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Derivatives with Respect to Metrics and Applications:

Subgradient Marching Algorithm

F. Benmansour, G. Carlier, G. Peyré, F. Santambrogio ∗

January 2, 2011

Abstract

This paper introduces a subgradient descent algorithm to compute a Riemannian
metric that minimizes an energy involving geodesic distances. The heart of the method
is the Subgradient Marching Algorithm to compute the derivative of the geodesic dis-
tance with respect to the metric. The geodesic distance being a concave function of the
metric, this algorithm computes an element of the subgradient in O(N2 log(N)) oper-
ations on a discrete grid of N points. It performs a front propagation that computes a
subgradient of a discrete geodesic distance. We show applications to landscape model-
ing and to traffic congestion. Both applications require the maximization of geodesic
distances under convex constraints, and are solved by subgradient descent computed
with our Subgradient Marching. We also show application to the inversion of travel
time tomography, where the recovered metric is the local minimum of a non-convex
variational problem involving geodesic distances.

Keywords: Geodesics, Eikonal equation, subgradient descent, Fast Marching Method,
traffic congestion, travel time tomography.

1 Introduction

This paper is concerned with variational problems involving geodesic distances. We aim to
find a Riemannian metric that optimizes an energy taking into account pairwise geodesic
distances according to the metric.

The optimization of the metric is obtained using a gradient descent scheme, and the
main contribution of the paper is an algorithm to compute the gradient of the geodesic
distance according to the metric.

1.1 Variational Problems with Geodesic Distances

An isotropic Riemannian metric ξ on a domain Ω ⊂ Rd defines a weight ξ(x) that penalizes
a curve γ(t) passing through a point x = γ(t) ∈ Ω.

This paper considers the optimization of a metric ξ that solves general variational
problems of the form

min
ξ∈C
E(ξ) =

∑
s,t

Es,t(dξ(xs, xt)) + J(ξ). (1.1)
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where C is a convex set of constraints, for each pair of points xs, xt ∈ Ω, Es,t is an interaction
functional, J is a convex regularization functional and dξ is the geodesic distance according
to ξ.

The geodesic distance is the minimal length of rectifiable curves joining two points
xs, xt ∈ Ω

dξ(xs, xt) = min
γ(0)=xs,γ(1)=xt

Lξ(γ). (1.2)

where the length of a curve is defined as

Lξ(γ) =
∫ 1

0
|γ′(t)|ξ(γ(t))dt. (1.3)

The mapping ξ 7→ dξ(xs, xt) is concave, as the minimum (1.2) of linear functions of ξ.
The energy E is thus convex as long as each interaction functional Es,t is convex and non-
increasing. In this paper we consider two particular instances of (1.1) where the energy is
convex, in which cases we find a global minimizer using our method. We also consider a
non-convex problem for which we compute a local minimizer of E .

1.2 Previous Works

Geodesic distance computation. The estimation of geodesic distances dξ(xs, xt) has
been intensively studied in numerical analysis and can be approximated on a discrete
grid of N points with the Fast Marching Method of Sethian [19], and Tsitsiklis [22] in
O(N log(N)) operations. This algorithm has opened the door to many applications in
computer vision and medical image analysis where the minimal geodesic curves extract
image features, see for instance [19, 12, 11]. Section 2 recalls the basics of the discretization
of geodesic distances and Section 2.2 details the front propagation procedure underlying
the Fast Marching method.

The optimization of the metric ξ according to a variational problem such as (1.1) is
much less studied than the computation of geodesic distances. It is however an important
problem in some specific fields, such as landscape design, traffic congestion and seismic
imaging. In these applications, the metric ξ is optimized to meet certain criteria, or is
recovered by optimization from a few geodesic distance measures.

We now describe some applications where such optimization problems naturally arise.

Convex geodesic distance maximization. The design of a landscape in a domain
Ω ⊂ Rd corresponds to the optimization of a metric ξ(x) that describes locally the difficulty
of passing through some point x ∈ Ω. Buttazzo et al. consider in [8] a design criterion that
corresponds to the maximization of geodesic distances between landmark points {xs}P−1

s=0 ,
so that the interaction functionals in (1.1) are

Es,t(d) = −ws,td (1.4)

where ws,t ≥ 0 are weights describing the interaction between the landmarks. In this
application, we do not consider any regularization J . This criterion models agents located
at the points {xs}s and that are free to modify the landscape in order to defend themselves
optimally from the other agents.

A continuous formulation of the problem is studied in [8] that proves existence of
optimal solutions for certain sets of constraints C. Section 4.1 shows numerical examples
computed using our subgradient Marching algorithm.
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Convex traffic congestion problem. A Wardrop equilibrium [23] defines a traffic
density between points {xs}P−1

s=0 such that agents travel along geodesics for a metric ξ that
reflects penalization of movements at points with high traffic density due to congestion
effects.

A continuous generalization of this notion of equilibrium is proposed in [9]. It com-
putes an equilibrium metric by solving a variational problem of the form (1.1) with linear
interaction functionals (1.4) and a regularization of the form

J(ξ) =
∫

Ω
G(x, ξ(x))dx. (1.5)

for a function G that is convex in ξ. We refer to [1] for more details about this variational
formulation and how the metric ξ and the traffic intensity are related. Section 4.2 shows
some numerical examples solved using our subgradient Marching algorithm.

Non-convex geodesic inversion problems. Seismic imaging computes an approxi-
mation of the underground from few surfaces measurements [10]. This corresponds to an
ill-posed inverse problem that is regularized using smoothness prior information about the
ground and simplifying assumptions about wave propagation.

For a pair (xs, xt) of emitter and receiver, denoted as (s, t) ∈ Γ, discarding multiple
reflexions, the first arrival time of a pressure wave corresponds to the geodesic distance

∀(s, t) ∈ Γ, ds,t = dξ0(xs, xt) (1.6)

for some unknown Riemannian metric ξ0 that reflects the properties of the underground.
Travel time tomography recovers an approximation ξ of ξ0 from few first time arrivals

(ds,t)(s,t)∈Γ. A least square recovery of ξ0 involves the optimization of the geodesic distance
through a non-convex variational problem of the form (1.1) with interaction functionals

Es,t(d) =
{

(d− ds,t)2 if (s, t) ∈ Γ,
0 otherwise.

(1.7)

The resulting energy E(ξ) is non convex, and optimization schemes compute a local mini-
mizer of the energy.

Most methods perform an approximate recovery using ray tracing, that necessitates
to compute many rays to cover the whole domain [3, 2]. Eulerian methods compute the
travel time distance by solving PDEs on a discrete grid, see [10] for a related tomography
problem. An Eulerian travel time tomography method has been developed by Leung and
Qian in [16]. It performs a regularized gradient descent of an energy similar to (1.1).
Authors of [16] propose to compute the gradient of the functional using an adjoint state
method, that requires, at each step of the descent, two computations of geodesic distances.

Section 4.3 proposes an alternative approach to compute the gradient of the functional
to minimize. It might be slower than the method of [16] that only requires the evaluation of
geodesic distances. Our method is however more general since it allows to tackle arbitrary
energies involving geodesic distances. It might also be numerically more precise since
we compute exactly the gradient of a discrete geodesic distance, while [16] discretizes a
gradient defined for continuous PDEs. Our method also correctly accounts for the non-
differentiability of the distance with respect to the metric by estimating a element of the
subgradient of the functional.

It is however beyond the scope of this paper to compare the numerical complexity and
precision of travel time tomography methods. Section 4.3 shows some examples of travel
time tomography inversion computed using our subgradient Marching algorithm.
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Non-convex geodesic shape regularization. Shape analysis in computer vision tack-
les the problem of comparing objects represented as surfaces or more general metric spaces.

A geodesic matching between two surfaces is obtained in [7] by minimizing an energy
similar to (1.1) for interactions (1.7), but with respect to the sample locations {xs}s for a
fixed metric ξ that represents the geometry of the surface to be matched.

This approach is extended into a geodesic regularization in [13] by performing the min-
imization of (1.1) with respect to the metric ξ. In this work, the metric is represented as
a triangulated 3D surface. This corresponds to an extension of our Subgradient March-
ing algorithm from a regular grid to a triangular grid. This extension makes use of the
extension of the 2D grid Fast Marching [19] to triangulated meshes [15], see also [21, 6].

1.3 Discrete Subgradient Descent

We propose a projected subgradient algorithm to solve a variational problem (1.1) involving
geodesic distances. To that end we introduce the subgradient marching method, that
computes the gradient of a discretized geodesic distance according to the metric.

In the sequel, we will refer to δξ(xs, xt) as a subgradient of the concave mapping
ξ 7→ dξ(xs, xt) instead of a supergradient. This slight abuse of terminology should not
create confusion however.

Projected subgradient descent. This paper proposes to find a solution to (1.1) using
a projected subgradient descent. Starting with some initial metric ξ(0), one iterates

ξ(k+1) = ΠC

(
ξ(k) − ρk∇ξ(k)E

)
(1.8)

where ρk > 0 is a decaying sequence of gradient step size and ΠC is the orthogonal projec-
tion on the set of constraints C, and where the gradient of the energy E is

∇ξE =
∑
s,t

δξ(xs, xt)E ′s,t(dξ(xs, xt)) +∇ξJ(ξ),

where δ = δξ(xs, xt) is the subgradient at ξ of the mapping ξ 7→ dξ(xs, xt). For any
location y ∈ Ω, δ(y) tells how much the geodesic distance between xs and xt is sensitive
to variations on ξ(y).

We also consider cases where the interactions Es,t do not lead to a convex energy E , in
which case (1.8) is only guaranteed to converge to a local minimum of E if ξ(k) does not
encounter a point of non-differentiability during the gradient descent.

Discretization difficulties and proposed method. The main bottleneck to compute
the solution of (1.1) using a gradient method such as (1.8) is to compute subgradients
δξ(xs, xt). Furthermore, this computation should be performed on a discrete grid.

A small perturbation ξε = ξ + εh defines a distance dξε(xs, xt) between xs and xt, that
can be differentiated with respect to ε at ε = 0

d

dε
dξε(xs, xt)

∣∣∣
ε=0

=
∫

γ
h dH1 =

∫ 1

0
h(γ(t))|γ′(t)|dt, (1.9)

where the curve γ is the geodesic curve between xs and xt according to the metric ξ, which
is a curve with minimal length

Lξ(γ) = dξ(xs, xt).
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If γ is unique, this shows that ξ 7→ dξε(xs, xt) is differentiable at ξ, and that its gradient
δξ(xs, xt) is a measure supported along the curve γ. In the case where this geodesic is not
unique, this quantity may fail to be differentiable. Yet, the map ξ 7→ dξ(xs, xt) is anyway
concave (as an infimum of linear quantities in ξ) and for each geodesic we get an element
of the super-differential through Equation (1.9).

The extraction of geodesics is quite unstable, especially for metrics such that xs and xt

are connected by many curves of length close to the minimum distance dξ(xs, xt). It is thus
unclear how to discretize in a robust manner the gradient of the geodesic distance directly
from the continuous definition (1.9). We propose in this paper an alternative method,
where δξ(xs, xt) is defined unambiguously as a subgradient of a discretized geodesic dis-
tance. Furthermore, this discrete subgradient is computed with a fast Subgradient March-
ing algorithm.

Figure 1 shows two examples of subgradients, computed with the algorithm detailed
in Section 3. Near a degenerate configuration, we can see that the subgradient δξ(xs, xt)
might be located around several minimal curves.
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Figure 1: On the left, δξ(xs, xt) and some of its iso-levels for ξ = 1. In the middle, a non
constant metric ξ(x) = 1/(1.5− exp(−‖c− x‖)), where c is the center of the domain. On
the right, an element of the superdifferential of the geodesic with respect to the metric
shown in the middle.

Anisotropic metrics. The geodesic distance and its subgradient can be defined for
more general Riemannian metric ξ that depends both on the location γ(t) of the curve
and on its local direction γ′(t)/|γ′(t)|. The algorithm presented in this paper extends
to this more general setting, thus allowing to design arbitrary anisotropic Riemannian
metric. This requires to use more advanced Fast Marching methods, such as the ones
developed in [20, 5], see also [13] for a related extension of our method to 3D meshes. We
decided however to restrict our attention to the isotropic case, that has many practical
applications.

1.4 Contributions

This paper proposes a projected subgradient descent (1.8) to minimize variational problems
that are discretized versions of (1.1). The key ingredient and the main contribution of
the paper is the Subgradient Marching Algorithm, detailed in Section 3, that computes
an element of the subgradient of the geodesic distance with respect to the metric. This
algorithm follows the optimal ordering used by the Fast Marching, making the overall
process only O(N2 log(N)) to compute subgradients of the maps ξ 7→ dξ(xs, xt) for a fixed
xs and for all the grid points xt.
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2 Discrete Geodesic Distances

Our approach to minimize variation problems such as (1.1) first defines a discrete geodesic
distance dξ(xs, xt) as the solution of a discretized partial differential equation. A discrete
subgradient δξ(xs, xt) of the map ξ 7→ dξ(xs, xt) is then defined to solve exactly discrete
variational problems involving geodesic distances. This is a general framework that could
be extended to a larger class of non-linear partial differential equations.

2.1 Discretization

Eikonal Equation. To define a discrete geodesic distance and the corresponding sub-
gradient, we consider a fixed starting point xs, and define the distance map to this point

Uξ(x) = dξ(xs, x). (2.1)

Note that we have dropped the dependancy on the starting point xs, that is assumed to
be known and fixed.

As shown in [17], this distance map is the unique viscosity solution of the Eikonal
non-linear PDE {

‖∇Uξ(x)‖ = ξ,

Uξ(xs) = 0.
(2.2)

The computation of Uξ(x) thus requires the discretization of (2.2) so that a numerical
scheme captures the viscosity solution of the equation.

Upwind Discretization. In the following, we describe the computation in 2D of the
geodesic distance and assume that the domain is Ω = [0, 1]2, although the scheme carries
over for an arbitrary domain in any dimension. We consider regular grid discretization,
although our method extends to more complicated discretizations, such as for instance
triangulations, see [13].

We will also drop the dependence on ξ and xs of the distance map Uξ = U to ease the
notations. The geodesic distance map Uξ is discretized on a grid of N = n× n points, so
that Ui,j for 0 ≤ i, j < n is an approximation of Uξ(ih, jh) where the grid step is h = 1/n.
The metric ξ is also discretized so that ξi,j = ξ(ih, jh).

Classical finite difference schemes do not capture the viscosity solution of (2.2). Upwind
derivative should be used instead

D1Ui,j := max{(Ui,j − Ui−1,j), (Ui,j − Ui+1,j), 0}/h,

D2Ui,j := max{(Ui,j − Ui,j−1), (Ui,j − Ui,j+1), 0}/h.

As proposed by Rouy and Tourin [18], the discrete geodesic distance map U = (Ui,j)i,j is
found as the solution of the following discrete non-linear equation that discretizes (2.2)

DU = ξ where DUi,j =
√

D1U2
i,j + D2U2

i,j . (2.3)

Rouy and Tourin [18] showed that this discrete geodesic distance U converges to Uξ when
h tends to 0.

Figure 2 shows an example of a discrete geodesic distance map U . The metric ξ takes
lower values along a black curve than the background, so that the geodesic curves tends
to follow this feature. An example of geodesic curve γ between xs and xt is shown on the
right, that is obtained by solving the ordinary differential equation

dγ

dt
= −∇U(γ(t)) and γ(0) = xs.
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Figure 2: Example of the minimal path computation using the Fast Marching algorithm.
On the left: the metric ξ. On the right: The minimal action map U and the minimal path
linking xs to xt.

(a) Neighborhood N (i, j)

Known Trial

Far 

(b) Points states during the propagation

Figure 3: Fast Marching propagation on a regular grid.

2.2 Fast Marching Propagation

The Fast Marching algorithm, introduced by Sethian in [19] and Tsitsiklis in [22], allows
to solve (2.3) in O(N log(N)) operations using an optimal ordering of the grid points. This
greatly reduces the numerical complexity with respect to iterative methods, because grid
points are only visited once.

We recall the basic ideas underlying this algorithm, because our Subgradient Marching
algorithm detailed in Section 3 makes use of the same ordering process.

The values of U may be regarded as the arrival times of wavefronts propagating from
the source point xs with velocity 1/ξ. The central idea behind the Fast Marching method
is to visit grid points in an order consistent with the way wavefronts propagates.

In the course of the algorithm, the state Si,j of a grid point (i, j) passes successively
from Si,j =Far (no estimate of Ui,j is available) to Si,j =Trial (an estimate of Ui,j is
available, but it might not be the solution of (2.2)) to Si,j =Known (the value of Ui,j

is fixed and solves (2.2)). The set of Trial points forms an interface between Known
points (initially the point xs alone) and the Far points. The Fast Marching algorithm
progressively propagates this front of Trial points so that all grid points are visited, see
Fig. 3.

At each iteration of the algorithm, a point (i, j) is tagged as Si,j =Known so that
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Ui,j is the solution of (2.2). The value of U at the neighboring points (i′, j′) ∈ N (i, j) =
{(i + 1, j), (i− 1, j), (i, j + 1), (i, j − 1)} such that (i′, j′) is not Known yet are updated by
solving (2.3), using only the values of U that are Known.

The decision of moving the state of a point from Si,j =Trial to Si,j =Known is made by
selecting the Trial point with minimum value of U . It can be shown that updating the value
of U by solving (2.3) can only increase the value of U(i′,j′) for a trial point (i′, j′), so that
the values of Known points are ensured to solve (2.2). A heap data structure allows one
to locate this minimum point in at most log(N) operations, so that the overall complexity
of the algorithm is O(N log(N)) operations. This is similar to Dijkstra’s algorithm for
computing shortest paths on graphs [14], the main difference is the expression of the local
contribution to the weighted distance.

Table 1 details the steps of the Fast Marching algorithm.

2.3 Update of the Geodesic Distance Map

Each step of the Fast Marching requires the resolution of (2.3) to update the value of
u = Ui,j for a small set of points (i, j). One thus needs to compute the solution u of

max{(u− Ui−1,j), (u− Ui+1,j), 0}2 + max{(u− Ui,j−1), (u− Ui,j+1), 0}2 = (hξi,j)2. (2.4)

This computation deserves special attention because our Subgradient Marching requires
to compute the derivative of the obtained distance Ui,j = u. Thanks to the recursive
structure of the FM procedure, the value Ui,j will only depend upon the values at some of
its neighbors, which we will call parents of (i, j).

In order to solve (2.4) we first detect which of the values Ui−1,j ,Ui+1,j is smaller
(notice that one or both of these values could a priori be +∞), let a ∈ {−1,+1} be
such that Ui+a,j = min{Ui−1,j ,Ui+1,j}. Analogously, we choose b ∈ {−1,+1} such that
Ui,j+b = min{Ui,j−1,Ui,j+1}. In case of equality in these minimization we choose a pair
(a, b) according to any previously chosen conventional priority rule so as to avoid ambigu-
ities.

We now concentrate on the three points {(i, j), (i + a, j), (i, j + b)} (see figure 3 left)
and we try to find the solution u of (2.4): depending on whether the neighboring point
are Known or not, different possibilities can occur.

� In the case where Ui+a,j 6= +∞, Ui,j+b 6= +∞ and |Ui+a,j − Ui,j+b| < hξi,j , then no
u ≤ max{Ui+a,j ,Ui,j+b} can be a solution of (2.4), and, since the left-hand side of

Algorithm 1: Fast Marching algorithm.
Initialization: Uxs = 0, Sxs = Trial, ∀(i, j) 6= xs, Si,j = Far, Ui,j = +∞.
repeat

Select point: (i, j)←− argmin
(i′,j′),Si′,j′=Trial

Ui′,j′ .

Tag: Si,j ← Known.
for (i′, j′) ∈ N (i, j) do

if Si′,j′ = Trial or Far then
Si′,j′ ← Trial
Update the value of Ui′,j′ = u by solving (2.3).

until {(i, j) ; Si,j = Trial} = ∅ ;
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such an equation is increasing in u, there is only one solution, which is the maximum
real solution of the quadratic equation

(u− Ui+a,j)2 + (u− Ui,j+b)2 = (hξi,j)2. (2.5)

In this case we say that both points (i + a, j) and (i, j + b) are parents of (i, j).

� In the case where Ui+a,j 6= +∞ and Ui,j+b = +∞, then one defines

u = Ui+a,j + hξi,j (2.6)

and the point (i + a, j) only will be called parent of (i, j).

� In the case where Ui+a,j = +∞ and Ui,j+b 6= +∞, then one takes

u = Ui,j+b + hξi,j . (2.7)

and in this case it is the point (i, j + b) which will be called parent of (i, j).

� If Ui+a,j 6= +∞, Ui,j+b 6= +∞ but |Ui+a,j − Ui,j+b| > hξi,j , then no value of u ≥
max{Ui+a,j ,Ui,j+b} can be a solution of (2.4). In such a case take

u = min{Ui+a,j ,Ui,j+b}+ hξi,j (2.8)

and the point which realizes the minimum between Ui+a,j and Ui,j+b (which is unique,
in this case) will be the only parent of (i, j).

Notice that, when a point (i, j) is tagged as Si,j =Known by the algorithm, its value
Ui,j solves the discrete Eikonal equation (2.3), so that this value only depends on the value
of its parent nodes, which are necessarily Known.

The Fast Marching algorithm, during this propagation, this parental relationship (i, j)→
(i + a?, j) and/or (i, j) → (i, j + b?), since each point except xs has exactly one or two
parents. This defines a directed graph structure without cycle, that stores the dependen-
cies induced by the resolution of the discrete Eikonal equation. We obviously define the
set of ascendants of (i, j) as the set composed of (i, j) itself and of those points which are
before (i, j) in this parental relation, i.e. which are either the parents of (i, j), or parents
of parents. . . Figure 4 shows examples of such a graph of dependencies for two different
metrics.

3 Subgradient Marching Algorithm

This section details our Subgradient Marching algorithm that computes an element δξ(xs, xt)
of the subgradient of the mapping ξ 7→ dξ(xs, xt). Since ξ is discretized on a regular
grid of N points, it is represented as a vector ξ ∈ RN of dimension N . A subgradient
δξ(xs, xt) ∈ RN is thus also a vector of N components.

For a fixed starting point xs, our algorithm in fact computes for all grid points xt =
(i, j),

δξ(xs, xt) = ∇ξUi,j ∈ RN

which is a subgradient of the mapping ξ 7→ U , where U is the discrete geodesic distance
to xs, computed by solving (2.3) as detailed in Section 2 .
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Figure 4: Graphs of dependencies of the Fast Marching computations. Left: uniform
metric, right: varying metric.

3.1 Concavity of the Geodesic Distance

To solve variational problems involving the geodesic distance dξ(xs, x), for x = (ih, jh),
one would like to differentiate with respect to ξ the discrete distance map Uξ

i,j , obtained

by solving (2.3). Actually, this is not always possible, since the mapping ξ 7→ Uξ
i,j is not

necessary smooth. The following proposition proves that Uξ
i,j is a concave function of ξ

and this allows for superdifferentiation (the correspondent of subdifferential for concave
functions instead of convex).

Proposition 3.1. For a given point (i, j), the functional ξ 7→ Uξ
i,j is concave.

Proof. In the following we drop the dependence on (i, j) and note Uξ = Uξ
i,j . Thanks to

the homogeneity, it is sufficient to prove super-additivity. We want to prove the inequality

Uξ1+ξ2 ≥ Uξ1 + Uξ2 .

Thanks to the comparison principle of Lemma 3.2 below, it is sufficient to prove that ξ1 +
ξ2 ≥ D(Uξ1 +Uξ2), where the operator D is defined in (2.3). This is easily done if we notice
that the operator D is convex (as it is a composition of the function (s, t) 7→

√
s2 + t2,

which is convex and increasing in both s and t, and the operator D1 and D2, which are
convex since they are produced as a maximum of linear operators) and 1−homogeneous,
and hence it is subadditive, i.e. it satisfies D(u + v) ≤ Du + Dv.

Lemma 3.2. If ξ ≤ η, then Uξ ≤ Uη.

Proof. Let us suppose at first a strict inequality ξ < η. Take a minimum point for Uη−Uξ

and suppose it is not the starting point xs. Computing D and using sub-additivity we
have

η = DUη ≤ D(Uη − Uξ) + DUξ = D(Uη − Uξ) + ξ,

which gives D(Uη−Uξ) ≥ η−ξ > 0. Yet, at minimum points we should have D(Uη−Uξ) =
0 and this proves that the minimum is realized at xs, which implies Uη − Uξ ≥ 0.

To handle the case ξ ≤ η without a strict inequality, juste replace η by (1 + ε)η and
notice that the map η 7→ Uη is continuous.
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3.2 Recursive Subdifferentiation

Proposition 3.1 proved that for a fixed point (i, j) and a fixed source x0 the functional
ξ 7→ Uξ

i,j is concave. For a metric ξ > 0, one can thus consider an element ∇ξUi,j of the
subdifferential of this functional.

The values of Ui,j at a point (i, j) depend only on the values of its parents (i + a?, j)
and/or (i, j + b?) through quadratic or linear equations (2.5), (2.6) or (2.7). The sub-
differential ∇ξUi,j thus also depends on the subdifferentials ∇ξUi+a?,j and ∇ξUi,j+b? .

One has to consider several cases, depending on the number of parents of (i, j).

� For the special case (i, j) = xs, the value of Ui,j is zero and does not depend on ξ.
Thus, ∇ξUi,j = 0, the null vector.

� If (i, j) has two parents, differentiating (2.5) with respect to ξ leads to

α(∇ξUi,j −∇ξUi+a?,j) + β(∇ξUi,j −∇ξUi,j+b?) = h2ξi,j1i,j

where α = Ui,j − Ui+a?,j ∈ R and β = Ui,j − Ui,j+b? ∈ R. Since ξ > 0, one has
α + β > 0. The subgradient at the point (i, j) is thus the vector ∇ξUi,j defined as

∇ξUi,j =
1

α + β

(
h2ξi,j1i,j + α∇ξUi+a?,j + β∇ξUi,j+b?

)
, (3.1)

where 1i,j is the Dirac vector

1i,j(i′, j′) =
{

1 if (i, j) = (i′, j′),
0 otherwise.

� If only (i + a?, j) is a parent of (i, j), differentiating (2.6) with respect to ξ leads to

∇ξUi,j = ∇ξUi+a?,j + h1i,j . (3.2)

� If only (i, j + b?) is a parent of (i, j), differentiating (2.7) with respect to ξ leads to

∇ξUi,j = ∇ξUi,j+b? + h1i,j . (3.3)

Applying these rules during the Fast Marching propagation allows one to compute the
value of the subgradient ∇ξUi,j at all grid points (i, j). The corresponding Subgradient
Marching algorithm is detailed in Table 2.

Each vector ∇ξUi,j stores at most N non-zero coefficients, so that the overall compu-
tation takes O(N2 log(N)) operations and has a space complexity of O(N2).

Figure 1 shows two examples of subgradients ∇ξUi,j computed with the Subgradient
Marching algorithm. For the metric ξ = 1, the subgradient is concentrated closely along
the geodesic, which is a straight line. The second example shows a configuration for which
the subgradient is located around two geodesic curves.

Notice that every vector ∇ξUi,j is a vector whose entries corresponding to points that
are not ascendant of (i, j) vanish and whose non-zero entries are smaller than h. This may
easily proven by a recursive argument thanks to (3.1), (3.2), (3.3), using the inequality
α + β ≥

√
α2 + β2 = hξi,j (in Figure 1 the values have been scaled with h = 1).
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3.3 Validity of the Subgradient Marching Algorithm

The following theorem ensures the validity of the Subgradient Marching algorithm.

Theorem 3.3. For ξ > 0, a given starting point x0 and a given (i, j), the vector ∇ξUi,j

computed with Subgradient Marching belongs to the subdifferential set of the functional
ξ 7→ Uξ

i,j.

Proof. Consider the set of metrics ξ ∈ (R+)N which give distinct values to the action map
at every point, i.e. such that Ui,j 6= Ui′,j′ for (i, j) 6= (i′, j′). In this case the expression of
Ui,j is given by the recursive algebraic formula (3.1), (3.2) or (3.3) involving the values of
the parents. Each parent (both in the case of one parent and in the case of two parents)
is defined with no ambiguity and the same tree of parental dependence would stay valid
even if ξ was changed by small perturbations. It means that there exists a neighborhood
of ξ such that, for all other metrics ξ̃ in such a neighborhood, all the parental relations
between points are the same. Hence, for ξ̃ in this neighborhood the value of U ξ̃

i,j is given by
the same algebraic and recursive expression. The vector ∇ξUi,j is exactly the differential
of this expression.

Now we suppose that ξ is such that there are possible ex-aequo entries in the vector
u(i, j) = Uξ

i,j . One can slightly perturb this function by a sequence of function un satisfying
the same strict inequalities satisfied by u (i.e., u(i, j) < u(i′, j′) ⇒ un(i, j) < un(i′, j′))
and replacing equalities by inequalities according to the order convention <̃ on the points
of the grid: this means

u(i, j) = u(i′, j′), (i, j)<̃(i′, j′) ⇒ un(i, j) < un(i′, j′).

This is possible by small perturbations, so that un(i, j)→ u(i, j) for each (i, j). Moreover
in this way the parental relation is left unchanged for ξn and for ξ. Then define ξn by
ξn = Dun according to (2.3). Obviously we have ξn → ξ.

Moreover, for every (i, j) and every n the vectors∇ξUξn

i,j belongs to the superdifferential

of the map ξ 7→ Uξ
i,j (since the function is concave and this vector is the gradient). Since

the graph of the superdifferential is closed, the limit of this sequence of vectors must belong
to the superdifferential at ξ. This limit actually exists and is given by ∇ξUξ

i,j , because of
the continuity of the formulas that we used to compute all of these vectors. This is possible
because the approximation ξn was chosen in order not to change the parental relations.

Algorithm 2: Subgradient Marching algorithm.
Initialization: Uxs = 0, Sxs = Trial, ∇ξUxs = 0 the null vector.
∀(i, j) 6= xs, Si,j = Far, Ui,j = +∞.
repeat

Select point: (i, j)←− argmin
(i′,j′),Si′,j′=Trial

Ui′,j′ .

Tag: Si,j ← Known.
for (i′, j′) ∈ N (i, j) do

if Si′,j′ = Trial or Far then
Si′,j′ ← Trial
Update the value of Ui′,j′ , using either (2.5), (2.6) or (2.7).
Update the value of ∇ξUi′,j′ , using either (3.1), (3.2) or (3.3).

until {(i, j) ; Si,j = Trial} = ∅ ;
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4 Applications

This section describes some applications of the Subgradient Marching algorithm to the
resolution of variational problems of the form (1.1). We consider discretized metrics ξ ∈
RN , and the geodesic distances dξ(xs, xt) are discrete distances computed as detailed in
Section 2.1.

4.1 Landscape Design

For the design of a landscape in a domain Ω ⊂ Rd, the interaction functional are linear
(1.4), so that the problem corresponds to the maximization of geodesic distances.

Constrained distance maximization. The optimization of E should be done under
additional constraints on the set of admissible metrics, in order to avoid degenerate solu-
tions. We consider here a local constraint

∀i, j, 0 < ξ
i,j
≤ ξi,j ≤ ξi,j , (4.1)

that accounts for the maximal concentration of material allowed. We also consider a global
constraint

1
|Ω|

∑
(i,j)∈Ω

ξi,j ≤ λ, (4.2)

where |Ω| is the number of grid points in Ω, that accounts for the total amount of ground
material available. The constant λ satisfies necessarily

1
|Ω|

∑
(i,j)∈Ω

ξ
i,j
≤ λ ≤ 1

|Ω|
∑

(i,j)∈Ω

ξi,j .

We note that the maximization of E under the pointwise constraint (4.1) alone would
be saturated everywhere ξi,j = ξi,j .

Taking into account that the constraint (4.2) is obviously saturated, the landscape
design problem is written as

ξ? ∈ argmin
ξ∈C

E(ξ) = −
∑
s,t

ws,tdξ(xs, xt) (4.3)

where

C =

ξ ∈ RN ; ξ
i,j
≤ ξi,j ≤ ξi,j ,

1
|Ω|

∑
(i,j)∈Ω

ξi,j = λ

 , (4.4)

and we note that this minimum might be non-unique.
To solve (4.3), we use the projected gradient descent (1.8), with no regularization

J = 0. In this case, the gradient of E simply reads

∇ξE = −
∑
s,t

ws,t∇ξUξ
s (xt). (4.5)

where each Uξ
s (x) = dξ(xs, x) is the distance map to a landmark xs. Each subgradient

vector ∇ξUξ
s (xt) is computed by the subgradient descent algorithm, Table 2, starting the

front propagation from the point xs.
Thanks to the following proposition, the projection ΠC is easily computed. A simple

dichotomy is used to find the value of α that satisfies (4.7)
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Proposition 4.1. For ξ ≤ λ ≤ ξ, one has

ΠC(ξ) = Pξ
ξ (ξ + α), where Pξ

ξ (ξ)i,j = max(min(ξi,j , ξi,j), ξi,j
) (4.6)

where α ∈ R is such that
1
|Ω|

∑
(i,j)∈Ω

ΠC(ξ + α)i,j = λ. (4.7)

Proof. The projected metric Π(ξ) satisfies

ΠC(ξ) = min
ξ̃∈C

∥∥∥ξ̃ − ξ
∥∥∥2

. (4.8)

For a given Lagrange multiplier α ∈ R, this corresponds to minimize

min
ξ≤ξ̃≤ξ

‖ξ̃ − ξ‖2 − 2α
∑

(i,j)∈Ω

ξ̃i,j .

By developing the square terms, one sees that this amounts to project ξ + α on the set of
constraints ξ ≤ ξ̃ ≤ ξ. This is obtained by truncation with the operator Pξ

ξ , as written in
(4.6).

Since the function
α 7→

∑
(i,j)∈Ω

Pξ
ξ (ξ + α)i,j

is an increasing continuous function, there exists α ∈ R satisfying conditions (4.7).

The following theorem ensures the convergence of the projected gradient descent.

Theorem 4.2. For ρk = 1/k, the sequence (ξ(k))k converges to a minimizer ξ? of (4.3).

Proof. As stated for instance in [4], the convergence of a subgradient descent is ensured if∑
k

ρk = +∞ and
∑

k

ρ2
k < +∞.

and if the sequence (∇ξ(k)E)k stay bounded. Since for each landmarks (xs, xt), the map-
ping ξ 7→ Uξ

s (xt) is concave and 1-homogeneous, it is Lipschitz continuous and hence its
subgradients are bounded.

Numerical examples. We first consider p = 2 agents located at two points x0, x1 in
the corners of a square domain, as shows in Figure 5. The constraints are set to ξ = 0.1,
ξ = 1 and λ = 0.2 |Ω|. The domain Ω is sampled on a square grid of 100 × 100 points.
Since the landmarks are close to the boundary of Ω, hills appear between each xi and the
boundary. This phenomena is explained by the fact that is less costly to build these short
hills and it makes a bypass behind the defender more difficult.

Figure 6 left, shows the decay of the error between the iterates ξ(k) and an optimal
metric ξ?. Figure 6, right, shows the increase of the energy, which is not strictly monotonic
because of the non-smooth nature of the problem to optimize.

Figure 7, left and middle, shows the influence of the total mass parameter λ. Decreasing
the value of λ causes the optimal metric ξ? to be more concentrated around the landmark
positions. By decreasing value of ξ toward 0, these regions approach circular shape, see
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Figure 5: 2D and 3D display of the optimal metric ξ?.
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Figure 6: Left: decrease of the error log10(‖ξ(k) − ξ?‖/‖ξ?‖), right: increase of the energy
E(ξ(k)).

Figure 7 right. One can note that the Gradient Marching algorithm is able to compute
a subgradient of E as soon as ξ > 0, but the convergence tends to become slower when ξ
approaches 0.

One can indeed prove that if ξ
i,j

= 0 and ξi,j = c, in a continuous setting, the unique
optimal metric ξ? is given by ξi,j = c for (i, j) in two disks around x0 and x1 and ξi,j = 0
elsewhere, if λ is small enough so that the two disks fit inside Ω.

Figure 8, left, shows an example of spatially varying constraints. To prevent the agent
located in x1 to modify the metric, we enforce

∀(i, j) ∈ Ω1, ξ
i,j

= ξi,j = 0.1,

where Ω1 is a region surrounding x1, whereas outside Ω1 we set

∀(i, j) /∈ Ω1, ξ
i,j

= 0.1, ξi,j = 1.

The metric is thus only optimized in Ω \ Ω1, as shown on Figure 8 left.
Figure 8, right, shows an example of optimal metric ξ? computed with P = 8 land-

marks. The weights between the landmarks are set to ws,t = 1 and ξ
i,j

= 0.1, ξi,j = 6.
Figure 9 shows the iterations of the algorithm for a domain Ω with a hole.
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Figure 7: Dependence on parameters λ and ξ of the optimal metric ξ. In all examples
ξ = 1.
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Figure 8: Left: spatially vayring constraint ξi,j with P = 2 landmarks, right: constant
constraint with P = 8 landmarks.
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k = 100 k = 300 k = 500

Figure 9: Iterations ξ(k) computed for a domain Ω with a hole and with P = 5 landmarks.

Extension of the model. It is possible to modify the energy E defined in (4.3) to mix
differently the distances between the points {xs}s. One can for instance minimize

Emin(ξ) = −
∑

s

min
t6=s

dξ(xs, xt).

This functional is the opposite of the minimum of concave functions, and hence Emin is
a convex function. The maximization of the energy Emin forces each landmark to be
maximally distant from its closest neighbors.

The subgradient of Emin is computed as

∇ξE = −
∑

s

∇ξUξ
s (xt(s)).

where, for each landmark xs, xt(s) is the closest landmark according to the metric ξ

t(s) = argmin
t6=s

dξ(xs, xt).

The projected gradient descent (1.8) converges to a minimum of Emin.
Figure 10, left and center, shows how the metric ξ(k) evolves during the iterations of

a projected gradient descent. The graph connecting each xs to its nearest neighbor xt(s)

is overlaid. The points xs are clustered on two sides of the domain, so that during the
first iterations, the graph connects points on each side of the domain. At convergence,
the metric is optimized so that points located in two different sides of the domain are also
relatively close one from each other. This is why the graph also connects points located
on two different sides.

4.2 Traffic Congestion Equilibria

The simulation of a static traffic congestion is the computation of a Riemannian metric
so that agents travel along geodesics between points {xs}s. The metric is the unique
minimizer of (1.1) for linear interactions (1.4). The regularization J is a discretization of
(1.5)

J(ξ) =
1
3

∑
(i,j)

|ξi,j |3
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k = 100 k = 300 k = 500

Figure 10: Iteration ξ(k) computed during the subgradient descent. The dashed line
corresponds to the connexion s→ t(s) of nearest neighbors points.

Each weight ws,t is the strength of the traffic between two landmarks xs and xt. The only
constraint is that metrics should be positive

C =
{
ξ ∈ RN ; ξi,j ≥ 0

}
.

The projection on this constraint set is simply

ΠC(ξ) = max(0, ξ),

and the subgradient descent (1.8) is guaranteed to converge to the solution of (1.1) if one
uses for instance ρk = 1/k.

For this application, the subgradient of E is

∇ξE = j(ξ)−
∑
s,t

ws,t∇ξUs(xt), (4.9)

where
j(ξ) = (ξ2

i,j)(i,j) ∈ RN .

The subgradient ∇ξUs(xt) at ξ of the mapping ξ 7→ dξ(xs, xt) is computed with the Sub-
gradient Marching algorithm, Table 2, starting the front propagation at the point xs.

Numerical example. Figure 11 shows an example of congested metric with a complex
domain Ω and four landmarks. The two landmarks x0, x1 are sources of traffic and x2, x3

are targets, so that w0,1 = w2,3 = 0 and we choose the other weights

w0,2 + w0,3 = 2(w1,2 + w1,3) and
w0,2

w0,3
=

w1,2

w1,3
,

so that the traffic intensity going out from x0 is twice the one from x1. One can note the
two hollows on each side of the river appearing because of the inter-sides and intra-sides
crossed traffics.
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Figure 11: Two sources and two targets, with a river and a bridge on a symmetric config-
uration and an asymmetric traffic weights.

4.3 Travel Time Tomography

A simple model of seismic data acquisition assumes that geodesic distances are collected
between points (xs)s. Pairs of emitter and receiver are denoted as (xs, xt) for (s, t) ∈ Γ.

In our simplified tomography setting, the data acquisition (1.6) computes geodesic
distances ds,t for each pair (s, t) ∈ Γ according to an unknown Riemannian metric ξ0.

Geodesic tomography inversion. The recovery is obtained by solving (1.1) for a data
fidelity term (1.7) as interaction functionals.

We use a discrete Sobolev regularization

J(ξ) =
µ

2
‖gradξ‖2 =

µ

2

∑
(i,j)∈Ω

‖gradi,jξ‖2

where the operator grad is a finite difference discretization of the 2D gradient

gradi,jξ = (ξi+1,j − ξi,j , ξi,j+1 − ξi,j),

with Neumann condition on the boundary ∂Ω of the domain. The parameter µ controls the
strength of the regularization and should be adapted to the number |Γ| of measurements
and the smoothness of ξ0.

We use the local and global constraints (4.4), where

ξ = min
(i,j)∈Ω

ξ0
i,j , ξ = max

(i,j)∈Ω
ξ0
i,j , and λ =

1
|Ω|

∑
(i,j)∈Ω

ξ0
i,j .

The travel time recovery is thus obtained by minimizing

argmin
ξ∈C

1
2

∑
(s,t)∈Γ

(dξ(xs, xt)− ds,t)2 +
µ

2
‖gradξ‖2 . (4.10)
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ξ0 ξ?

Figure 12: Examples of travel time tomography recovery.

Subgradient descent recovery. The minimization problem (4.10) is non-convex, but
a local minimizer ξ? can be computed using the projected gradient descent (1.8). In this
case, the gradient of the energy E at a metric ξ reads

∇ξE = µ∆ξ −
∑
s,t

(dξ(xs, xt)− ds,t)∇ξ(k)Us(xt).

where ∆ = −grad∗ ◦ grad is the Laplacian. The subgradient ∇ξUs(xt) of the mapping
ξ 7→ dξ(xs, xt) is computed with the Subgradient Marching algorithm, Table 2, starting
the propagation from the point xs.

The subgradient descent (1.8) converges to a local minimum ξ? of the problem (4.10).

Numerical examples. Figure 12 shows two examples of smooth metrics ξ0 recovered
from travel time tomography measurements. In each case, we set ξ/ξ = 1.3 and we use

ξ
(0)
i,j = λ as an initial flat metric.

For the first example, we use P = 100 points distributed evenly on the boundary of a
square Ω, discretized at N = 150 × 150 points, and each points acts both as emitter and
sensor.

For the second example, we use 50 emitter points {xs}49s=0 distributed evenly on the
boundary of a complicated domain Ω, and 150 sensors {xt}199

s=50 distributed randomly
within the domain. Each emitter is connected to all the sensors, so that (s, t) ∈ Γ if and
only if s < 50 and t ≥ 50.
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Figure 13: Decay of the energy and the error for the first example shown in Figure 12.

We enforce the smoothness of the solution by setting a large enough regularization
parameter µ = 0.1. Figure 13 shows the decay of the energy E and the error

∥∥ξ(k) − ξ?
∥∥.

The recovery error
∥∥ξ0 − ξ?

∥∥ /
∥∥ξ0

∥∥ is 2.5× 10−2 for the first example and 7× 10−3 for
the second example. Both examples show that for moderately complicated tomography
problems (smooth medium and low contrast), a good approximation can be obtained by
Subgradient Marching descent. These synthetic examples are however quite simple, and
a detailed analysis of the method and the properties of the minimizer ξ? is desirable but
beyond the scope of this paper.

Conclusion

We have presented a new projected gradient descent algorithm to optimize a metric with
respect to an energy involving geodesic distances. The heart of our approach is the Subgra-
dient Marching algorithm, which computes the derivative of a discrete geodesic distance
with respect to the metric. Up to our knowledge, this is the first time that a consistent
numerical tool has been introduced to solve discrete variational problems that take into
account geodesic distances between points. Three representative applications illustrate
the practical use of Subgradient Marching. Lanscape design and traffic congestion lead
to the minimization of a convex functional, and can be solved efficiently with a projected
gradient descent. Recovery of geodesic inverse problems such as travel time tomography
is obtained by computing a local minimizer of a non-convex problem.
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