Delaunay refinement algorithm to provide anisotropic
triangulation with guaranties on the aspect ratio of the triangles. This algorithm
is extended in 3D by [20] and to domains with curves by [21]. The simplified dis-
tance d̃ has been applied to image sampling [22], optimal samples placement
with centroidal tesselations [23] and surface remeshing [24].

Anisotropic geodesic meshing. We propose a new Delaunay refinement al-
gorithm that extends the algorithm of Ruppert [14] with Riemannian metrics.
It extends the isotropic farthest point seeding strategy of [25] with anisotropic
metrics and domains with arbitrary boundaries.

Our anisotropic meshing algorithm proceeds by iteratively inserting a triple
point si,j,k ∈ ΣS to an already computed set of points S. In order to compute
an anisotropic mesh with triangles of high quality with respect to the local
metric, one inserts si,j,k for a Delaunay triangle (xi, xj , xk) with the smallest
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circumradius to shortest edge ratio

ρ(si,j,k) =
d(si,j,k, xi)

min(d(xi, xj), d(xj , xk), d(xk, xi))
,

which is a quantity computed for each triple point in parallel to the Fast March-
ing propagation. In the Euclidean domain, a triangle (xi, xj , xk) with a low value
of ρ(si,j,k) is badly shaped since its smallest angle is close to 0 . As explained in
[19], this property extends to an anisotropic metric H(x) if angles are measured
using the inner product defined by H(x).

The major obstacle to the removing of badly shaped triangles is that the
boundary ∂Ω should always be part of the Delaunay graph. This can be broken
if a point xk is located too close to the boundary. A boundary sub-curve θi,j is
said to be encroached by xk ∈ S if it exists a triple point wi,k,0 ∈ θi,j , see figure
7. Such an encroached edge cannot be part of the Delaunay triangulation, and
is automatically split by the algorithm by inserting a mid point. Similarly, triple
points are not added if they encroach any boundary sub-curve (the sub-curve is
subdivided instead).

Another difficulty is that the Delaunay graph DS of S is not necessarily a
valid triangulation if the sampling S is not dense enough, see [7]. This is because
of some isolated point, that is connected to only one other point of S in DS .
The algorithm automatically add points on the Voronoi cell boundary of such a
point.

x1 x2x3
x1 x2

x3

Fig. 7. Left: the vertex x3 encroaches the boundary curve θ1,2. Right: the vertex x3

does not encroach anymore because (x1, x2) is a Delaunay edge.

Table 2 details this algorithm. A bound ρ⋆ on ρ enforces the refinement to
reach some quality criterion, while a bound U⋆ enforces a uniform refinement to
match some desired triangle density.
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1. Initialization: set S with at least one point on each curve of Ω, compute US with
a Fast Marching.

2. Boundary enforcement: while it exists θi,j ⊂ ∂Ω encroached by some xk ∈ S,
subdivide: S ← S ∪ argmax

x∈θi,j

US(x). Update US with a local Fast Marching.

3. Triangulation enforcement: while it exists (xi, xj) ∈ DS with xi or xj isolated,
insert w∗ = argmax

w∈Ci∩Cj

d(xi, w).

4. Select point: s⋆ ← argmin
s∈ΣS−∂Ω

ρ(s).

– If in S ∪ {s⋆}, s⋆ encroaches some θi,j ⊂ ∂Ω, subdivide: S ← S ∪ argmax
x∈θi,j

US(x).

– Otherwise, add it: S ← S ∪ s⋆.
Update US with a local Fast Marching.

5. Stop: while ρ(s⋆) > ρ⋆ or US(s⋆) > U⋆, go back to 2.

Table 2: Anisotropic planar domain meshing algorithm.

Figure 8 show an example of anisotropic meshing, where the user controls
the shape of the triangle by designing the tensor field.

Voronoi and metric Delaunay triangulation

Fig. 8. Example of anisotropic meshing with a synthetic tensor field.

Conclusion

This paper has detailed how several notions from computational geometry
extend seamlessly to the geodesic setting. This allows to incorporate some impor-
tant knowledges about the directionality of the features to solve more efficiently
problems in computer vision and graphics. We explore two particular applica-
tions, perceptual grouping and domain meshing, where this anisotropy allows to
overcome several limitations of previous approaches.
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22. Feng, Z., Hotz, I., Hamann, B., Joy, K.I.: Anisotropic noise samples. IEEE Trans-
actions on Visualization and Computer Graphics 14 (2008) 342–354

23. Du, Q., Wang, D.: Anisotropic centroidal Voronoi tessellations and their applica-
tions. SIAM Journal on Scientific Computing 26 (2005) 737–761

24. Valette, S., Chassery, J., Prost, R.: Generic remeshing of 3d triangular meshes
with metric-dependent discrete Voronoi diagrams. IEEE Trans Visu Comp Graph
14 (2008) 369–381
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