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Texture Synthesis with Grouplets
Gabriel Peyré, Member, IEEE

Abstract—This paper proposes a new method to synthesize
and inpaint geometric textures. The texture model is composed
of a geometric layer that drives the computation of a new
grouplet transform. The geometry is an orientation flow that
follows the patterns of the texture to analyze or synthesize. The
grouplet transform extends the original construction of Mallat
[1] and is adapted to the modeling of natural textures. Each
grouplet atoms is an elongated stroke located along the geometric
flow. These atoms exhibit a wide range of lengths and widths,
which is important to match the variety of structures present
in natural images. Statistical modeling and sparsity optimization
over these grouplet coefficients enable the synthesis of texture
patterns along the flow. This article explores texture inpainting
and texture synthesis, which both require the joint optimization
of the geometric flow and the grouplet coefficients.

Index Terms—Texture, grouplets, texture synthesis, inpainting.

NATURAL images often contain regions composed of lo-

cally oriented structures, such as those depicted in figure

1. These anisotropic textures are said to be locally parallel

since they are composed of approximately parallel oscillations

that propagate over the image plane. These oriented texture

patterns provide fundamental features for many problems in

computer vision and image processing and are known to be

important cues for human vision [2].

Fig. 1. Examples of locally parallel textures.

Adaptive methods capture locally parallel patterns by first

estimating the geometric flow of the texture and then as-

sembling elongated strokes along this flow. The grouplet

framework presented in this paper achieves such a geometric

representation of textures and can be applied to various texture

processing tasks such as inpainting and synthesis.

Gabriel Peyré is with the CNRS and Ceremade, Univer-
sité Paris-Dauphine, 75775 Paris Cedex 16 France, email:
gabriel.peyre@ceremade.dauphine.fr

I. INTRODUCTION

A. Previous Works

Anisotropic texture processing. The analysis of the local

geometry of textures is studied extensively in computer vision

through the computation of local differential estimators [3],

[4], [5], [6]. These local descriptors are integrated into a

texture flow that can be used to perform texture recognition

[7], [8], [9]. Section II uses such a local orientation descriptor

to build the geometric layer of the grouplet representation.

Geometric decompositions. Texture models based on non-

adaptive wavelet decompositions fail to represent in a compact

manner geometric singularities. Geometrical decompositions

improve over the wavelets for the approximation of edges

and textures in images. Local oscillating atoms such as Gabor

[10], steerable wavelets [11], brushlets [12], curvelets [13] or

wave-atoms [14] better capture the directionality of textures.

These fixed transforms are however not adaptive and are sub-

optimal for texture processing. Adaptive representations such

as bandlets [15], [16] and grouplets [1] are tuned for a specific

image to process. This adaptivity is achieved by computing

an optimized geometry that parameterizes the representation.

Section III describes a new grouplet transform that computes

the coefficient layer of the grouplet representation.

Image inpainting. Classical methods for inpainting use partial

differential equations that propagate the information from the

boundary of the missing region to its interior, see for instance

[17], [18], [19]. Tensor diffusion makes use of a geometric

layer to drive the diffusion, see [20]. Sparsity regularizes the

inpainting using a coefficient layer in a redundant frame [21],

[22]. A two layers sparse grouplet regularization defined in

Section IV bridges the gap between geometrical diffusion

and sparse regularization. An early description of this method

appeared in [23].

Texture synthesis. Texture synthesis is performed by sampling

a texture model that constrains the geometric patterns of

the images. Fourier and fractal modeling of textures [24],

[25] create textures that are suitable to model some natural

phenomena. Multiscale models constrain the distribution of

wavelet coefficients that characterizes point-wise singulari-

ties in textures. Retaining only marginals of wavelets coeffi-

cients generates textures without geometric patterns [26], [27].

Higher order statistical modeling of wavelets coefficients [28],

[29], [30], [31] improves the visual quality of synthesis by

capturing geometric singularities. The representation of local

features in these methods is however implicit and thus hard to

analyze or control.

Elongated patterns are difficult to synthesize because they

require the generation of coherent geometric structures such as
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Fig. 2. Overview of the grouplet texture analysis/synthesis pipeline. During the analysis stage, the image f0 is decomposed into a geometry layer Γ0 and an

appearance layer, the latter being then decomposed into coefficients D0 in an adapted grouplet frame Bw(Γ0). The synthesis stage computes a new geometry

Γ and projects an initial image f (0) on constraints to match the statistics of the coefficient layer in the grouplet frame Bw(Γ).

stripes or vortices. Such a turbulent geometry can be synthe-

sized by filtering noise using spatially varying oriented filters,

see [2]. These anisotropic noise patterns can be generated by

more advanced diffusion processes such as reaction-diffusion

equations [32], [33], curvilinear smoothing [34], particules

advection [35] or anisotropic diffusion [36].

Computer graphics methods generate new images of a given

texture through careful and consistent copying of pixels from

an example image [37], [38], [39]. The quality is further

improved using patch recopy [40], [41] and by optimizing

the stitching process using graph-cuts [42]. More advanced

methods [43], [44], [45] extend this framework to synthesize

images and normal maps on surfaces. Despite the high visual

quality of the results, these approaches do not provide a

parametric model for compact charactization of texture classes.

A method for hair analysis and synthesis is proposed by

Chen and Zhu [46] that models oriented hair textures as a

Markov random field parameterized by an hidden geometric

layer. Orientation singularities is used as a hidden geometric

layer to synthesize fingerprint images by Cappelli et al. [47].

Section V introduces a two layers model that makes use of

statistics of the grouplet representation.

Dynamic Textures. Fluid texture synthesis generates oriented

patterns that are warped along a coherent flow. Such a tur-

bulent flow is animated by discretizing the Navier-Stokes

equations of fluid motion [48], [49] or using texture synthe-

sis of vector fields [50]. Dynamic textures are rendered by

advecting particules [51], and is used to simulate physically

plausible phenomena [52], [53]. Wavelet domain texture syn-

thesis enhances the visual quality of turbulence simulation

by adding fine scale details [54]. Dynamic textures can be

generated by statistical modeling that captures the space and

time homogeneity of natural dynamics [55], [42]. Patch recopy

methods in computer graphics can be animated according to a

vector field [44], [45] and can be mapped on a fluid in motion

[56], [57]. Texture mixing animates an image by interpolating

between two texture models [58]. Section VI extends the

grouplet model to synthesize dynamic anisotropic textures and

perform texture mixing.

B. Overview of the Grouplet Texture Model

The grouplet framework is a two layers model composed

of a geometric layer Γ and a coefficient layer that stores the

decomposition of the texture in a wavelet-grouplet tight frame

Bw(Γ). Figure 2 shows a graphical overview of the bluiding

blocks of the grouplet pipeline. The wavelet-grouplet tight

frame Bw(Γ) = {bΓj,ℓ,m}j,ℓ,m is composed of elongated atoms.

Each bΓj,ℓ,m is an anisotropic stroke of width ∼ 2j and length

∼ 2ℓ, located around a pixel m, and that follows the flow Γ.

The estimation of the model from an exemplar f0 is per-

formed by computing an optimized flow Γ adapted to f0, and

the collection of coefficients {〈f0, bΓj,ℓ,m〉}j,ℓ,m of f0 in the

wavelet-grouplet family Bw(Γ). The application of the model

is performed by either modifying both the geometry and the

coefficient layers (for inpainting purpose) or by synthesizing

new layers with statistical properties similar to the original

one (for texture synthesis and mixing applications).

C. Contributions

The first contribution of this paper is a new grouplet pro-

cessing framework. It extends the original grouplet transform

of Mallat [1] and is well suited for the analysis of locally

parallel textures. The two layers of this framework are the

estimation of the geometrical flow described in Section II

and the computation of the grouplet coefficients described

in Section III. The second contribution is a new inpainting

method detailed in Section IV that makes use of this grouplet

transform. The resolution of such an inverse problem requires

the optimization of both the geometric flow parameterizing

the grouplet frame and the grouplet coefficients. The last

contribution presented in Section V is a new texture model

based on statistics of both the geometric flow and the bandlet

coefficients. This model is used to perform realistic synthesis

of static and dynamic turbulent textures.
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II. GROUPLET GEOMETRIC LAYER COMPUTATION

The estimation of the geometric layer computes a local

orientation field Γ that follows the patterns of a given input

texture f0 ∈ R
N of N pixels. This local orientation is not

directional since geometric structures in a locally parallel

texture do not have a specific direction. It means that at some

pixel x, both Γ(x) and −Γ(x) are equally suitable to describe

the texture.

A. Computation of the Local Orientation Field

The local direction of the edges in an image f0 is cap-

tured by the vector v(x) orthogonal to the gradient ∇xf0.

This vector is computed numerically on the discrete grid

{0, . . . , n − 1}2 as the convolution against two directional

derivative filters

v = (f0 ⋆ h
1, f0 ⋆ h

2)⊥ = (−f0 ⋆ h2, f0 ⋆ h
1)

where hi(x) =
∂Gµ0

∂xi

(x), Gµ0(x) =
1

µ
√

2π
exp

(

− x2

2µ2
0

)

where the scale µ0 is of the order of one pixel.

While v is suitable to estimate the direction of step edges in

images, it cannot be used directly to estimate the orientation

of locally parallel textures such as those depicted on Figure 1.

Indeed, the gradient vector vanishes at the top of ridges

or at the bottom of valleys. This problem is alleviated by

pooling locally the orientation information, which corresponds

to averaging the orientation of v(x) without its direction.

This local non-linear pooling corresponds to a local covari-

ance analysis, summing the outer products of gradient vectors

in a local region to generate a tensor field [3], [5], [6]. The

structure tensor Tf0
is defined as a local averaging of the rank-

1 tensor field vvT

Tf0(x) = (Gµ⋆(vvT))(x) = Gµ⋆

(

v2
1 v1v2

v1v2 v2
2

)

(x), (1)

where the convolution is applied on each component of the

tensor. Figure 3 shows an example of tensor field Tf0
estimated

from the gradient at different scales µ. This scale µ should

match the width of the texture oscillations, and is set to 5
pixels in the numerical experiments.

Each symmetric tensor Tf0(x) is decomposed as a sum of

two rank-1 tensors

Tf0
(x) = λ(x)(Γ(x)Γ(x)

T
) + λ⊥(x)(Γ⊥(x)Γ⊥(x)

T
). (2)

where the eigenvalues are λ(x) > λ⊥(x) > 0 and

(Γ(x),Γ⊥(x)) are the corresponding orthonormal eigenvec-

tors. The dominant eigenvector Γ(x) indicates the local direc-

tion of the texture.

This orientation field Γ is unit normed ||Γ(x)|| = 1 and is

not directional since Γ(x) or −Γ(x) can be used indifferently

in the decomposition (2).

B. Computation of the Local Direction Field

The orientation field Γ(x) is the geometric layer that de-

scribes the geometry of the texture f0. A directional vector

field Γ̃ is computed from this geometric descriptor Γ by

optimizing a sign field ε

Γ̃(x) = ε(x)Γ(x) with ε(x) ∈ {−1,+1},
such that Γ̃ is as smooth as possible. A similar problem is

studied by Chen and Zhu for hair synthesis [46]. This direction

field is used extensively in the grouplet transform detailed in

Section III.

Finding a globally smooth vector field Γ̃ is not possible

in general because of topological incompatibilities. A smooth

vector field can however be computed outside the set of

strucutural singularities which are the set of separatrices S(Γ).
Each separatrix is a flow line γ parallel to Γ

∀ t, |〈γ′(t), Γ(γ(t))〉| = ||γ′(t)||
that connects two singular points of Γ. We compute S by

tracing a set of evenly spread flow lines but more efficient

methods can be used [59]. Figure 4 (b) shows an example of

separatrices S(Γ).

(a) Texture f0 (b) Γ and S(Γ) (c) Directions Γ̃
Fig. 4. Computation of a direction field Γ̃. The whole set of separatrices

S(Γ) is shown in (b), whereas only the discontinuities of Γ̃ are shown in (c).

The texture f0 is a synthetic example computed using the LIC method [34].

The sign field ε is found by optimizing the smoothness of

Γ̃ = εΓ outside S(Γ). In the discrete setting, one solves the

following minimization

min
ε

∑

x

∣

∣

∣

∣

∣

∣
ε(x)Γ(x)− 1

|Vx|
∑

y∈Vx

ε(y)Γ(y)
∣

∣

∣

∣

∣

∣

2

.

where y ∈ Vx is a direct neighbor of a pixel x (using the

4 connectivity over the image domain) such that the segment

[x, y] does not cross a singularity curve in S(Γ). By relaxing

the binary constraint ε ∈ {−1,+1} to ε ∈ R, one solves the

following linear problem

∀x, ε(x) =
1

|Vx|
∑

y∈Vx

ε(y)〈Γ(x), Γ(y)〉. (3)

For the system to be uniquely solvable, one needs to set

additional constraints {ε(zi) = 1}Ii=1 to fix the overall sign

under-determinacy, where each pixel zi belongs to a cell of

the separatrices segmentation.

Equation (3) requires to solve a sparse linear system and the

un-signed orientation field Γ(x) is then turned into a signed

vector field that defines the local direction of the geometry

∀x, Γ̃(x) = sign(ε(x))Γ(x).
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µ = 1 µ = 2 µ = 4 µ = 8 µ = 16
Fig. 3. Structure tensor fields Tf0

(x) computed with an increasing scale µ. The ellipsoid at a pixel x is aligned with the principal axis Γ(x) of the tensor

Tf0
(x) and its aspect matches the anisotropy λ(x)/λ⊥(x), see equation (2) for the notations.

Figure 4 shows the computation of a direction field Γ̃, whose

discontinuities are aligned with a subset of the separatrices.

III. GROUPLET COEFFICIENT LAYER COMPUTATION

Once the geometric layer Γ is known, the coefficient layer

is computed with a fast redundant grouplet transform. A

redundant grouplet transform is introduced by Mallat in [1]. It

corresponds to the decomposition of an image on a redundant

family of vectors B(Γ). This family is a tight frame of R
N

chosen adaptively to process in an optimized way some given

input image of N = n2 pixels. This section describes a

new construction of grouplets frame parameterized by a local

geometric flow Γ. The grouplet atoms follow closely the flow

lines of Γ. These grouplets are thus efficient to represent

textures whose geometry is locally parallel to the orientation

field Γ.

A. Association Field Computation and Pruning

A set of non-local discrete association fields {Aℓ}L−1
ℓ=0 is

computed from the geometrical flow Γ. Each field Aℓ is then

used to compute the grouplet decomposition at a scale 2ℓ.

Each association field Aℓ groups together two pixels x →
y = Aℓ(x) that are separated by a distance of ||x − y|| ≈ 2ℓ.

The scale L defines the largest width ∼ 2L of a grouplet and

is set to L = 6 in the numerical experiments, which is enough

to capture the elongated patterns of the textures to synthesize.

Our construction of the association fields Aℓ differs from

the original one of [1]. The original construction is based on

a fixed directional ordering of the grid pixels, that forbids an

arbitrary association field. Such a directional ordering is not

well suited to process turbulent textures that might exhibit

circular patterns or vortices.

Association Field. The directional vector field Γ̃ computed in

section II-B from Γ is the seed for a linear differential flow

∀x, ∀ t > 0,
dϕx

dt
(t) = Γ̃(ϕx(t)) and ϕx(0) = x.

This ordinary differential equation is solved numerically by

interpolating Γ̃. Each integral curve {ϕx(t)}t>0 follows the

vector field Γ̃.

A raw discrete association field A0
ℓ at various scales ℓ is

computed by sampling this integral curve at dyadic locations

∀x, A0
ℓ(x) = [ϕx(2ℓ)]n×n ∈ {0, . . . , n− 1}2,

where [ · ]n×n is the rounding operator that projects the points

on the sampling grid {0, . . . , n − 1}2. Although the associ-

ation fields are quantized in order to link points on the grid

{0, . . . , n− 1}2, they follow closely the structure of the input

texture f0.

Input: raw association field A0
ℓ .

Output: pruned association field Aℓ and coherent ordering Vℓ.

1) Initialization: set Aℓ = A0
ℓ and k = 0. Initialize the

ordering ∀x, Vℓ(x) = −1. For each x, build the father

list Φ(x) = {y \ Aℓ(y) = x}.
2) Select a pixel: choose some x satisfying Vℓ(x) = −1.

3) Back-track: initialize W = Vℓ,

While W (Aℓ(x)) < 0, do

x← Aℓ(x), W (x)← 0.

4) Set up the ordering: initialize the pool P = {x}.
While P 6= ∅, do

extract y ∈ P , remove P ← P\y,

set Vℓ(y)← k, k ← k + 1,

add fathers P ← P ∪ (Φ(y) ∩ {z \ Vℓ(z) < 0}).
5) Stop: if {z \ Vℓ(z) < 0} 6= ∅, go back to 2.

6) Prune the flow: for all x such that Vℓ(Aℓ(x)) > Vℓ(x),
set Aℓ(x)← x.

Table 1: Greedy algorithm to prune a raw association field.

Association Field Pruning. The grouplet algorithm processes

the pixels according to an ordering

Vℓ : {0, . . . , n− 1}2 −→ {0, . . . , N − 1} where N = n2.

At a scale 2ℓ, the pixels are visited in an order

{m0,m1, . . . ,mN−1} such that Vℓ(mi) = i.
For each ℓ, this ordering Vℓ is computed to be maximally

coherent with the association field A0
ℓ . This means that a

pruned association field Aℓ close to the raw field A0
ℓ is

computed together with an ordering Vℓ that satisfies

∀x, Aℓ(x) 6= x =⇒ Vℓ(Aℓ(x)) < Vℓ(x). (4)

Excepted at a few singular points where Aℓ(x) = x, the

association field Aℓ links pixels with increasing values of the

ordering function Vℓ. This consistent ordering is important for

the stability of the grouplet frame B(Γ), since it guarantees

that it is a tight frame of R
N .

The computation of such a couple (Aℓ, Vℓ) is performed

using a greedy algorithm detailed in Table 1. This algorihtm
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removes connexions in the field Aℓ that cause loops in the

graph x→ Aℓ(x).

B. Grouplet Transform

A grouplet tight frame

B(Γ) =
{

bΓℓ,m \ m ∈ {0, . . . , n− 1}2, ℓ = 0, . . . , L
}

is a redundant family of (L + 1)N vectors bΓℓ,m ∈ R
N

parameterized by the local direction flow Γ. Each grouplet

vector bΓℓ,m is localized around the pixel m ∈ {0, . . . , n− 1}2
and follows the flow Γ on a length of 2ℓ pixels. This family of

vectors is thus efficient to compress a texture whose structures

follow closely the direction of Γ. This is in particular the case

for the image f0 that has been used to extract the flow Γ as

explained in section II, but the tight frame B(Γ) can be used

to analyze any image f of N pixels.

Forward decomposition. The forward grouplet transform [1]

corresponds to the computation of the decomposition of f onto

the vectors of B(Γ) = {bΓℓ,m}ℓ,m
∀ ℓ, ∀m, dℓ(m) = 〈f, bΓℓ,m〉. (5)

The grouplet vectors bΓℓ,m are defined implicitly through a de-

composition algorithm that computes directly the coefficients

dℓ(m).
This decomposition is computed with a fast algorithm

similar to the Haar wavelet transform. The algorithm keeps

track of a coarse approximation f̃ of f that is progressively

filtered with increasing scales 2ℓ. At a given scale 2ℓ, the

algorithm visits the pixels m by increasing values of Vℓ(m)
and computes the coefficient dℓ(m) as a weighted difference

of two values at positions m and m̃ = Aℓ(m)

dℓ(m) = (f̃(m)− f̃(m̃))

√

s(m)s(m̃)
√

s(m) + s(m̃)
(6)

f̃(m̃)← s(m)f̃(m) + s(m̃)f̃(m̃)

s(m) + s(m̃)
(7)

s(m̃)← s(m) + s(m̃). (8)

The weight s(m) balances the contribution of each pixel to

ensure conservation of energy, even in the case where two

flows Aℓ(m) = Aℓ(m
′) are converging at the same location.

Once the process has been performed over L grouplet scales,

the recursion is stopped and the remaining coarse scale layer

f̃ is kept with a renormalization dL(m) = f̃(m)
√

s(m). The

grouplet transform maps the original signal f(x) to the set

of coefficients {dℓ(m)}ℓ,m. The overall process is stable and

the constraint (4) on the associations implies a conservation

of energy

||f ||2 =
∑

ℓ<L

∑

m

1

2ℓ
|dℓ(m)|2 +

∑

m

1

2L−1
|dL(m)|2, (9)

see [1]. The values of {dℓ(m)}ℓ,m are the coefficients of f
in a tight frame B(Γ), see (5). These coefficients are defined

implicitly by the decomposition algorithm detailed in Table 2,

left. Its complexity is O(N(L + 1)) operations for an image

of N pixels and L grouplet scales.

Input: image f and association fields {Aℓ, Vℓ}ℓ.

Output: coefficients {dℓ(m)}ℓ,m and weights s.

Initialization: set f̃ = f and ∀m, s(m) = 1.

Iterations: for each ℓ = 0, . . . , L− 1,

for each m with increasing Vℓ(m), define m̃ = Aℓ(m),
compute dℓ(m) using (6),

update f̃(m̃) and s(m̃) according to (7), (8).

Normalize coarse scale: ∀m, dL(m) = f̃(m)
√

s(m).

Table 2: Fast forward grouplet transform algorithm.

Backward decomposition. The backward grouplet transform

retrieves an image f from the coefficients {dℓ(m)}m,ℓ of the

decomposition on the tight frame B(Γ). This requires scanning

the pixels by decreasing values of Vℓ and reversing the steps

(6), (7) and (8) for m̃ = Aℓ(m). The most stable inversion

is obtained using the pseudo inverse, which corresponds to

computing S = s(m̃)− s(m) and

v1 = f̃(m̃)− dℓ(m)
√

s(m)
√

Ss(m̃)
, v2 = f̃(m̃) +

dℓ(m)
√
S

√

s(m̃)s(m)
.

and updating the values of f̃ and s as follow

f̃(m̃)← v1, f̃(m)← f̃(m) + v2
2

, s(m̃)← S. (10)

The fast backward grouplet transform, detailed in Table 3, has

a complexity of O(N(L+ 1)) operations.

This pseudo inverse implements the reconstruction formula

f =
∑

06ℓ6L

τℓ
∑

m

dℓ(m)bΓℓ,m

where τℓ = 2−ℓ for ℓ < L and τL = 2−L+1 accounts for the

redundancy of the transform.

Input: coefficients {dℓ(m)}ℓ,m, weights s
and association field (Aℓ, Vℓ).

Output: image f = f̃ .

Initialization: set f̃(m) = dL(m)/
√

s(m).

Iterations: For each ℓ = L− 1, . . . , 0,

For each m with decreasing Vℓ(m), define m̃ = Aℓ(m).
Update f̃(m), f̃(m̃) and s(m̃) using (10).

Table 3: Fast backward grouplet transform algorithm.

Examples of decompositions. Figure 5, top row, shows some

examples of grouplet vectors. A vector bℓ,m is computed

by applying the backward transform to a set of coefficients

dℓ′(m
′) = 0 for (ℓ′,m′) 6= (ℓ,m) and dℓ(m) = 1. These

vectors follow the geometric structures of the exemplar texture

f0 and are thus efficient to process it. Figure 5, bottom row,

shows the coefficients dℓ(m) in a grouplet tight frame B(Γ)
of the texture f = f0. The resulting coefficients dℓ(m) are

highly sparse and compressible since most of them have a

small magnitude.
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ℓ = 1 ℓ = 2 ℓ = 3
Fig. 5. Top row: Some examples of grouplets basis vectors {bℓ,m(x)}m for

some sampling location m. Bottom row: grouplets coefficients {dℓ(m)}m of

the image f0 displayed in Figure 4.

C. Wavelet-Grouplet Transform

A grouplet basis vector bℓ,m has an arbitrary length 2ℓ but

a fixed width of 1 pixel. This is problematic to represent

textures with patterns of arbitrary width. Applying the grouplet

transform over the wavelet coefficients of an image defines

a wavelet-grouplet transform. The corresponding wavelet-

grouplet atoms have an arbitrary width 2j that corresponds

to the scale of the wavelet coefficients.

In this wavelet-grouplet setting, one first computes the

decomposition of the image f on a set of wavelet vectors

∀ j = 0, . . . , J, ∀ p ∈ {0, . . . , n− 1}2, fj(p) = 〈f, ψj,p〉,

where ψj,p is a wavelet vector scale 2j and position p.

A Laplacian pyramid tight frame is used in the numerical

experiments, which has a redundancy of J + 1, see [10]. This

multiscale transform has the advantage of being non-oriented,

which leaves the processing of orientation to the grouplet

transform alone. The reconstruction from the coefficients in

such a tight frame reads

f =
∑

j

κj

∑

p

fj(p)ψj,p,

where κj = 2−2j for j < J and κJ = 2−2(J−1). The set of

coefficients fj is re-transformed using the grouplet transform

explained in section III-B.

The projection of each fj on a grouplet frame B(Γ) gener-

ates the following set of coefficients

∀ j, ℓ,m, dj,ℓ(m) = 〈fj , b
Γ
ℓ,m〉 = 〈f, bΓj,ℓ,m〉

where bΓj,ℓ,m is the wavelet-grouplet basis vector defined by

bΓj,ℓ,m =
∑

p

bΓℓ,m(p)ψj,p ∈ R
N .

A wavelet-grouplet atom bΓj,ℓ,m is an elongated stroke of width

∼ 2j and length ∼ 2ℓ, that follows the geometrical flow Γ.

This set of vectors {bΓj,ℓ,m}j,ℓ,m is a wavelet-grouplet tight

frame Bw(Γ) of R
N composed of (J + 1)(L + 1)N vectors.

The pseudo-inverse reconstruction from the wavelet-grouplet

coefficients reads

f =
∑

j,ℓ

τj,ℓ
∑

m

dj,ℓ(m)bΓj,ℓ,m (11)

where τj,ℓ = κjτℓ.

The wavelet-grouplet forward transform corresponds to the

computation of the coefficients {dj,ℓ(m)}j,ℓ,m of a given im-

age f in the tight frame Bw(Γ). This algorithm first computes

the fj using the fast translation invariant wavelet transform,

see [10] and then applies the fast grouplet transform, Table

2, to each of these fj . The fast backward wavelet-grouplet

transform first applies the backward grouplet transform, Table

3, and then the backward wavelet transform. Both forward and

backward algorithms have a complexity of O((J+1)(L+1)N)
operations.

IV. INPAINTING WITH GROUPLETS

Inpainting aims at restoring an image f from which a set

Ω ⊂ {0, . . . , n − 1}2 of pixels is missing. It corresponds to

the inversion of the ill posed linear problem

y = Φf + w (12)

where y is the image with missing pixels, w is an additive

noise, and Φ is defined as

(Φf)(x) =

{

0 if x ∈ Ω,
f(x) if x /∈ Ω.

(13)

A. Sparse Regularisation in Grouplet Basis

The inpainting problem (12) is regularized by exploiting

some smoothness of the solution f . Given some orthogonal

basis {ψk}k of R
N , a sparsity-regularized solution of the

inverse problem is

f⋆ = argmin
g∈Rn

1

2
||y − Φg||2 + λ

∑

k

|〈g, ψk〉|, (14)

where λ should be adapted to match the noise level ||w||. This

prior has been introduced by Donoho and Johnstone [60] with

the wavelet basis for denoising purpose. It has then been used

to solve more general inverse problems, see for instance [61]

and the references therein. It can also be used in conjunction

with redundant frames instead of orthogonal bases [21], [22].

Given a wavelet-grouplet basis Bw(Γ) = {bΓj,ℓ,m}k, the

sparse regularization (14) reads

f⋆ = argmin
g∈Rn

1

2
||y − Φg||2 + λ

∑

j,ℓ,m

|〈g, bΓj,ℓ,m〉|. (15)

The difficulty is that the geometric layer Γ is only partly

known outside Ω and in the vicinity of the boundary ∂Ω. The

flowing section details an interative algorithm that computes

an optimized geometric layer over large missing regions.



7

Fig. 6. Iterations f (i) of the inpainting process that modifies the image to obtain a sparse representation in an adapted wavelet-grouplet basis.

B. Inpainting Algorithm

If the flow Γ is fixed, an iterative thresholding scheme

minimizes (15) by updating an estimate f (i)

f (i+1) = SΓ
λ (f̄ (i)) where f̄ (i) = f (i) + Φ∗(y − Φf (i)), (16)

where SΓ
λ soft thresholds the decomposition (11) in the tight

frame Bw(Γ)

SΓ
λ (g) =

∑

j,ℓ

τj,ℓ
∑

m

sλ(〈g, bΓj,ℓ,m〉) bΓj,ℓ,m (17)

where sλ(x) = max(1− λ/|x|, 0)x. The computation of f̄ (i)

in (16) corresponds to imposing the known pixel values

f̄ (i)(x) =

{

f (i)(x) if x ∈ Ω,
y(x) if x /∈ Ω.

(18)

These iterations solve an analysis prior that measures the

sparsity of the solution as the ℓ1 norm of the projection of the

image on a set of atoms, see [62]. Such an iterative scheme

has been introduced to compute the morphological component

analysis [21]. For orthogonal bases, it is equivalent to the

iterative thresholding algorithm to solve ℓ1 regularization, see

[61].

Similarely to the best basis optimization proposed by Peyré

[63], the geometric layer Γ is updated iteratively during the

iterative thresholding algorithm to improve the sparsity of the

solution. Table 4 details the corresponding algorithm. The

tolerance parameter η controls the number of iterations. If

there is no noise, w = 0, the threshold λ is decayed toward 0

during the iterations, see [21].

The thresholding iterations cause the estimate f (i) to be

smooth along the flow lines of Γ(i). This corresponds to a

diffusion of the information from the boundary of the hole Ω
to its interior. The flow Γ(i) is refined during the iterations

in order to connect in a smooth manner the boundaries of

the missing region. Figure 6 shows some iterations of the

inpainting process in the noiseless case w = 0. Figure 7 shows

examples of locally parallel textures inpainting1, also in the

noiseless case.

1The corral image is obtained from [42] and the hair texture comes from
the book of Brodatz [64].

1) Initialization: set f (0) = y and i = 0.

2) Enforce the values of known pixels: compute f̄ (i) as

defined in (18).

3) Geometry detection: compute the flow Γ(i) adapted to

f̄ (i) as detailed in section II-A.

4) Sparsity enforcing: update the estimate by thresholding

in Bw(Γ(i))

f (i+1) = SΓ(i)

λ (f̄ (i))

where the thresholding operator is defined in (17).

5) Stop: while ||f (i+1) − f (i)|| > η, set i ← i + 1 and go

back to 2.

Table 4: Grouplet inpainting algorithm.

Observation y Result f⋆

Fig. 7. Examples of inpainting with grouplets.

Figure 8 shows a comparison of inpainting with a sparse

regularization in a fixed redundant frame and in an adapted

grouplet frame computed with the algorithm of Table 4, for a

low noise ||w|| = 0.01||f ||. The mask Ω is a random set with

|Ω|/N = 70% of missing pixels. As detailed by Starck et al.

[21] and Fadili et al. [22], the fixed tight frame is the union

of a redundant local cosine transform over overlapping blocks

of 16 × 16 pixels and a translation invariant wavelet basis.

The local cosine atoms are able to extract the texture part of
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SNR=11.2dB SNR=15.7dB

Original f Observation y = Φf DCT+Wav. (17.2dB) Grouplets (18.3dB)
Fig. 8. Comparison between inpainting with 70% (top) and 80% (bottom) missing pixels by sparse regularization in DCT+Wavelet redundant frame and

grouplet frame.

the image, while the wavelets takes care of the edges. Figure

8 shows that the adaptivity of the grouplet frame is however

able to improve over the fixed sparse regularization.

V. TEXTURE SYNTHESIS WITH GROUPLETS

Grouplet texture synthesis creates a new geometric texture

f visually similar to a given input exemplar f0. This requires

a statistical modeling of both the geometric layer and the

wavelet-grouplet coefficient layer. The grouplet model for

locally parallel textures is based on non parameteric statistics

of the wavelet-grouplet coefficient layer. Similarly to the work

of Heeger and Bergen [26], we retain only marginal statistics

of the decomposition. In contrast to texture modeling over

multiscale decompositions [26], [30], [31], our texture model

also constrains the geometric layer of the texture.

A. Geometric and Coefficients Layers Learning

Grouplet layer learning. The geometric layer of the grouplet

model is learned by computing the flow Γ0 of the exemplar

texture f0 as detailed in Section II-A.

Coefficients layer learning. The coefficient layer D0 learned

from f0 is described through a the set of coefficients in the

frame Bw(Γ0)

∀ (j, ℓ), Dj,ℓ(f0,Γ0) = {〈f0, bΓ0

j,ℓ,m〉}m,

together with the set of pixel values Dsp(f0) = {f0(x)}x. Each

Dj,ℓ(f0,Γ0) is computed using the fast transform algorithm

detailed in Table 2.

The layer D0 is composed of several independent sets (one

per scale (j, ℓ) and the pixel values) that empirical marginals

of the statistical distribution of coefficients. They are used by

the synthesis algorithm to enforce the synthesized texture to

share the same empirical marginals as f0.

B. Coefficients Layer Synthesis

Texture synthesis with the grouplet model corresponds to

synthesizing both a new geometric layer Γ and a new set of

coefficients. This section assumes that the geometric layer Γ
is known. The synthesized image is drawn at random from

a texture ensemble parameterized by Γ. Section V-C studies

the synthesis of the geometric layer and shows examples of

synthesis with the whole model.

Grouplet texture ensemble. Once both the geometric layer

Γ0 and the coefficient layers D0 have been learned, a grouplet

texture ensemble T (Γ, D0) is defined for any orientation field

Γ. It is the set of textures having the same wavelet-grouplet

and pixels marginals as f0

T (Γ, D0) =
{

f ∈ R
N \ ∀ (j, ℓ), Dj,ℓ(f,Γ) = Dj,ℓ(f0,Γ0)

}

∩
{

f ∈ R
N \ Dsp(f) = Dsp(f0)

}

,

This texture ensemble is thus parameterized by the geometric

layer Γ of the new texture and by the coefficient layer D0 of

the exemplar. The geometry Γ that defines the model might

be different from the learned geometry Γ0. This allows one to

synthesize new textures with a different geometry.

Marginal constraint. Our texture model enforces synthesized

coefficients to have the same coefficient layer as the one of

the exemplar D0. Each marginal Dj,ℓ,0 = Dj,ℓ(f0,Γ0) gen-

erates a constraint on the texture to synthesize. The synthesis

requires to compute the orthogonal projection P(dj,ℓ, Dj,ℓ,0)
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of wavelet-groulpet coefficients dj,ℓ ∈ R
N on

{

d ∈ R
N \ {d(m)}m = Dj,ℓ,0

}

.

The same projection algorithm applies to the pixel values

constraints generated by Dsp(f0).

This projection corresponds to an histogram equalization of

dj,ℓ with the values of Dj,ℓ,0, see [65]. We denote by dr
j,ℓ(i)

the values of Dj,ℓ,0 ordered by increasing values, and by

dj,ℓ(r(i)) the ordered values of dj,ℓ, where r is a permutation

of the indices. The projection is

P(dj,ℓ, Dj,ℓ,0) = d̃j,ℓ with d̃j,ℓ(r(i)) = dr
j,ℓ(i). (19)

If dj,ℓ and Dj,ℓ,0 do not have the same number of coefficients,

this formula requires interpolation.

Sampling the grouplet texture ensemble. As explained in

the FRAME model [30], the uniform distribution on T (Γ, D0)
has maximal entropy, thus leading to the least synthesis bias.

Performing an un-biased synthesis is difficult, and Portilla and

Simoncelli [31] replace this uniform sampling by a sampling

with high entropy. This is achieved by iteratively projecting

a white noise image on the set of constraints that define the

texture ensemble.

The grouplet coefficients synthesis algorithm detailed in

Table 5 uses a similar iterative projection strategy. The initial

image f (0) is a random Gaussian white noise image, and

the synthesis algorithm converges to a synthesized image

S(f (0) ; Γ, D0) ∈ T (Γ, D0). The procedure iteratively de-

composes the image into the wavelet-grouplet frame Bw(Γ),
forces the wavelet-grouplet marginal Dj,ℓ(f,Γ) to match the

coefficient layer Dj,ℓ,0 of the exemplar, reconstructs an image

from the grouplet coefficients and then enforces consistency of

the pixel marginal Dsp(f) with the one of the exemplar. The

synthesis algorithm handles color images by synthesizing each

channel of the image in a color space obtained by applying a

PCA to decorrelate the color channels.

f0 Iter #1 Iter #3 Iter #20
Fig. 9. Iterations of the synthesis algorithm 5.

Figure 9 shows the iterations of the synthesis with a user

defined geometric layer Γ. The iterations progressively filter

the noise along the geometric flow to create texture patterns.

The exemplar image f0 is twice smaller than the synthesized

texture f .

Input: orientation flow Γ, initial image f (0),

coefficient layer D0 = {Dj,ℓ,0}j,ℓ ∪Dsp
0 .

Output: synthesized texture f .

1) Initialization: set i← 0.

2) Forward transform: compute the wavelet-grouplet coef-

ficients {d(i)
j,ℓ(m)}j,ℓ,m of f (i) in Bw(Γ).

3) Grouplet constraints: for each (j, ℓ), perform the his-

togram equalization (19): d̄
(i)
j,ℓ ← P(d

(i)
j,ℓ, Dj,ℓ,0).

4) Backward transform: compute f̄ (i+1) from the coeffi-

cients {d(i)
j,ℓ(m)}j,ℓ,m.

5) Projection on gray-level constraint: equalize the pixel

histogram: f (i+1) ← P(f̄ (i+1), Dsp
0 ).

6) Stop: while not converged, set i ← i + 1 and go back

to 3.

Table 5: Synthesis algorithm to compute S(f (0) ; Γ, D0).

C. Geometric Layer Synthesis

Texture synthesis with a user-defined geometry Figure 10

shows examples of synthesis2 where the geometry is copied

from the exemplar f0, meaning Γ = Γ0. The turbulent

geometry of f0 is transfered to the synthesized texture f .

Fig. 10. Texture synthesis using the same geometry Γ = Γ0 as the exemplar

texture. Top: original f0 ; bottom : synthesized f .

Figure 11 shows examples of synthesis with the same ex-

emplar f0 and several user-defined flows Γ with an increasing

complextiy3. Some fine scale details are not present in the new

texture, because they are not captured by the grouplet model.

Statistical Modeling of the Geometric Layer The geometric

layer is modeled by imposing statistical constraint on the ori-

entation flow Γ. This orientation field is turned into a smooth

vector field using the following angle-doubling mapping

Γ = (cos(θ), sin(θ)) 7→ β(Γ) = (cos(2θ), sin(2θ)). (20)

The inverse mapping β−1 is computed similarly by halving

the angle of a unit-norm vector.

2The corral is taken from [42], the fingerprint image extracted from a
database of fingerprint images [47], the synthetic texture on the right is an
example of locally parallel texture obtained from [66].

3The texture on the top row is obtained from [40].
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Exemplar f0 Synthesis #1 Synthesis #2
Fig. 11. Texture synthesis using a synthesized geometry. The complexity

of the orientation flow Γ is increased from left to right by adding singular

points.

The resulting field β(Γ) is smooth excepted at singular

points of the orientation field. The wavelet decomposition

is able to represent efficiently functions with pointwise sin-

gularities, see [10]. Our geometry synthesis algorithm thus

iteratively constraints the wavelet marginal distributions of

each coordinate of β(Γ). This corresponds to the use of

Heeger and Bergen algorithm [26] to synthesize the flow after

the mapping by β. The corresponding geometry synthesis

algorithm is detailed in Table 6.

Input: exemplar orientation field Γ0.

Output: synthesized orientation field Γ.

1) Initialization: set Γ(0) ← random, i ← 0, compute

the marginals βj = {〈β(Γ0), ψj,p〉}p of the wavelet

coefficients of β(Γ0).
2) Wavelet transform: compute the wavelet coefficients of

β(Γ(i)): β
(i)
j [p] = 〈β(Γ(i)), ψj,p〉.

3) Impose wavelet marginal: for each j, perform the his-

togram equalization (19): β̄
(i)
j ← P(β

(i)
j ; βj)

(each of the two coordinates of β
(i)
j and βj are equalized

separately).

4) Backward transform: compute β(Γ̄(i)) and thus Γ̄(i)

from the wavelet coefficients β̄
(i)
j .

Set Γ(i+1) = Γ̄(i)/||Γ̄(i)||.
5) Stop: while not converged, set i ← i + 1 and go back

to 2.

Table 6: Geometry synthesis algorithm.

Figure 12 shows examples4 of synthesis that combine the

algorithm of Table 6 for the synthesis of the geometry Γ and

the algorithm of Table 5 for the synthesis of the texture f ∈
T (Γ, D0). The comparison with the wavelet-domain synthesis

[26], [31] shows that our method enhances this multiscale

synthesis by creating elongated geometrical structures. The

comparison with texture quilting [41] shows that the visual

quality is slightly below such a patch-recopy approach. The

4The wood texture is obtained from [40]. The turbulence image (bottom
row) is obtained by a direct simulation of bidimensional turbulent flow
computed by K. Schneider, see [67].

grouplet synthesis is however able to generate new geometric

patterns not present in the original texture. The quilting process

is performed with patches of size 32×32, and the initial seed

patch in the upper-left corner of the synthesis is extracted in

the center of the exemplar.

To handle textures with complex geometries, the geometric

smoothing parameter σ in (1) should be small, which creates

instabilities in the synthesis process. The geometric layer Γ
captured with a small σ indeed exhibits many singularities that

are difficult to synthesize with the algorithm of Table 6. This

shows the fundamental limit of our model to capture geometric

fields that are highly irregular, so that we consistently use

σ = 6 in the synthesis experiments. Figure 13 shows a typical

example of synthesis failure for a geometric texture whose

geometry is not locally parallel. The patterns of the textures

exhibit many crossing singularities that are poorly captured

both by the geometric layer and by the grouplet transform.

Exemplar f0 Synthesis f
Fig. 13. Examples of synthesis failures.

VI. DYNAMIC TEXTURE SYNTHESIS

A time dependent texture f̃t is obtained by computing a time

evolution of both the geometric layer Γt and the coefficient

layer. Fluid textures are computed by evolving the geometry

according to the equations of fluid motion, while keeping the

coefficient layer fixed. Texture mixing interpolates in time both

layers using two exemplars.

A. Fluid Textures

A dynamic fluid texture {f̃t}t>0 is created from a single

exemplar image f0 by evolving in time the direction field Γ̃t

of the geometric layer according to the incompressible Navier

Stokes equation

∂Γ̃t

∂t
= Pinc

(

−(Γ̃t · ∇)Γ̃t + ν∆Γ̃t

)

,

with Neumann or periodic boundary conditions, where ν is

the viscosity of the fluid and ∆ is the Laplacian operator.

The geometry evolution of a fluid texture is governed by a

directional vector field Γ̃t and not directly by the geometric

layer Γt that is not oriented.

The projector ṽ = Pinc(v) on the set of divergence free

vector fields is computed by solving the Poisson equation for

a scalar potential V

ṽ = v −∇V where ∆V = ∇ · v. (21)
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Exemplar f0 Heeger & Bergen [26] Portilla & S. [31] Quilting [41] Grouplets
Fig. 12. Comparison of Heeger and Bergen wavelet domain synthesis [26], Portilla and Simoncelli synthesis [31] and texture quilting [41] with the grouplet

synthesis. In this setting, the geometry Γ is synthesized using algorithm 6.

The synthesized texture f̃t for t > 0 is obtained by solving

an advection equation projected on the grouplet texture model

T (Γt, D0) defined in Section V-B by the current geometry Γ̃t

and the coefficient layer D0 of f0. This projected advection

is discretized in time with a step size τ

f̃t+τ = S
(

f̃t − τ(Γ̃t · ∇)f̃t + τ ν̃∆f̃t ; Γt/||Γt||, D0

)

, (22)

where ν̃ is the viscosity of the texture, that might be different

from ν. The projection S(· ; Γ, D0) on the grouplet model is

computed with a few steps of the iterative algorithm detailed

in Table 5.

The advection in both (21) and (22) is computed numeri-

cally using the implicit solver of Stam [49]. It makes use of

the following flow-warping operator, that is defined for scalar

functions and vector fields

WΓ̃(f) = f̃ where f̃(x) = f(x− Γ̃(x)). (23)

Table 7 details the steps of the fluid texture synthesis al-

gorithm. Figure 14 shows two examples of dynamic texture

synthesis. The initial texture f̃0 = S(f (0) ; Γ0, D0) is a

random white noise texture f (0) projected on the grouplet

model.
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Input: initial textures f0 and f̃0, time step size τ > 0.

Output: synthesized texture f̃i for times 0 6 τi 6 T .

1) Initialization: compute Γ̃0 and D0 from f0, set i← 0.

2) Advect: compute

Γ̃
(1)
i =Wτ Γ̃i

(Γ̃i) and f̃
(1)
i =Wτ Γ̃i

(f̃i).

3) Diffuse: compute

Γ̃
(2)
i = Γ̃

(1)
i + τν∆Γ̃

(1)
i and f̃

(2)
i = f̃

(1)
i + τ ν̃∆f̃

(1)
i .

4) Project: compute Γ̃i+1 = Pinc(Γ̃
(2)
i ) and

f̃i+1 = S(f̃
(2)
i ; Γi+1/||Γi+1||, D0)

5) Stop: while τi < T , go back to 2.

Table 7: Grouplet fluid texture synthesis.

B. Texture Mixing

Texture mixing computes a dynamic texture f̃t for t ∈ [0, 1],
where (f̃0, f̃1) are visually similar to a pair of exemplars

(f0, f1). This is achieved by interpolating between both the

geometric layers (Γ0,Γ1) and the coefficient layers (D0, D1)
to obtained new layers Γt and Dt for each t. Each coefficient

layer is decomposed as Dk = {Dj,ℓ,k}j,ℓ ∪Dsp

k for k = 0, 1.

The geometric layer interpolation is achieved by a pointwise

averaging of the angle-doubled flow

β(Γt) =
(1− t)β(Γ0) + tβ(Γ1)

||(1− t)β(Γ0) + tβ(Γ1)||
,

where β is defined in (20). More complicated interpolation

scheme for vector field could be used.

The grouplet coefficient layer interpolation is achieved by

partial matching of the marginals. For each (j, ℓ), we denote

by {dj,ℓ,k(rk(i))}i, for k = 0, 1, the coefficients of Dj,ℓ,k

ordered by increasing values, where rk is a permutations of

the indexes. The marginal Dj,ℓ,t of the interpolated layer Dt

is defined by

Dj,ℓ,t = {(1− t)dj,ℓ,0(r0(i)) + tdj,ℓ,1(r1(i))}m
This corresponds to a 1D optimal transportation of the mea-

sures associated to the marginals.

The texture mixing algorithm then starts from f̃−τ being

a random noise, and iteratively projecting on the interpolated

texture model T (Γiτ , Diτ )

∀ i ∈ [0, 1/τ ], f̃iτ = S(f̃(i−1)τ ; Γiτ , Diτ ).

Figure 15 shows two examples of texture mixing, where the

patterns of the textures are blended according the parametert.

VII. CONCLUSION

This paper proposed a new grouplet texture models. The

geometric layer is computed with a local orientation analy-

sis while the coefficient layer is computed with a wavelet-

grouplet transform. The sparsity of the grouplet representation

regularizes inpainting with an iterative thresholding algorithm.

Statistical modeling of the geometric and coefficient layer

enables the synthesis of anisotropic textures. Time dependent

synthesis is possible by coupling the synthesis with a fuild

simulation or by interpolating between two grouplets models.

More advanced models could be built on top of this grouplet

representation. This could include couplings between the ge-

ometry and the coefficient layers that certainly occur in natural

images, for instance because of occlusion and shading.
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[42] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut
textures: image and video synthesis using graph cuts,” ACM Transactions

on Graphics, vol. 22, no. 3, pp. 277–286, Jul. 2003.

[43] S. Lefebvre and H. Hoppe, “Parallel controllable texture synthesis,” ACM

Trans. Graph., vol. 24, no. 3, pp. 777–786, 2005.

[44] V. Kwatra, I. Essa, A. Bobick, and N. Kwatra, “Texture optimization
for example-based synthesis,” ACM Transactions on Graphics, vol. 24,
no. 3, pp. 795–802, Jul. 2005.

[45] S. Lefebvre and H. Hoppe, “Appearance-space texture synthesis,” ACM

Transactions on Graphics, vol. 25, no. 3, pp. 541–548, Jul. 2006.

[46] H. Chen and S. C. Zhu, “A generative sketch model for human hair
analysis and synthesis,” IEEE Trans. Pattern Anal. Mach. Intell, vol. 28,
no. 7, pp. 1025–1040, 2006.

[47] R. Cappelli, D. Maio, A. Lumini, and D. Maltoni, “Fingerprint image
reconstruction from standard templates,” IEEE Trans. Pattern Analysis

and Machine Intelligence, vol. 29, no. 9, pp. 1489–1503, Sep. 2007.

[48] N. Foster and D. N. Metaxas, “Realistic animation of liquids,” Graphical

Models and Image Processing, vol. 58, no. 5, pp. 471–483, Sep. 1996.

[49] J. Stam, “Stable fluids,” in Proc. of Siggraph’99, A. Rockwood, Ed.
N.Y.: ACM Press, Aug. 1999, pp. 121–128.

[50] R. Bridson, J. Houriham, and M. Nordenstam, “Curl-noise for procedural
fluid flow,” ACM Trans. Graph., vol. 26, no. 3, p. 46, 2007.

[51] F. Neyret, “Advected textures,” in Proc. of ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, D. Breen
and M. Lin, Eds. Aire-la-Ville: Eurographics Association, Jul. 26–27
2003, pp. 147–153.

[52] J. Stam and E. Fiume, “Depicting Fire and Other Gaseous Phenomena
Using Diffusion Processes,” in Proc. of Siggraph’95, 1995, pp. 129–136.

[53] A. Lamorlette and N. Foster, “Structural modeling of natural flames,” in
Proc. of Siggraph’02, ser. ACM Transactions on Graphics, S. Spencer,
Ed., vol. 21, 3. New York: ACM Press, Jul. 21–25 2002, pp. 729–735.
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